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Abstract. Data clustering methods have many applications in the area of data
mining. Traditional clustering algorithms deal with quantitative or categorical
data points. However, there exist many important databases that store
categorical data sequences, where significant knowledge is hidden behind
sequential dependencies between the data. In this paper we introduce a problem
of clustering categorical data sequences and present an efficient scalable
algorithm to solve the problem. Our algorithm implements the general idea of
agglomerative hierarchical clustering and uses frequently occurring
subsequences as features describing data sequences. The algorithm not only
discovers a set of high quality clusters containing similar data sequences but
also provides descriptions of the discovered clusters.

1 Introduction

Clustering is one of the most popular unsupervised data analysis methods that aims at
identifying groups of similar objects based on the values of their attributes [14][15].
Many clustering techniques have been proposed in the area of machine learning
[7][12][14] and statistics [15]. Those techniques can be classified as partitional and
hierarchical. Partitional clustering obtains a partition of data objects into a given
number of clusters optimizing some clustering criterion. Hierarchical clustering is a
set of partitions forming a cluster hierarchy. An agglomerative hierarchical clustering
starts with clusters containing single objects and then merges them until all objects are
in the same cluster. In each iteration two most similar clusters are merged. Divisive
hierarchical clustering starts with one cluster and iteratively divides it into smaller
pieces.

Emerging data mining applications place additional requirements on clustering
techniques, namely: scalability with database sizes, effective treatment of high
dimensionality and interpretability of results [1]. Recently, the problem of data
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clustering has been redefined in the data mining area. The concept of cluster mining
[18] is used to represent a method which analyzes very large data sets to efficiently
identify a small set of high-quality (statistically strong) clusters of data items. Cluster
mining does not aim at partitioning of all the data items – instead, less frequent noise
and outliers are ignored. In other words, cluster mining finds only the highest density
areas hidden in the data space.

A number of efficient and scalable clustering algorithms for clustering data points
represented by multidimensional quantitative values [1][6][10][22], as well as by sets
of categorical values (product names, URLs, etc.) [8][9][11][13][19][21] have been
proposed so far in the data mining area. However, we notice that there exist many
important databases that store categorical data sequences, where significant
knowledge is hidden behind sequential dependencies between the data (credit card
usage history, operating system logs, database redo logs, web access paths, etc.). The
existing clustering algorithms either cannot be easily transformed to deal with
categorical data sequences or cannot take into account the sequential dependencies.

Categorical data sequence clustering can have many applications in the area of
behavioral segmentation – e.g. web users segmentation [18]. The problem of web
users segmentation is to use web access log files to partition a set of users into
clusters such that the users within a cluster are more similar to each other than users
from different clusters. The discovered clusters can then help in on-the-fly
transformation of the web site content. In particular, web pages can be automatically
linked by additional hyperlinks. The idea is to try to match an active user's access
pattern with one or more of the clusters discovered from the web log files. Pages in
the matched clusters that have not been explored by the user may serve as
navigational hints for the user to follow.

In this paper we define the problem of clustering categorical data sequences and
we propose an efficient algorithm to solve the problem. The algorithm employs the
idea of agglomerative hierarchical clustering, which consists in merging pairs of
similar clusters to form new larger clusters. We have taken the following
assumptions: 1. the simplest cluster (elementary cluster) is a set of data sequences
containing a common subsequence, 2. a significant cluster is a cluster that contains a
large number of data sequences, 3. two clusters can be merged if a large number of
their corresponding sequences overlap. Our algorithm starts with a set of significant
elementary clusters and merges them iteratively until a user defined stop condition is
satisfied.

Let us illustrate the approach with the following example (Fig. 1). We are given a
web log file, which records paths used by users for navigation (e.g. the user s1 has
visited the URLs: A, B, C, Z, and then D). Assume we are interested in discovering
groups of users (sequences), whose behavior is similar to each other, i.e. who visit
identical pages in the identical order. First, we create the elementary clusters c1, c2,
c3, c4 that contain overlapping sequences. Then we notice that we can merge the
clusters c1, c2, and c3 since the sequences they contain overlap between the clusters.
Finally, the algorithm ends with two clusters, which represent web users of similar
behavior.



s1: A->B->C->Z->D s4: L->M->N->O
s2: P->Q->R s5: E->F->G->A->B
s3: C->D->E->F s6: Q->X->R ->S

c1:
s1: A->B->C->Z->D
s3: C->D->E->F

c2:
s3: C->D->E->F
s5: E->F->G->A->B

c3:
s1: A->B->C->Z->D
s5: E->F->G->A->B

c4:
s2: P->Q->R
s6: Q->X->R ->S

c1:
s1: A->B->C->Z->D
s3: C->D->E->F
s5: E->F->G->A->B

c4:
s2: P->Q->R
s6: Q->X->R ->S

Fig. 1. Behavioral segmentation example

The paper is organized as follows. Section 2 discusses related work. In Section 3, the
basic definitions and the formulation of the problem are given. Section 4 contains the
problem decomposition and the description of the algorithm for pattern-oriented
clustering. Experimental results concerning the proposed clustering method are
presented in Section 5. We conclude with a summary in Section 6.

2 Related Work

Many clustering algorithms have been proposed in the area of machine learning
[7][12][14] and statistics [15]. Those traditional algorithms group the data based on
some measure of similarity or distance between data points. They are suitable for
clustering data sets that can be easily transformed into sets of points in n-dimensional
space, which makes them inappropriate for categorical data.

Recently, several clustering algorithms for categorical data have been proposed. In
[13] a method for hypergraph-based clustering of transaction data in a high
dimensional space has been presented. The method used frequent itemsets to cluster
items. Discovered clusters of items were then used to cluster customer transactions.
[9] described a novel approach to clustering collections of sets, and its application to
the analysis and mining of categorical data. The proposed algorithm facilitated a type
of similarity measure arising from the co-occurrence of values in the data set. In [8]
an algorithm named CACTUS was presented together with the definition of a cluster
for categorical data. In contrast with the previous approaches to clustering categorical
data, CACTUS gives formal descriptions of discovered clusters.

In [21] the authors replace pairwise similarity measures, which they believe are
inappropriate for categorical data, with a clustering criterion based on the notion of
large items. An efficient clustering algorithm based on the new clustering criterion is
also proposed.

The problem of clustering sequences of complex objects was addressed in [16].
The clustering method presented there used class hierarchies discovered for objects
forming sequences in the process of clustering sequences seen as complex objects.
The approach assumed applying some traditional clustering algorithm to discover
classes of sub-objects, which makes it suitable for sequences of objects described by
numerical values, e.g. trajectories of moving objects.



The most similar approach to ours is probably the approach to document clustering
proposed in [5]. The most significant difference between their similarity measure and
ours is that we look for the occurrence of variable-length subsequences and
concentrate only on frequent ones.

Our clustering method can be seen as a scalable version of a traditional
agglomerative clustering algorithm. Scaling other traditional clustering methods to
large databases was addressed in [4], where the scalable version of the K-means
algorithm was proposed.

Most of the research on sequences of categorical values concentrated on the
discovery of frequently occurring patterns. The problem was introduced in [2] and
then generalized in [20]. The class of patterns considered there, called sequential
patterns, had a form of sequences of sets of items. The statistical significance of a
pattern (called support) was measured as a percentage of data sequences containing
the pattern.

In [17] an interesting approach to sequence classification was presented. In the
approach, sequential patterns were used as features describing objects and standard
classification algorithms were applied. To reduce the number of features used in the
classification process, only distinctive (correlated with one class) patterns were taken
into account.

3 Pattern-Oriented Agglomerative Hierarchical Clustering

Traditional agglomerative hierarchical clustering algorithms start by placing each
object in its own cluster and then iteratively merge these atomic clusters until all
objects are in a single cluster. Time complexity of typical implementations vary with
the cube of the number of objects being clustered. Due to the poor scalability,
traditional hierarchical clustering cannot be applied to large collections of data, such
as databases of customer purchase histories or web server access logs. Another very
important issue that has to be addressed when clustering large data sets is automatic
generation of conceptual descriptions of discovered clusters. Such descriptions should
summarize clusters’ contents and have to be comprehensible to humans.

To improve performance of hierarchical clustering for large sets of sequential data,
we do not handle sequences individually but operate on groups of sequences sharing a
common subsequence. We concentrate only on the most frequently occurring
subsequences, called frequent patterns (sequential patterns). We start with initial
clusters associated with frequent patterns discovered in the database. Each of the
initial clusters (clusters forming the leaf nodes of the hierarchy built by the clustering
process) consists of sequences containing the pattern associated with the cluster.
Clusters being results of merging of smaller clusters are described by sets of patterns
and consist of sequences that contain at least one pattern from the describing set.

Definition 3.1. Let L = {l1, l2, ..., lm} be a set of literals called items. A sequence S =
<X1 X2 ... Xn> is an ordered list of sets of items such that each set of items Xi ⊆ L. Let
the database D be a set of sequences.



Definition 3.2. We say that the sequence S1 = <Y1 Y2 ... Ym> supports the sequence
S2 = <X1 X2 ... Xn> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2 ⊆ Yi2, ...,
Xn ⊆ Yin. We also say that the sequence S2 is a subsequence of the sequence S1

(denoted by S2 ⊂ S1).

Definition 3.3. A frequent pattern is a sequence that is supported by more than a user-
defined minimum number of sequences in D. Let P be a set of all frequent patterns in
D.

Definition 3.4. A cluster is an ordered pair <Q,S>, where Q ⊆ P and S ⊆ D, and S is a
set of all database sequences supporting at least one pattern from Q. We call Q a
cluster description, and S a cluster content. We use a dot notation to refer to a
description or a content of a given cluster (c.Q represents the description of a cluster c
while c.S represents its content).

Definition 3.5. A cluster c is called an elementary cluster if and only if | c.Q | = 1.

Definition 3.6. A union cab of the two clusters ca and cb is defined as follows:
cab = union(ca, cb) = < ca.Q ∪ cb.Q , ca.S ∪ cb.S >.

Elementary clusters form leaves in the cluster hierarchy. The clustering algorithm
starts with the set of all elementary clusters. Due to the above formulations, input
sequences that do not support any frequent pattern will not be assigned to any
elementary cluster and will not be included in the resulting clustering. Such sequences
are treated as outliers. The above definitions also imply that in our approach clusters
from different branches of the cluster hierarchy may overlap. We do not consider it to
be a serious disadvantage since sometimes it is very difficult to assign a given object
to exactly one cluster, especially when objects are described by categorical values. In
fact, if two clusters overlap significantly, then it means that patterns describing one of
the clusters occur frequently in sequences contained in the other cluster and vice
versa. This means that such clusters are good candidates to be merged to form a new
larger cluster. The measures of similarity between clusters we propose in the paper
are based on this observation. The cluster similarity measures we consider in this
paper are based on the co-occurrence of the frequent patterns.

Definition 3.7. The co-occurrence of two frequent patterns p1 and p2 is a Jaccard
coefficient [14] applied to the sets of input sequences supporting the patterns:
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The similarity of two elementary clusters is simply the co-occurrence of patterns from
their descriptions. The first of our inter-cluster similarity measures for arbitrary
clusters is the extension of the above pattern co-occurrence measure i.e. similarity
between two clusters ca and cb is a Jaccard coefficient applied to cluster contents:
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The second inter-cluster similarity measure we consider in the paper is defined as the
average co-occurrence of pairs of patterns between two clusters’ descriptions
(group-average similarity):
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Traditional hierarchical clustering builds a complete cluster hierarchy in a form of a
tree. We add two stop conditions that can be specified by a user: the required number
of clusters and the inter-cluster similarity threshold for two clusters to be merged. The
first stop condition is suitable when a user wants to obtain the partitioning of the data
set into the desired number of parts, the second is provided for cluster mining, which
identifies high quality clusters.

Problem Statement. Given a database D = {s1, s2, ..., sk} of data sequences, and a set
P = {p1, p2, ..., pm} of frequent patterns in D, the problem is to build a cluster
hierarchy starting from elementary clusters as leaves, iteratively merging the most
similar clusters until the required number of clusters is reached or there are no pairs of
clusters exceeding the specified similarity threshold.

4 Algorithms

In this section, we describe a new clustering algorithm POPC for clustering large
volumes of sequential data (POPC stands for Pattern-Oriented Partial Clustering). The
algorithm implements the general idea of agglomerative hierarchical clustering. As
we mentioned before, instead of starting with a set of clusters containing one data
sequence each, our algorithm uses previously discovered frequent patterns and starts
with clusters containing data sequences supporting the same frequent pattern. We
assume that a set of frequent patterns has already been discovered and we do not
include the pattern discovery phase in our algorithm. The influence of the pattern
discovery process on the overall performance of our clustering method is described in
the next section.

The POPC algorithm is database-oriented. It assumes that the input data sequences
and the contents of clusters to be discovered are stored on a hard disk, possibly
managed by a standard DBMS. Only the structures whose size depends on the number
of patterns used for clustering and not on the number of input data sequences are
stored in the main memory. These structures are similarity and co-occurrence
matrices and cluster descriptions.

We introduce two variants of our algorithm based on two different cluster
similarity measures: POPC-J using the Jaccard coefficient of the clusters’ contents,
and POPC-GA using the group average of co-occurrences of patterns describing
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clusters. First we present the generic POPC algorithm and then we describe elements
specific to particular variants of the algorithm.

4.1 Generic POPC Algorithm

The algorithm for partial clustering based on frequently occurring patterns is
decomposed into two following phases:
• Initialization Phase, which creates the initial set of elementary clusters and

computes the co-occurrence matrix between patterns which serves as the
similarity matrix for the initial set of clusters,

• Merge Phase, which iteratively merges the most similar clusters.

4.1.1 Initialization Phase
In this phase, the initial set of clusters C1 is created by mapping each frequent pattern
into a cluster. During the sequential scan of the source database, the contents of initial
clusters are build. At the same time the co-occurrence matrix for the frequent patterns
is computed. This is the only scan of the source database required by our algorithm.
(It is not the only place where access to disk is necessary because we assume that
cluster contents are stored on disk too.) Figure 2 presents the Initialization Phase of
the clustering algorithm.

C1 = {ci: ci.Q={pi}, ci.S=∅};
UNION[][] = {0}; INTERSECT[][] = {0};
for each sj∈D do
begin

for each pi∈P do
if sj supports pi then

ci.S = ci.S ∪ { sj };
end if;

for each pi, pk ∈P do
if sj supports pi or sj supports pk then

UNION[i][k]++; UNION[k][i]++;
if sj supports pi and sj supports pk then

INTERSECT[i][k]++; INTERSECT[k][i]++;
end if;

end if;
end;
for each pi, pk ∈P do

CO[i][k] = INTERSECT[i][k] / UNION[i][k];
M1 = CO;

Fig. 2. Initialization phase

To compute the pattern co-occurrence matrix CO, for each pair of patterns we
maintain two counters to count the number of sequences supporting at least one of the
patterns and both of the patterns respectively. Those counters are represented by



temporary matrices UNION and INTERSECT, and are used to evaluate the
coefficients in the matrix CO after the database scan is completed. The similarity
matrix M1 for the initial set of clusters C1 is equal to the pattern co-occurrence matrix.

4.1.2 Merge Phase
Figure 3 presents the Merge Phase of the clustering algorithm. This phase of the
algorithm iteratively merges together pairs of clusters according to their similarity
values. In each iteration k, the two most similar clusters ca,cb ∈ Ck are determined,
and replaced by a new cluster cab = union(ca ,cb). The actual merging is done by the
function called cluster, described in detail in Section 4.1.4. When the new cluster is
created, the matrix containing similarity values has to be re-evaluated. This operation
is performed by means of the function called simeval, described in Section 4.1.3.

k = 1;
while |Ck| > n and exist ca,cb ∈ Ck
such that f(ca,cb) > min_sim do begin

Ck+1 = cluster(Ck, Mk);
Mk+1 = simeval(Ck+1, Mk);
k++;

end;
Answer = Ck;

Fig. 3. Merge phase

The Merge Phase stops when the number of clusters reaches n (the required number
of clusters) or when there is no such pair of clusters ca,cb ∈ Ck whose similarity is
greater than min_sim (the similarity threshold).

4.1.3 Similarity Matrix Evaluation: simeval
Similarity matrix Ml stores the values of the inter-cluster similarity function for all
possible pairs of clusters in the l-th algorithm iteration. The cell Ml[x][y] represents
the similarity value for the clusters cx and cy from the cluster set Cl. The function
simeval computes the values of the similarity matrix Ml+1, using both the similarity
matrix Ml and the current set of clusters. Notice that in each iteration, the similarity
matrix need not be completely re-computed. Only the similarity values concerning the
newly created cluster have to be evaluated. Due to diagonal symmetry of the
similarity matrix, for k clusters, only (k-1) similarity function values need to be
computed in each iteration.

In each iteration, the size of the matrix decreases since two rows and two columns
corresponding to the clusters merged to form a new one are removed and only one
column and one row are added for a newly created cluster.

4.1.4 Cluster Merging: cluster
In each iteration, the number of processed clusters decreases by one. The similarity-
based merging is done by the function called cluster. The function cluster scans the
similarity matrix and finds pairs of clusters, such that their similarity is maximal. If



there are many pairs of clusters that reach the maximal similarity values, then the
function cluster selects the one that was found as first. The function cluster takes a set
of clusters Ck as one of its parameters and returns a set of clusters Ck+1 such that Ck+1

= (Ck \ {ca, cb}) ∪ {cab}, where ca,cb ∈ Ck are clusters chosen for merging and cab =
union(ca,cb).

4.2 Algorithm Variants POPC-J and POPC-GA

The POPC-J version of the algorithm optimizes the usage of main memory. The
pattern co-occurrence matrix is used only in the Initialization Phase as the initial
cluster similarity matrix. It is not needed in the Merge Phase of the algorithm because
the similarity function based on Jaccard coefficient does not refer to the co-
occurrences of patterns describing clusters. Thus the co-occurrence matrix CO
becomes the initial cluster similarity matrix M1 and no copying is done, which
reduces the amount of main memory used by the algorithm.

In case of the POPC-GA version of the algorithm the initial cluster similarity
matrix M1 is created as a copy of the pattern co-occurrence matrix CO, since the latter
is used in each iteration of the Merge Phase to compute the similarity between the
newly created cluster and the rest of clusters. The advantage of this version of the
POPC algorithm is that it does not use clusters’ contents to evaluate similarity
between clusters in the Merge Phase (only clusters’ descriptions and the pattern
co-occurrence matrix are used). Due to this observation, the POPC-GA does not build
clusters’ contents while the Merge Phase progresses. This is a serious optimization as
compared to the POPC-J algorithm which has to retrieve clusters’ contents from disk
to re-evaluate the similarity matrix. Contents of discovered clusters can be built in one
step after the Merge Phase completes according to the following SQL query (using
the clusters’ descriptions maintained throughout the algorithm and sets of input
sequences supporting given patterns, built in the Initialization Phase):

select distinct d.cluster_id, p.sequence_id
from CLUSTER_DESCRIPTIONS d , PATTERNS p
where d.pattern_id = p.pattern_id.

Each row in the CLUSTER_DESCRIPTIONS table contains information about the
mapping of one pattern to the description of one cluster, while each row in the
PATTERNS table contains information that a given data sequence supports a given
pattern.

5 Experimental Results

To assess the performance and results of the clustering algorithm, we performed
several experiments on a PC machine with Intel Celeron 266MHz processor and 96
MB of RAM. The data were stored in an Oracle8i database on the same PC machine.
Experimental data sets were created by synthetic data generator GEN from Quest
project [3].



First of all, we compared the sets of clusters generated by the two versions of the
POPC algorithm. The difference was measured as a percentage of all pairs of
sequences from all clusters discovered by one version of the algorithm that were not
put into one cluster by the other version of the algorithm. This measure is asymmetric
but we believe that it captures the difference between two results of clustering. We
performed several tests on a small data set consisting of 200 input sequences, using
about 100 frequent patterns. As a stop condition for both versions of the algorithm we
chose the desired number of clusters ranging from 5 to 45. An average difference
between clustering results generated by the two methods was less than 10%.

In the next experiment we compared the performance of the two POPC variants
and tested their scalability with respect to the size of the database (expressed as a
number of input sequences) and the number of frequent patterns used for clustering.
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Fig. 4. Execution time for different
database sizes

Fig. 5. Execution time for different number
of frequent patterns used for clustering

Figure 4 shows the performance of the clustering algorithm for different database
sizes expressed as the number of sequences in the database. In the experiment, for all
the database sizes the data distribution was the same, which resulted in the same set of
patterns used for clustering. Both versions of the algorithm scale linearly with the
number of source sequences, which makes them suitable for large databases. The key
factor is that the number of frequent patterns (equal to the number of initial clusters in
our approach) does not depend on the database size but on the data distribution only.
The execution time depends linearly on the number of input sequences, because the
number of sequences supporting a given frequent pattern (for the same support
threshold) grows linearly as the number of sequences in the database increases.

Figure 5 illustrates the influence of the number of frequent patterns used for
clustering on the execution time of our algorithm. The time requirements of the
algorithm vary with the cube of the number of patterns (the maximal possible number
of iterations in the Merge Phase is equal to the number of patterns decreased by 1, in
each iteration the cluster similarity matrix has to be scanned, the initial size of the
matrix is equal to the square of the number of patterns). We performed experiments
on a small database consisting of 200 sequences, using from 95 to 380 patterns. The
experiments show that in practice the algorithm scales well with the number of
patterns. This is true especially for the POPC-GA version of the algorithm, for which
the cost of the Initialization Phase dominates the efficient Merge Phase.



Experiments show that both methods are scalable, but POPC-GA significantly
outperforms POPC-J thanks to the fact that it does not have to retrieve clusters’
contents from the database in the Merge Phase of the algorithm.

The execution times presented in the charts do not include the time needed to
discover the set of frequent patterns. The cost of this pre-processing step depends
strongly on the data distribution and the support threshold for patterns to be called
frequent. Nevertheless, the time required to discover frequent patterns depends
linearly on the database size, which preserves the overall linear scalability of the
clustering method with respect to the database size. In our experiments we used the
GSP algorithm [20] for pattern discovery. The time required for this step varied from
5 to 17 seconds for database sizes from 1000 to 5000 input sequences and the support
threshold of 6%. This means that the time needed for pattern discovery does not
contribute significantly to the overall processing time.

6 Concluding Remarks

We considered the problem of hierarchical clustering of large volumes of sequences
of categorical values. We introduced two variants of the algorithm using different
similarity functions to evaluate the inter-cluster similarity, which is a crucial element
of the agglomerative hierarchical clustering scheme. Both of the proposed similarity
measures were based on the co-occurrence of frequent patterns.

Both versions of the algorithm scale linearly with respect to the size of the source
database, which is very important for large data sets. Both methods generate similar
sets of clusters but the POPC-GA variant is much more efficient than POPC-J.

An important feature of the algorithm is that it does not only discover the clusters
but also delivers the description of each cluster in form of patterns that are “popular”
within the set of sequences forming the cluster.

In our approach clusters at any level of a cluster hierarchy can overlap. However,
our method can easily be modified to generate disjoint clusters by using such
techniques as placing each sequence into a cluster from whose description the
sequence supports the highest number or percentage of patterns.
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