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Abstract 

 
The paper discusses a cooperative engineering design process in which the design teams cooperate on design of 

engineering subsystems in order to optimize the performance of the entire system. We describe models for software 
systems supporting such engineering design. The software system consists of several coordination software modules 
that allow design teams to cooperate in the process of specifying or changing design decisions in any phase of the 
design process. Different interaction modes between the design teams are described. The implementation of such 
software system in the Internet environment is discussed. 
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1. Introduction 
The paper discusses a cooperative engineering design process in which the design teams cooperate on design of 
engineering subsystems (SCES) in order to optimize the performance of the entire system (CES). We assume that for 
each subsystem, the design should result in finding values of parameters fully describing the designed product [1, 2, 3].  
These parameters are called design parameters (DP). There are numerous types of design parameters, such as material, 
geometrical, electrical and architectural.  The design process is preceded by a detailed analysis of the physical 
phenomena resulting in specification of constraints on the design parameters (C_DP).  The designed product has some 
behavioral properties.  We refer to these properties as output characteristics (OC). Application, market, utility and 
other requirements for the engineering product result in some constraints on the output characteristics (C_OC).  The 
goal of each subsystem design is to obtain design parameters resulting in “the best” output characteristics, which means 
those closest to the ideal characteristics (IC) while satisfying the constraints on the design parameters and constraints 
on the output characteristics. 

Typically, each design team (shortly referred here as designer) uses some engineering computations module to assist 
in designing SCES. An overview of engineering computations software modules is given in the literature [3, 4]. For 
iterative design, usually they include some type of iterative Computation Control Module. There are still many 
challenges for engineering design software but many methods and results are already well established.   

In order to efficiently coordinate the work of designer, some type of software coordination module is necessary. The 
area of software for cooperative tasks is in the phase of intensive research. In this paper we concentrate on coordination 
software modules for cooperative engineering design. Such modules allow many designers to cooperate in the process 



of specifying or changing design decisions in any phase of the design process. Different interaction modes between the 
designers are taken into consideration. 

There are several models that need to be developed while building software coordination module. First, the 
relationships between characteristics in subsystem designs need to be specified. We will define Characteristics 
Dependency Graph that describes them. Next, a graph needs to be constructed that shows the mode of interaction 
between designers for each group of related characteristics. We call this graph a Design Dependency Graph. We 
discuss two modes of interactions between designers. For each interaction mode the synchronization between different 
subsystems needs to be specified [5]. These can be done using the state diagram method as in  [7, 8, 9, 11]. The state 
diagrams are then translated into software modules in the Internet environment. 

 
2. Cooperative engineering design and its various modes 
Complex engineering systems (CES) can consist of many subsystems (SCES).  Each subsystem, in turn, can consist of 
many other subsystems.  In cooperative engineering design, we assume that several designers are working on the 
design of separate subsystems. Initially, the main designer, in consultation with individual designers, provides a 
complete set of ideal characteristics and constraints on the output characteristics for each subsystem.  Global 
constraints for the ideal characteristics are also specified. 

Even though we assume that in a cooperative engineering design, several designers are working separately on the 
design of different subsystems, in many situations the real-time coordination of these designers can significantly 
improve the design of the complete system.   
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Figure 1. Characteristics Dependency Graph for a complex engineering system 
 
The coordination can often result in dynamic modifications of some ideal characteristics (IC) and some constraints 

on output characteristics (C_OC) for many subsystems. Very often, a specific ideal characteristics (IC) is related with 
another ideal characteristics of another module in a sense that changes in the first would require changes in the second 
in order to satisfy the global requirements for the entire system. The same is true for constraints on output 
characteristics (C_OC). These relationships can be identified in the analysis phase of the engineering system. They can 
be described by Characteristics Dependency Graph as shown in Fig. 1.  For example, IC1 and IC2 can be related in a 
sense that changes to IC1 will cause changes to IC2 and vice versa.  

The Characteristics Dependency Graph can be converted into Initial Design Dependency Graph that shows design 
subsystems linked by characteristics pair relationships. Each characteristics pair relationship is created from an edge of 
Characteristics Dependency Graph. For example, the subsystem S1 and S2 are linked by relationship IC1-IC2 since 
any changes to IC1 in S1 have to be coordinated with changes to IC2 in S2 as shown in Fig. 2. Generally, each 
relationship between subsystems can be n-ary. Next, the Initial Design Dependency Graph is refined into Final Design 
Dependency Graph (or shortly Design Dependency Graph) that for each relationship shows the mode of interaction 
between designers.  
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Figure 2. Design Dependency Graph for a complex engineering system 
 



   

There are two modes of cooperation: centralized and decentralized. In the centralized mode all changes of 
requirements need to be approved by the main designer. The main designer or any other designer can be assigned of 
the role of a main designer for the specific pair of characteristics. This is reflected by inserting the label “Main-
designer” as an appropriate relationship role. For example in Fig. 2  we assigned to the main designer the responsibility 
of coordination of  design related with characteristics IC2 and IC3. In the decentralized mode all changes of 
requirements need negotiated by several designers. This is reflected by inserting the label “Co-designer” as an 
appropriate relationship role for more than one designer. For example in Fig. 2  we assigned the same responsibility to 
Designer 1 and Designer 2 related with characteristics IC1 and IC2. 

The mode of cooperation between different subsystems for each relationship is selected based on potential 
propagation of changes and possible cycles. Generally, the centralized mode is chosen when the scope of potential 
propagation of changes is too large and possible cycles are detected in Characteristics Dependency Graph. Allowing 
for very extensive negotiations in this case would be inefficient if possible.  Assigning one coordinator would allow to 
make all changes of requirements in much more orderly fashion. Usually, the decentralized mode for modifications of 
say, IC1-IC2, is chosen when extend of changes is limited to two subsystems and there is a well defined mapping 
between IC1 and IC2. If the mapping is complex and not straightforward that typically it is better to assign the 
coordinating role to the main designer. 

       
3. Centralized Mode 
The overall system architecture of the centralized mode of cooperative engineering design is shown in Fig. 3.  The 
software system includes a Main Designer Coordination Module associated with the main designer. The Computation 
Control Module is responsible for engineering computations for the specific subsystem. Each Designer’s Coordination 
Module interacts with  the appropriate designer, Computation Control Module and other Coordination Modules.  The 
sample interface for Coordination Module indicating the main designer’s choices of actions is shown in Fig. 4a.  The 
buttons are grouped into two categories.  The first category, called Design, is for main designer’s operations.  Suspend 
is used to stop engineering computations in the appropriate Computation Control Module.  Change & Continue is 
used to change the ideal characteristics or constraints on output characteristics.  The second category, called Co-
Design, is for the main designer to communicate his decisions on requests from co-designers.  OK Suspend is used 
when the main designer accepts a co-designer’s request to stop computations.  NO Suspend is used when the main 
designer denies a co-designer’s request to stop computations.  Similarly, OK Change& Continue is used when the 
main designer accepts a co-designer’s change in the characteristics, and NO Change is used when the main designer 
denies a co-designer’s change in characteristics.  The screen also includes the current state that informs the designer if 
automatic iterations are in progress, or if there is a request from co-designers.  Additionally, data for design parameters 
and output characteristics are shown. 
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Figure 3. Centralized Mode of cooperative engineering design 
 



 
 

Figure 4a. Main Designer’s Screen for Centralized Mode 
 

 

Figure 4b. Co-Designer’s Screen for Centralized Mode 
 

The co-designer’s choices of actions are shown in a sample of a co-designer’s screen in Fig. 4b.  Since co-designers 
can only request action from the main designer, this interface has fewer choices.  Request Suspend is used when the 
co-designer wants the main designer to stop iterations.  Request Change is used when the co-designer wants the main 
designer to consider his change in parameters. OK Suspend is used when the co-designer wants suspend engineering 
computations.   Similar to the main designer’s screen, the co-designer is informed of values of output characteristics as 
well as the current state. 
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Figure 5a. Behavioral model for main designer’s 
Coordinating Module 
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Figure 5b. Behavioral Model for Co-Designer’s Coordination 
Module (Part A) 
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Figure 5c. Behavioral Model for Co-Designer’s Coordination 

Module (Part B) 
 

Description of behavior of all modules will be done using an extended state diagram [11]. Fig. 5a shows a simple 
object-behavior model for Main Designer’s Coordination Module. Events can be generated by an interface such as one 
shown in Fig. 4 or by an action associated with the transition. We assume that the state diagram is executed a lock-step 
method with guaranteed delivery of the signals. That allows us to exclude from the model components responsible for 
lost or delayed signal such as acknowledgements, compensating transition etc.   

Typically, the Main Designer’s Coordinating Module will be in one of the two states: ITERATIONS or  DESIGN 
DECISIONS. However, when the coordination is requested two additional transient states: REQUEST FOR SUSPEND 
FROM CO-DESIGNER and REQUEST FOR CHANGE FROM CO-DESIGNER are possible as shown in Fig. 5a 



   

Co-Designer’s Coordination Module can be in several states reflecting the current role of the co-designer and the 
phase of cooperation with the main designer as shown in Fig. 5b and 5c. Typically, the Co-Designer’s Coordinating 
Module will be in one of the two states: ITERATIONS or  DESIGN DECISIONS. However, when the coordination is 
requested two additional transient states: HIS/HER REQUEST FOR SUSPEND and HIS/HER REQUEST FOR 
CHANGE are possible as shown in Fig. 5b and 5c. 
 
4. Decentralized Mode 
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Figure 6. Decentralized Mode of cooperative engineering design 
 
The overall system architecture of the decentralized mode of cooperative engineering design is shown in Fig. 6  The 

software system supporting this mode includes two software modules for each co-designer.  These two modules 
include: Coordination Module and Computation Control Module. The Computation Control Module is responsible for 
engineering computations for the specific subsystem and is identical for both centralized and decentralized 
architectures.  The sample interface for Co-designer Coordination Module indicating the co-designer choices of actions 
is shown in Fig. 7.  The first two buttons are used to make a request for other co-designers.  More precisely, Request 
Suspend is used to request stop engineering computations in the related Computation Control Modules.  Request 
Change is used to change the ideal characteristics or constraints on output characteristics in the related subsystems.  
The second group of buttons is for the co-designer to communicate his decisions on requests from other co-designers.  
OK Suspend is used when the co-designer accepts another co-designer’s request to stop computations.  NO Suspend 
is used when the co-designer denies another co-designer’s request to stop computations. Similarly, OK Change is used 
when a co-designer accepts another co-designer’s change in parameters, and NO Change is used when a co-designer 
denies another co-designer’s change in parameters.  The screen also includes the current state that informs the designer 
if automatic iterations are in progress, or if there is a request from co-designers.  Additionally, data for design 
parameters and output characteristics are shown. 

 

 
 

Figure 7. Designer’s Screen for Decentralized Mode 
 



If there is not complete agreement on either stopping engineering computations or changing parameters, the co-
designer that introduced the request can modify the existing request or start a new request later.   

The functionality of the Co-Designer’s Coordination Module is a combination of functions performed by 
Coordination Modules in Centralized system. Therefore the diagram are some kind of superposition of diagrams in the 
Centralized system.   

Co-Designer’s Coordination Module can be in several states reflecting the phase of cooperation between co-
designers. Typically, the Co-Designer’s Coordinating Module will be in one of the two states: ITERATIONS or 
DESIGN DECISIONS. However, when the coordination is requested four additional transient states: HIS/HER 
REQUEST FOR SUSPEND, REQUEST FROM ANOTHER TO SUSPEND, HIS/HER REQUEST FOR CHANGE 
and REQUEST FROM ANOTHER TO CHANGE are possible as shown in Fig. 8b and 8c. 
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Figure 8a. Behavioral model for the decentralized mode 
(Part A) 
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Figure 8b. Behavioral model for the decentralized mode (Part 
B) 

 
 

5. Internet-based System Architecture 
The cooperative engineering design system has been implemented as a collection of Coordination Modules. Each 
coordination module consists of two parts: the Coordination Agent (CA) and the Coordination Gateway (CG) (Fig. 9). 
Each coordination agent is responsible for: (1) cooperating with an external Computations Control Module and (2) 
communicating with other Coordination Agents. 

 
 

Coordination Module

Coordination Module

Coordination 
Agent 

Computations 
Control Module

Coordination 
Gateway 

Coordination 
Agent 

Computations 
Control Module

Coordination 
Gateway 

 
Internet 

XML 

Coordination 
Agent 

Computations 
Control Module

Coordination 
Gateway 

Coordination Module 

 
 

Figure 9. Internet-based System Architecture 
 
Cooperation with external Computations Control Modules can be performed either manually or automatically. The 

manual cooperation involves a human operator, who reads Coordination Agent messages and issues the Computations 



   

Control Module commands, using some separate user interface. The automatic cooperation requires using additional 
software modules, called Coordination Gateways, to directly access the programmatic interface of Computations 
Control Module. In this case the control commands can be send to the Computations Control Module by a 
Coordination Agent itself. 

 
<xml> 
  <request_change node_id=”01”  
                  priority=”Main Designer” 
                  coc_id=”coc_182”> 
    <ic> 
      <point x=3.1>1.897</point> 
      <point x=3.2>1.922</point> 
      <point x=3.3>1.998</point> 
    </ic>  
    <c_oc> 
      <point x=3.1> 
         <min>1.7<min><max>2.1</max> 
      </point> 
      <point x=3.2> 

  <min>1.7<min><max>2.1</max> 
      </point> 
    </c_oc> 
  </request_change> 
</xml> 

 
Figure. 10 Example XML message 
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Figure. 11 Example of an incorrect state transition 
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Figure 12. Two Phase Commit solution to the consistency problem 
 
Inter-agent communication is implemented by means of XML messages, exchanged between the agents through the 

Internet. Example XML message is shown in Fig. 10. It consists of a message header and the message body. The 
message header contains information about the type of the request, the designer’s id, the priority of the request, and the 
name of the characteristics. The message body contains information about the characteristics themselves.  

The internet-based implementation introduces two additional problems: unknown and unlimited transmission time, 
and temporal inaccessibility of connections. In order to solve these problems, confirmation messages are introduced. 



Upon receiving a command message, a design agent has to send a confirmation message to the sender. If the 
confirmation message does not reach the sender within a predefined time window, it is assumed that the recipient is 
currently not available. In this case, the command message is either ignored or stored in a buffer memory and 
retransmitted later. Since it may happen that a command message is successfully delivered but the confirmation 
message is lost, we additionally assign a unique id number to each message and therefore avoid command message 
duplication. 

Additional problems may arise when the decentralized mode algorithm involves more than two design agents. Let 
us consider the following example of an incorrect system state transition given in Fig. 11. Assume three cooperating 
design agents, DA1, DA2, and DA3. DA1 wants to change the design constraint C_OC1 but the other two agents must 
accept the change. So, DA1 sends a request_change message to DA2 and DA3. DA2 agrees to change C_OC1, so it 
actually performs the change and responses with an accepted_change message. However, DA3 denies the change, so it 
sends a denied_change message. After receiving the two messages, DA1 realizes that there is no consensus, and 
therefore the change is cancelled on DA1. Unfortunately, DA2 has already changed C_OC1, and the system state is 
inconsistent. 

In order to solve this problem, a classical two-phase commit (2PC) approach can be employed. We add a new state 
called prerequest_change to the state diagrams. This state says that a designer agrees to perform the change when he 
or she receives the subsequent request_change message, but the actual change is not yet performed. The designer can 
also refuse the proposed change. The modified communication protocol is given in Fig. 12. 

 
4. Summary 
In this paper we introduced the architecture of a cooperative engineering system consisting of several design 
Coordination Modules and several iterative Computation Control Modules.  Such a system allows many designers to 
cooperate in the process of specifying or changing design decisions in any phase of the design process. Different 
interaction modes between the designers were presented. A centralized mode of cooperative engineering was shown 
where a main designer and co-designers are identified.  Additionally, a decentralized mode of cooperative engineering 
was shown where all designers were co-designers with equal control over operations. 

We realize that in real life applications (e.g. mobile environments), the absolute consensus is not always required to 
change a C_OC. It should be generally possible that only n of m designers accept a change to force the change in the 
whole system. To implement such behavior, we allow some relaxation on decentralized mode rules. The minimum 
number of accepting nodes (MIN_ACCEPT property) can be specified for each C_OC, and then it is sufficient that 
only MIN_ACCEPT nodes accept the change.  
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