
Group Bitmap Index: A Structure for Association Rules Retrieval

Tadeusz Morzy, Maciej Zakrzewicz

Institute of Computing Science
Poznan University of Technology

ul. Piotrowo 3a, 60-695 Poznan, Poland
morzy@put.poznan.pl, mzakrz@cs.put.poznan.pl

Abstract
Discovery of association rules from large databases of item
sets is an important data mining problem. Association rules
are usually stored in relational databases for future use in
decision support systems. In this paper, the problem of asso-
ciation rules retrieval and item sets retrieval is recognized as
the subset search problem in relational databases. The subset
search is not well supported by SQL query language and
traditional database indexing techniques.

We introduce a new index structure, called Group Bitmap
Index, and compare its performance with traditional index-
ing methods: B+ tree and bitmap indexes. We show expe-
rimentally that proposed index enables faster subset search
and significantly outperforms traditional indexing methods.

Introduction

Knowledge discovery in databases (KDD) is a new area of
database research that aims at finding previously unknown
and potentially useful patterns in large databases (Fayyad,
Piatetsky-Shapiro, and Smyth 1996). The most commonly
sought patterns are association rules (Agrawal, Imielinski,
and Swami 1993), (Piatetsky-Shapiro and Frawley 1991),
(Agrawal and Srikant 1994), (Savasere, Omiecinski, and
Navathe 1995), (Toivonen 1996). Formally, by an
association rule we mean a formula of the form X→Y,
where X and Y are two sets of items. Association rules are
discovered from database tables that store sets of items.
Consider a supermarket database where the set of items
purchased by a customer on a single visit to a store is
recorded as a transaction. The supermarket managers
might be interested in finding associations among the
items purchased together in one transaction. An example of
a supermarket database and a set of association rules
derived from the database are presented in Fig. 1. The
example discovered rule: bread ∧ butter ∧ milk → apples
states that a customer who purchases bread, butter and
milk, probably also purchases apples. We refer to the left-
hand side of the rule as body, and to the right-hand side as
head. We also say, that the rule is satisfied by a given item

Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

set (item set satisfies the rule) if X∪Y is contained in the
set. We say, that the rule is violated by a given item set
(item set violates the rule) if the set contains X, but does
not contain Y. Each rule has two measures of its statistical
importance and strength: support and confidence. The
support of the rule is the number of item sets that satisfy
the rule divided by the number of all item sets. The rule
confidence is the number of item sets that satisfy the rule
divided by the number of item sets that contain X.

transaction_id items
1 bread, butter
2 bread, butter, milk, apples
3 bread, butter, milk, apples
bread → butter

bread ∧ butter ∧ milk → apples

Fig 1. Example of a database and discovered rules

Usually, the discovered rules are stored in a database for
future retrieval by users or decision support systems. The
users may iteratively penetrate the set of rules discovered
from the given database from many points of view.
Moreover, users might be interested in finding customer
transactions that e.g. violate a given association rule. Such
queries, often referred to as relational division (Graefe and
Cole 1995), require analyzing of set-valued attributes and
are not supported by popular DBMSs.

In this paper we consider retrieval of association rules
and item sets from a relational database. We generalize
both retrieval problems to the subset search problem and
introduce a new index structure, called group bitmap index.
We show the results of the experiment in which the group
bitmap index significantly outperforms the traditional
indexing methods, namely B+ tree and Bitmap indexes.

Storage Structures

The example data from the Fig.1 can be stored in a
database table with two attributes: one referring to item
values and one organizing items into sets or transactions.
Each item is stored in a separate record and the item set
may consist of many records. Such structure allows

efficient storage of variable length sets of items. An
example purchase data table is depicted in Fig 2.

 shopping
transaction_id item

1 bread
1 butter
2 bread
2 butter
2 milk
2 apples
3 bread
3 butter
3 milk
3 apples

Fig. 2 Table for storing supermarket purchase data

Association rules that are mined in a knowledge
discovery process can be also stored in database tables.
Fig. 3 presents an example relational representation for
association rules storage. The rule bodies and heads are
placed in a separate table, while the second table keeps
specific rule parameters (e.g. support and confidence). In
this example, two rules from the Fig. 1 are represented.

 rules elements
rule_id supp. conf. rule_id item type

1 0.83 0.90 1 bread body
2 0.25 0.13 1 butter head

2 bread body
2 butter body
2 milk body
2 apples head

Fig. 3 Example tables for rule storage

Notice the similarity between the representation of data
item sets and the representation of rule items. Both repre-
sentations are based on storage of specific items together
with an identifier of the set the items belong to. For the
sake of simplicity, we will assume further in the paper that
both items and set identifiers are positive integer numbers.

Queries

We distinguish two basic types of queries that are usually
issued in mining and searching of association rules:
A. Retrieve all item sets that contain a given subset of

items (to determine the sets that satisfy or violate the
specified rules).

B. Retrieve all rules that contain given subset of items in
their bodies or heads.

Notice, that both types of the queries consist in finding the
sets of items that contain a given item subset. A similar
problem was studied in (Graefe and Cole 1995), where
relational division operator was described. We will refer to
this type of query as a subset search query. It is a set-
oriented query that is not well supported by SQL interface

and traditional database accessing methods. SQL language
does not contain a subset search (or relational division)
clause, therefore, to specify a subset search query in SQL,
aggregation or multiple join clauses are required. Tradi-
tional accessing methods (B+ tree, bitmap index, etc.) are
row-oriented, i.e. they reference single records. Therefore,
subset selection requires multiple use of the index. To
illustrate the subset search query, we present below two
examples of an SQL queries retrieving from a database
table data_table the identifiers of data item sets containing
four given items 0, 7, 12, and 13.

1. select a.group_id
from data_table a, data_table b,

data_table c, data_table d
where a.group_id = b.group_id
and b.group_id = c.group_id
and c.group_id = d.group_id
and a.item = 0 and b.item = 7
and c.item = 12 and d.item = 13

2. select group_id from data_table
where item in (0, 7, 12, 13)
group by group_id
having count(*) = 4

Table: data_table

group_id item
----------- -----
1 0
1 7
1 12
1 13
2 2
2 4
3 10
3 17
3 20

In general (and we will show it experimentally), finding
data item sets that contain a given subset is a complex and
time-consuming task. Therefore, to provide faster subset
searching we propose a new indexing technique.

Group Bitmap Index

In this Section we explain the idea of group bitmap
indexing. The aim of the group bitmap indexing is to
enable faster subset search and content-based association
rules retrieval in relational databases. The key idea of the
group bitmap index is to build a binary key, called group
bitmap key, associated with each item set. The group
bitmap key represents a content of the item set. During
retrieval, the group bitmap keys are used to prune those
sets of items that do not contain the searched subset.

In the following subsections we will introduce two types
of group bitmap indexes. The first one, called simple group
bitmap index will help us in explaining the basic ideas of
the group bitmap index construction and utilization. Due to
its properties the simple group bitmap index has rather
theoretical character. Therefore, in the next subsection, we
will present a modified index structure, called hash group
bitmap index, that efficiently supports subset search
queries and may be easily implemented in practice.

Simple Group Bitmap Index
The simple group bitmap index consists of a set of simple
group bitmap keys. The simple group bitmap key for a set
of items is a binary number, in which the bit value ‘1’ on
the position k indicates that the set contains the value k.
The simple group bitmap keys are stored in an index table
together with identifiers of the sets they refer to. When a

subset search query is issued, a simple group bitmap key is
also computed for the searched subset of items. Then, the
subset containment is checked by means of a fast bitwise
machine operation, i.e. bitwise AND. The checking proce-
dure consists in testing, if for every bit set to ‘1’ in the sim-
ple group bitmap key of the searched subset, the correspon-
ding bit of a simple group bitmap key of an item set is also
set to ‘1’. The item sets whose simple group bitmap keys
satisfy the testing condition are returned as the result of the
subset searching. Figure 4 illustrates an example database
table and the simple group bitmap index construction.
Three simple group bitmap keys were derived for item sets
stored in the database table. The derived simple group bit-
map keys, together with corresponding item set identifiers,
are stored in the index table.

group item

1 0

1 7

1 12

1 13

2 2

2 4

3 10

3 15

3 17

simple group
bitmap keys

database table

000011000010000001

00000000000010100

10100001000000000

simple group
bitmap index

groupbitmap key

1000011000010000001

2000000000000010100

3101000010000000000

Fig. 4 Simple group bitmap index

When a subset search query seeking for item sets
containing e.g. items 15 and 17 is issued, then the simple
group bitmap key for the searched subset is computed. This
key contains ‘1’s on positions 15 and 17. In the next step,
by means of a bitwise AND, the index table is scanned for
keys containing ‘1’s on the same positions. As the result,
the item set identified by group=3 is returned.

Let us notice that the simple group bitmap keys have to
be N-bit long, where N denotes the number of all possible
items. In practice, N can be of order of hundreds or thou-
sands. It results in very long, space-consuming simple
group bitmap keys that are difficult to store as well as to
process. Moreover, since the database is dynamic in nature
that means that the number of possible items may change
in time, then the length of simple group bitmap keys should

change respectively. The maintenance of such index would
be costly and difficult. Therefore, the simple group bitmap
index has rather theoretical character. However, in case of
a static database with a small number of possible items it
could be applicable.

Hash Group Bitmap Index
To eliminate the discussed disadvantages of the simple
group bitmap index, we introduce the hash group bitmap
index. This type of group bitmap index operates on hash
group bitmap keys, whose length is n, where n<<N. The
hash group bitmap key of an item set is created from the
hash keys of all data items contained in a given item set, by
means of bitwise OR operation. The hash key of the item X
is an n-bit binary number defined as follows:

hash_key(X) = 2(X mod n)

The subset search with hash group bitmap index is
performed as the two-step procedure. The first step, called
filtering step, consists in scanning the index and finding the
identifiers of item sets that possibly contain the searched
subset. It is done as follows. When a subset search query is
issued, a hash group bitmap key is computed for the
searched subset of items. Then, the hash group bitmap in-
dex is scanned and each hash group bitmap key is checked
against the searched subset key. The checking procedure is
performed by means of the bitwise AND machine
operation, according to the following pseudo code:

X := hash_group_bitmap_key(searched_subset);
for each (bitmap_key, group) from index table do

if (X AND bitmap_key = X) then return group;

The identifiers of the item sets whose hash group bitmap
keys satisfy the testing condition are returned as the result
of the first step of the subset search procedure. However,
due to the fact that hash keys do not uniquely represent
items, the result of this step will possibly contain also false
sets of items, i.e. the sets that in fact do not contain the
searched subset. Therefore, the verification of the obtained
result is necessary. This is the aim of the second step,
called verification step. It simply consists in traditional se-
lecting from the item sets found in the previous step, those
item sets that contain the searched subset.

To illustrate the construction of a hash group bitmap

group item

1 0

1 7

1 12

1 13

2 2

2 4

3 10

3 15

3 17

hash keysdatabase table

00001

00100

00100

01000

00100

10000

00001

00001

00100

hash group
bitmap keys

01101

10100

00101

hash group
bitmap index

groupbitmap key

101101

210100

300001

Fig. 5 Hash group bitmap indexing

searched
subset of items

15

17

00001

00100

hash keys
hash group
bitmap key

00101

hash group
bitmap index

scanning
groupbitmap key

101101

210100

300101

AND

groupbitmap key

101101

verify item sets: 1,3

300101

Fig. 6 Item sets retrieval with hash group bitmap index

index and its application to the subset search problem, let
us consider the examples presented in Fig. 5 and Fig. 6. In
the example in Fig. 5, three hash group bitmap keys were
derived for item sets stored in the database table. When a
subset search query seeking for item sets containing e.g.
items 15 and 17 is issued, then the hash group bitmap key
for the searched subset is computed (Fig. 6). Then, by
means of a bitwise AND, the index table is scanned for
keys containing ‘1’s on the same positions. As the result of
the first step of the subset search procedure, the item sets
identified by group=1 and group=3 are returned. Then, in
the verification step, these item sets are tested for the
containment of the items 15 and 17. Finally, the item set
identified by group=3 is the result of the subset search.

Experimental Results

The hash group bitmap indexing has been implemented on
top of an Oracle 7.3.2 RDBMS (Sun SPARCserver
630MP, 128 MB RAM). Experimental data sets were crea-
ted by GEN generator from Quest project (Agrawal et al.
1996). Several parameters shown in Table 1 affect the dis-
tribution of the synthetic data.

parameter value
ntrans number of item sets, 50,000
nitems number of different items, 100 to 500
tlen average items per set, 15 to 30
npats number of patterns, 500 and 10000
patlen average length of maximal pattern, 4
corr correlation between patterns, 0.25

Table 1 Synthetic data parameters

Fig. 7 shows the performance of traditional and hash
group bitmap indexing methods for different sizes of a
searched subset. Traditional B+ tree and bitmap indexes
show a rapid increase of query execution time for
increasing searched subset size. The results of the search
with hash group bitmap index do not significantly depend
on the size of the searched subset. The cross-over between
the hash group bitmap indexing and traditional bitmap
indexing (which appeared the best of the traditional
methods) occurs when a subset of 5 (for 24-bit group
bitmap index) or 6 items (for 16-bit group bitmap index) is
searched. For the searched subset size of 10 items, the hash
group bitmap index allows data retrieval twice as fast as
the traditional bitmap index.

The above experiment also showed that the best of

��������

��	��
�����

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

� � � � � � � � ��

�������� �	
��� ��
�

��� 	����

�� ����

�	�
 !

"� ���	�

"� ���	�

Fig. 7 Query execution time vs. searched subset size

� 	��
�����

�����

�����

�����

�����

������

������

������

�� �� �� �� �� �� ��

������� ���� ��� ��
� �������

�	�
 !

"� ���	�

"� ���	�

Fig. 8 Query execution time vs. average item set size

��������

����

�����

�����

�����

�����

�����

�����

��� ��� ��� ��� ���

�	�
�� �� ��� ����� ���������

�	�
 !

"� ��
�	�

"� ��
�	�

Fig. 9 Query execution time vs. number of items

����� � ��

� 	��
�����

�

��

��

��

��

��

��

� � � � � � � � � ��

�������� �	
��� ��
�

"� ��
�	�

"� ��
�	�

Fig. 10 Effectiveness of the filtering step

traditional database accessing methods is the one with the
bitmap index. Therefore, in the subsequent experiments,
we restrict our attention to the bitmap index, compared to
our hash group bitmap index.

Fig. 8 demonstrates the effect of the average size of item
sets on the performance of the hash group bitmap index
and the bitmap index. As it was expected, the larger the
average size of the sets, the longer hash group bitmap key
should be used. When the average size is greater than the
hash group bitmap key length, the hash group bitmap index
does not improve the query execution. The conclusion is
that the hash group bitmap key length should be slightly
greater than the average item set size.

Fig. 9 demonstrates the effect of the number of items
stored in the database on the performance of the hash
group bitmap index and the bitmap index. For increasing
number of items, the performance of the hash group bitmap
index is getting relatively worse, compared to the traditio-
nal bitmap index. The explanation of this behavior is that
more items are hashed to the same bits in the hash group
bitmap key, thus increasing the number of false sets re-
turned after the first step of the retrieval procedure. The
false sets are removed from the result during the verifica-
tion step, which therefore consumes more time. The con-
clusion is that the hash group bitmap key length should be
greater for data sets having more items.

Fig. 10 illustrates the effectiveness of the filtering step
of the subset search procedure. This effectiveness is
measured by the percentage of item sets pruned at this step.
As it can be seen, with the increase of the size of the
searched subset, the percentage of pruned sets increases.
For example, for the searched subset of the size 4-10, and
24-bit hash group bitmap index used, over 95% of all item
sets are pruned. Besides, the difference between the effecti-
veness of 16-bit and 24-bit hash group bitmap index is
demonstrated. For the same data set, the 24-bit index
provides significantly better pruning than the 16-bit index.
The conclusion is that pruning is performed better by hash
group bitmap indexes with longer hash group bitmap keys.

The explanation of this behavior results from the idea of
the hash group bitmap index. It can be shown that the
number of bits set to ‘1’ in n-bit hash group bitmap key for
an item set of the size L is given by the following formula:

� �
�

�

�
�

�
�

�

� � � �

�

�

�

�

�

=








+ −






−

=

−

=

∑
∑

� ��
�

�

�

where: n is the number of bits of the hash group bitmap
key, L is the number of items represented by the hash
group bitmap key, � is the number of bits that are set to
‘1’. With increasing L, for the constant n, the number of
items hashed to the same bits increase (e.g. for L = 4, � =
4, while for L = 16, � = 10, what means that six of ten bits
have to represent two different items each). Similar beha-
vior could be also observed for increasing the size of the
searched subset. So, it is clear that for n=16 selectivity of
our hash group bitmap key is less that for the hash group
bitmap key of n=24.

Conclusions and Future Work

In this paper we introduced the new index type, called
group bitmap index, that significantly reduce time of subset
searching in large databases. This kind of searching has
many applications in the field of data mining and associa-
tion rules discovery. However, the new index may be also
applied in traditional database systems to speed-up the exe-
cution of queries seeking for a subset of data items. We
showed experimentally that the group bitmap index signi-
ficantly outperforms traditional indexing methods inclu-
ding B+ tree and bitmap indexing. The experiment was led
on top of a DBMS, using standard SQL interface, therefore
we believe that the results would be even better for the
group bitmap index integrated into the core of DMBS.

References

Agrawal, R.; Imielinski, T.; Swami, A. 1993. Mining
Association Rules Between Sets of Items in Large Databa-
ses. In Proceedings of the 1993 ACM SIGMOD Internatio-
nal Conference on Management of Data, Washington, DC.

Agrawal, R.; Srikant, R. 1994. Fast Algorithms for Mining
Association Rules. In Proceedings of the 20th VLDB
Conference, Santiago, Chile.

Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. 1996. The
KDD Process for Extracting Useful Knowledge from
Volumes of Data. Comm. of the ACM, Vol. 39, No. 11.

Imielinski, T.; Manilla, H. 1996. A Database Perspective
on Knowledge Discovery. Communications of the ACM,
Vol. 39, No. 11.

Piatetsky-Shapiro, G.; Frawley, W.J. editors 1991.
Knowledge Discovery in Databases: MIT Press.

Savasere, A.; Omiecinski, E.; Navathe, S. 1995. An
Efficient Algorithm for Mining Association Rules in Large
Databases. In Proceedings of the 21st VLDB Conference,
Zurich, Swizerland.

Toivonnen, H. 1996. Sampling Large Databases for Asso-
ciation Rules. In Proceedings of the 22nd VLDB Conferen-
ce, India.

Graefe, G.; Cole, R.L. 1995. Fast Algorithms for Universal
Quantification in Large Databases. ACM Transactions on
Database Systems, Vol. 20, No. 2.

Agrawal, R.; Mehta, M.; Shafer, J.; Srikant, R.; Arning, A.;
Bollinger, T. 1996. The Quest Data Mining System. In Pro-
ceedings of the 2nd International Conference on Knowledge
Discovery in Databases and Data Mining, Portland, Ore-
gon.

