

Models for Internet-based Cooperative Engineering Design

Bogdan D. Czejdo

Department of Mathematics and Computer
Science,

Loyola University
New Orleans, La. 70118, USA

czejdo@loyno.edu

Kenneth Messa
Department of Mathematics and Computer Science,

Loyola University
New Orleans, La. 70118, USA

messa@loyno.edu

Maciej Zakrzewicz

Department of Mathematics and Computer
Science,

Loyola University
New Orleans, La. 70118, USA

mjzakrze@loyno.edu

Mikolaj Baszun
Institute of Microelectronics and Optoelectronics,

Warsaw University of Technology, ul. Koszykowa 75
Warsaw 00-662, Poland
baszun@imio.pw.edu.pl

Abstract

The paper discusses a cooperative engineering design process in which the design teams cooperate on design of

engineering subsystems in order to optimize the performance of the entire system. We describe models for software
systems supporting such engineering design. The software system consists of several coordination software modules
that allow design teams to cooperate in the process of specifying or changing design decisions in any phase of the
design process. Different interaction modes between the design teams are described. The implementation of such
software system in the Internet environment is discussed.

Keywords: cooperative software, software modules synchronization

1. Introduction
The paper discusses a cooperative engineering design process in which the design teams cooperate on design of
engineering subsystems (SCES) in order to optimize the performance of the entire system (CES). We assume that for
each subsystem, the design should result in finding values of parameters fully describing the designed product [1, 2, 3].
These parameters are called design parameters (DP). There are numerous types of design parameters, such as material,
geometrical, electrical and architectural. The design process is preceded by a detailed analysis of the physical
phenomena resulting in specification of constraints on the design parameters (C_DP). The designed product has some
behavioral properties. We refer to these properties as output characteristics (OC). Application, market, utility and
other requirements for the engineering product result in some constraints on the output characteristics (C_OC). The
goal of each subsystem design is to obtain design parameters resulting in “the best” output characteristics, which means
those closest to the ideal characteristics (IC) while satisfying the constraints on the design parameters and constraints
on the output characteristics.

Typically, each design team (shortly referred here as designer) uses some engineering computations module to assist
in designing SCES. An overview of engineering computations software modules is given in the literature [3, 4]. For
iterative design, usually they include some type of iterative Computation Control Module. There are still many
challenges for engineering design software but many methods and results are already well established.

In order to efficiently coordinate the work of designer, some type of software coordination module is necessary. The
area of software for cooperative tasks is in the phase of intensive research. In this paper we concentrate on coordination
software modules for cooperative engineering design. Such modules allow many designers to cooperate in the process

of specifying or changing design decisions in any phase of the design process. Different interaction modes between the
designers are taken into consideration.

There are several models that need to be developed while building software coordination module. First, the
relationships between characteristics in subsystem designs need to be specified. We will define Characteristics
Dependency Graph that describes them. Next, a graph needs to be constructed that shows the mode of interaction
between designers for each group of related characteristics. We call this graph a Design Dependency Graph. We
discuss two modes of interactions between designers. For each interaction mode the synchronization between different
subsystems needs to be specified [5]. These can be done using the state diagram method as in [7, 8, 9, 11]. The state
diagrams are then translated into software modules in the Internet environment.

2. Cooperative engineering design and its various modes
Complex engineering systems (CES) can consist of many subsystems (SCES). Each subsystem, in turn, can consist of
many other subsystems. In cooperative engineering design, we assume that several designers are working on the
design of separate subsystems. Initially, the main designer, in consultation with individual designers, provides a
complete set of ideal characteristics and constraints on the output characteristics for each subsystem. Global
constraints for the ideal characteristics are also specified.

Even though we assume that in a cooperative engineering design, several designers are working separately on the
design of different subsystems, in many situations the real-time coordination of these designers can significantly
improve the design of the complete system.

IC1

IC2

IC3

Figure 1. Characteristics Dependency Graph for a complex engineering system

The coordination can often result in dynamic modifications of some ideal characteristics (IC) and some constraints

on output characteristics (C_OC) for many subsystems. Very often, a specific ideal characteristics (IC) is related with
another ideal characteristics of another module in a sense that changes in the first would require changes in the second
in order to satisfy the global requirements for the entire system. The same is true for constraints on output
characteristics (C_OC). These relationships can be identified in the analysis phase of the engineering system. They can
be described by Characteristics Dependency Graph as shown in Fig. 1. For example, IC1 and IC2 can be related in a
sense that changes to IC1 will cause changes to IC2 and vice versa.

The Characteristics Dependency Graph can be converted into Initial Design Dependency Graph that shows design
subsystems linked by characteristics pair relationships. Each characteristics pair relationship is created from an edge of
Characteristics Dependency Graph. For example, the subsystem S1 and S2 are linked by relationship IC1-IC2 since
any changes to IC1 in S1 have to be coordinated with changes to IC2 in S2 as shown in Fig. 2. Generally, each
relationship between subsystems can be n-ary. Next, the Initial Design Dependency Graph is refined into Final Design
Dependency Graph (or shortly Design Dependency Graph) that for each relationship shows the mode of interaction
between designers.

co-designer co-designer co-designer co-designer
SCES1 SCES2 SCES3

CES

IC1-IC2 IC2-IC3

main designer

Figure 2. Design Dependency Graph for a complex engineering system

There are two modes of cooperation: centralized and decentralized. In the centralized mode all changes of
requirements need to be approved by the main designer. The main designer or any other designer can be assigned of
the role of a main designer for the specific pair of characteristics. This is reflected by inserting the label “Main-
designer” as an appropriate relationship role. For example in Fig. 2 we assigned to the main designer the responsibility
of coordination of design related with characteristics IC2 and IC3. In the decentralized mode all changes of
requirements need negotiated by several designers. This is reflected by inserting the label “Co-designer” as an
appropriate relationship role for more than one designer. For example in Fig. 2 we assigned the same responsibility to
Designer 1 and Designer 2 related with characteristics IC1 and IC2.

The mode of cooperation between different subsystems for each relationship is selected based on potential
propagation of changes and possible cycles. Generally, the centralized mode is chosen when the scope of potential
propagation of changes is too large and possible cycles are detected in Characteristics Dependency Graph. Allowing
for very extensive negotiations in this case would be inefficient if possible. Assigning one coordinator would allow to
make all changes of requirements in much more orderly fashion. Usually, the decentralized mode for modifications of
say, IC1-IC2, is chosen when extend of changes is limited to two subsystems and there is a well defined mapping
between IC1 and IC2. If the mapping is complex and not straightforward that typically it is better to assign the
coordinating role to the main designer.

3. Centralized Mode
The overall system architecture of the centralized mode of cooperative engineering design is shown in Fig. 3. The
software system includes a Main Designer Coordination Module associated with the main designer. The Computation
Control Module is responsible for engineering computations for the specific subsystem. Each Designer’s Coordination
Module interacts with the appropriate designer, Computation Control Module and other Coordination Modules. The
sample interface for Coordination Module indicating the main designer’s choices of actions is shown in Fig. 4a. The
buttons are grouped into two categories. The first category, called Design, is for main designer’s operations. Suspend
is used to stop engineering computations in the appropriate Computation Control Module. Change & Continue is
used to change the ideal characteristics or constraints on output characteristics. The second category, called Co-
Design, is for the main designer to communicate his decisions on requests from co-designers. OK Suspend is used
when the main designer accepts a co-designer’s request to stop computations. NO Suspend is used when the main
designer denies a co-designer’s request to stop computations. Similarly, OK Change& Continue is used when the
main designer accepts a co-designer’s change in the characteristics, and NO Change is used when the main designer
denies a co-designer’s change in characteristics. The screen also includes the current state that informs the designer if
automatic iterations are in progress, or if there is a request from co-designers. Additionally, data for design parameters
and output characteristics are shown.

Main
Designer

Co-
Designer

Co-
Designer

Main
Designer’s
Coordination
Module

Co-Designer’s
Coordination
Module

Co-Designer’s
Coordination
Module

Computations
Control
Module

Computations
Control
Module

suspend; change;
ok_suspend; no_suspend;
ok_change; no_change

s; c;
ok_s; no_s;
ok_c; no_c

cm_suspend;
cm_change;

request_suspend;
request_change

r_s;
r_c;

cm_suspend;
cm_change;

suspend

Computations
Control
Module

Figure 3. Centralized Mode of cooperative engineering design

Figure 4a. Main Designer’s Screen for Centralized Mode

Figure 4b. Co-Designer’s Screen for Centralized Mode

The co-designer’s choices of actions are shown in a sample of a co-designer’s screen in Fig. 4b. Since co-designers
can only request action from the main designer, this interface has fewer choices. Request Suspend is used when the
co-designer wants the main designer to stop iterations. Request Change is used when the co-designer wants the main
designer to consider his change in parameters. OK Suspend is used when the co-designer wants suspend engineering
computations. Similar to the main designer’s screen, the co-designer is informed of values of output characteristics as
well as the current state.

ITERATIONS

DESIGN
DECISIONS

REQUEST
FOR
CHANGE

REQUEST
FOR
SUSPEND
FROM CO-
DESIGNER

ok_change/
ok_c

r_c

no_change/no_c

change/c

suspend /s

r_s no_suspend/
no_s

ok_suspend
/ok_s

Figure 5a. Behavioral model for main designer’s
Coordinating Module

ITERATIONS

HIS/HER REQUEST
TO SUSPEND

DESIGN
DECISIONS

s/cm_suspend

cm_dr/
suspend

cm_dr

request_suspend/
r_s no_s

ok_s/
cm_suspend

Figure 5b. Behavioral Model for Co-Designer’s Coordination
Module (Part A)

ITERATIONS

DESIGN
DECISIONS

REQUEST
FOR
HIS/HER
CHANGE

 c/cm_change

no_c request_change/r_c

ok_c/
cm_change

Figure 5c. Behavioral Model for Co-Designer’s Coordination

Module (Part B)

Description of behavior of all modules will be done using an extended state diagram [11]. Fig. 5a shows a simple
object-behavior model for Main Designer’s Coordination Module. Events can be generated by an interface such as one
shown in Fig. 4 or by an action associated with the transition. We assume that the state diagram is executed a lock-step
method with guaranteed delivery of the signals. That allows us to exclude from the model components responsible for
lost or delayed signal such as acknowledgements, compensating transition etc.

Typically, the Main Designer’s Coordinating Module will be in one of the two states: ITERATIONS or DESIGN
DECISIONS. However, when the coordination is requested two additional transient states: REQUEST FOR SUSPEND
FROM CO-DESIGNER and REQUEST FOR CHANGE FROM CO-DESIGNER are possible as shown in Fig. 5a

Co-Designer’s Coordination Module can be in several states reflecting the current role of the co-designer and the
phase of cooperation with the main designer as shown in Fig. 5b and 5c. Typically, the Co-Designer’s Coordinating
Module will be in one of the two states: ITERATIONS or DESIGN DECISIONS. However, when the coordination is
requested two additional transient states: HIS/HER REQUEST FOR SUSPEND and HIS/HER REQUEST FOR
CHANGE are possible as shown in Fig. 5b and 5c.

4. Decentralized Mode

Co-
Designer

Co-
Designer

Co-Designer’s
Coordination
Module

Co-Designer’s
Coordination
Module

Computations
Control
Module

Computations
Control
Module

request_suspend;
request_change;

ok_suspend; no_suspend;
ok_change; no_change

r_s; r_c;
ok_s; no_s;
ok_c; no_c;

cm_suspend;
cm_change

Figure 6. Decentralized Mode of cooperative engineering design

The overall system architecture of the decentralized mode of cooperative engineering design is shown in Fig. 6 The

software system supporting this mode includes two software modules for each co-designer. These two modules
include: Coordination Module and Computation Control Module. The Computation Control Module is responsible for
engineering computations for the specific subsystem and is identical for both centralized and decentralized
architectures. The sample interface for Co-designer Coordination Module indicating the co-designer choices of actions
is shown in Fig. 7. The first two buttons are used to make a request for other co-designers. More precisely, Request
Suspend is used to request stop engineering computations in the related Computation Control Modules. Request
Change is used to change the ideal characteristics or constraints on output characteristics in the related subsystems.
The second group of buttons is for the co-designer to communicate his decisions on requests from other co-designers.
OK Suspend is used when the co-designer accepts another co-designer’s request to stop computations. NO Suspend
is used when the co-designer denies another co-designer’s request to stop computations. Similarly, OK Change is used
when a co-designer accepts another co-designer’s change in parameters, and NO Change is used when a co-designer
denies another co-designer’s change in parameters. The screen also includes the current state that informs the designer
if automatic iterations are in progress, or if there is a request from co-designers. Additionally, data for design
parameters and output characteristics are shown.

Figure 7. Designer’s Screen for Decentralized Mode

If there is not complete agreement on either stopping engineering computations or changing parameters, the co-
designer that introduced the request can modify the existing request or start a new request later.

The functionality of the Co-Designer’s Coordination Module is a combination of functions performed by
Coordination Modules in Centralized system. Therefore the diagram are some kind of superposition of diagrams in the
Centralized system.

Co-Designer’s Coordination Module can be in several states reflecting the phase of cooperation between co-
designers. Typically, the Co-Designer’s Coordinating Module will be in one of the two states: ITERATIONS or
DESIGN DECISIONS. However, when the coordination is requested four additional transient states: HIS/HER
REQUEST FOR SUSPEND, REQUEST FROM ANOTHER TO SUSPEND, HIS/HER REQUEST FOR CHANGE
and REQUEST FROM ANOTHER TO CHANGE are possible as shown in Fig. 8b and 8c.

 REQUEST FROM

ANOTHER
CO-DESIGNER TO
SUSPEND

ITERATIONS

HIS/HER REQUEST
TO SUSPEND

DESIGN
DECISIONS

 ok_suspend
/cm_suspend

cm_dr

cm_dr

cm_dr

request_suspend/
r_s no_s

r_s

ok_s/cm_suspend

no_suspend/
no_s

Figure 8a. Behavioral model for the decentralized mode
(Part A)

ITERATIONS

DESIGN
DECISIONS

REQUEST
FOR
HIS/HER
CHANGE

no_c request_change/r_c

ok_c/
cm_change

REQUEST
FOR CO-
DESIGNER
CHANGE

r_cno_change
ok_change/
cm_change

Figure 8b. Behavioral model for the decentralized mode (Part
B)

5. Internet-based System Architecture
The cooperative engineering design system has been implemented as a collection of Coordination Modules. Each
coordination module consists of two parts: the Coordination Agent (CA) and the Coordination Gateway (CG) (Fig. 9).
Each coordination agent is responsible for: (1) cooperating with an external Computations Control Module and (2)
communicating with other Coordination Agents.

Coordination Module

Coordination Module

Coordination
Agent

Computations
Control Module

Coordination
Gateway

Coordination
Agent

Computations
Control Module

Coordination
Gateway

Internet

XML

Coordination
Agent

Computations
Control Module

Coordination
Gateway

Coordination Module

Figure 9. Internet-based System Architecture

Cooperation with external Computations Control Modules can be performed either manually or automatically. The

manual cooperation involves a human operator, who reads Coordination Agent messages and issues the Computations

Control Module commands, using some separate user interface. The automatic cooperation requires using additional
software modules, called Coordination Gateways, to directly access the programmatic interface of Computations
Control Module. In this case the control commands can be send to the Computations Control Module by a
Coordination Agent itself.

<xml>
 <request_change node_id=”01”
 priority=”Main Designer”
 coc_id=”coc_182”>
 <ic>
 <point x=3.1>1.897</point>
 <point x=3.2>1.922</point>
 <point x=3.3>1.998</point>
 </ic>
 <c_oc>
 <point x=3.1>
 <min>1.7<min><max>2.1</max>
 </point>
 <point x=3.2>

 <min>1.7<min><max>2.1</max>
 </point>
 </c_oc>
 </request_change>
</xml>

Figure. 10 Example XML message

DA1

DA3

DA2

change C_OC

accept, change performed

change denied

request change

request change ok_change

no_change

change cancelled

change performed

change cancelled

change cancelled

Figure. 11 Example of an incorrect state transition

DA1

DA3

DA2

change C_OC

accept, ready to perform the change

change denied

prerequest change

prerequest change ok_prechange

no_prechange

change cancelled

change not performed

change not performed

change not performed

DA1

DA3

DA2

change C_OC

accept, ready to perform the change

prerequest change

prerequest change ok_prechange

ok_prechange

change
accepted

change performed

change performed

change performed

accept, ready to perform the change

request change

request change

change performed

change performed

ok_change

ok_change

Figure 12. Two Phase Commit solution to the consistency problem

Inter-agent communication is implemented by means of XML messages, exchanged between the agents through the

Internet. Example XML message is shown in Fig. 10. It consists of a message header and the message body. The
message header contains information about the type of the request, the designer’s id, the priority of the request, and the
name of the characteristics. The message body contains information about the characteristics themselves.

The internet-based implementation introduces two additional problems: unknown and unlimited transmission time,
and temporal inaccessibility of connections. In order to solve these problems, confirmation messages are introduced.

Upon receiving a command message, a design agent has to send a confirmation message to the sender. If the
confirmation message does not reach the sender within a predefined time window, it is assumed that the recipient is
currently not available. In this case, the command message is either ignored or stored in a buffer memory and
retransmitted later. Since it may happen that a command message is successfully delivered but the confirmation
message is lost, we additionally assign a unique id number to each message and therefore avoid command message
duplication.

Additional problems may arise when the decentralized mode algorithm involves more than two design agents. Let
us consider the following example of an incorrect system state transition given in Fig. 11. Assume three cooperating
design agents, DA1, DA2, and DA3. DA1 wants to change the design constraint C_OC1 but the other two agents must
accept the change. So, DA1 sends a request_change message to DA2 and DA3. DA2 agrees to change C_OC1, so it
actually performs the change and responses with an accepted_change message. However, DA3 denies the change, so it
sends a denied_change message. After receiving the two messages, DA1 realizes that there is no consensus, and
therefore the change is cancelled on DA1. Unfortunately, DA2 has already changed C_OC1, and the system state is
inconsistent.

In order to solve this problem, a classical two-phase commit (2PC) approach can be employed. We add a new state
called prerequest_change to the state diagrams. This state says that a designer agrees to perform the change when he
or she receives the subsequent request_change message, but the actual change is not yet performed. The designer can
also refuse the proposed change. The modified communication protocol is given in Fig. 12.

4. Summary
In this paper we introduced the architecture of a cooperative engineering system consisting of several design
Coordination Modules and several iterative Computation Control Modules. Such a system allows many designers to
cooperate in the process of specifying or changing design decisions in any phase of the design process. Different
interaction modes between the designers were presented. A centralized mode of cooperative engineering was shown
where a main designer and co-designers are identified. Additionally, a decentralized mode of cooperative engineering
was shown where all designers were co-designers with equal control over operations.

We realize that in real life applications (e.g. mobile environments), the absolute consensus is not always required to
change a C_OC. It should be generally possible that only n of m designers accept a change to force the change in the
whole system. To implement such behavior, we allow some relaxation on decentralized mode rules. The minimum
number of accepting nodes (MIN_ACCEPT property) can be specified for each C_OC, and then it is sufficient that
only MIN_ACCEPT nodes accept the change.

References
 [1] BASZUN M., CZEJDO B., “VSED - a Visual System for Engineering Design”, Proceedings of The First World Conference on
Integrated Design and Process Technology, Austin, Texas, USA, 6 – 9 Dec. 1995.
 [2] BASZUN M., CZEJDO B., Miescicki J., “Modeling of Interactive Engineering Design”, Proceedings of ESDA'96, Montpellier, France,
1 - 5 July 1996.
 [3] BASZUN, M., MIESCICKI, J., AND CZEJDO, B., "Multilevel Modeling of Iterative Engineering Design of Remote Robot
System," Proceedings of The Second World Conference on Integrated Design and Process Technology, Austin, 1996.
 [4] BASZUN M., AND CZEJDO B. "Development of an Interactive Engineering Design Software", Proceedings of The Third World
Conference on Integrated Design & Process Technology, Berlin, Germany, 1998.
 [5] BEN-ARI, M., Principals of Concurrent and Distributed Programming, Prentice-Hall.
 [6] CZEJDO B., DASZUK W. AND MIESCICKI J., "Concurrent Software Design Based on Constraints on State Diagrams", Proceedings
of The Third World Conference on Integrated Design & Process Technology, Berlin, Germany, 1998.
 [7] EMBLEY, D., KURTZ, B., WOODFIELD, S., "Object-Oriented Systems Analysis – a model driven approach”, Prentice Hall, New
Jersey, 1992.
 [8] HAREL D., “Statecharts: A visual formalism for complex systems”. Science of Computer Programming, 8: pp. 231 – 274, 1987.
 [9] HAREL, D., “On visual formalisms”, Communications of the ACM, 31(5), pp. 514-530, 1988.
 [10] MIESCICKI J., BASZUN M., DASZCZUK W. B., CZEJDO B., “Verification of Concurrent Engineering Software Using CSM Models”,
Proc.2nd World Conf. on Integrated Design and Process Technology, Austin, Texas, USA, 1 - 4 Dec. 1996.
 [11] RUMBOUGH, J., BLAHA, M., PREMERLANI, W., EDDY, F., LORENSEN, W., Object-Oriented Modeling and Design, Prentice Hall,
New Jersey, 1991.

