
Cost-based Sequential Pattern Query
Optimization in Presence of Materialized
Results of Previous Queries

Mikolaj Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science
ul. Piotrowo 3a, 60-965 Poznan, Poland
{mmorzy, marek, mzakrz}@cs.put.poznan.pl

Abstract. Data mining is very often regarded as an interactive and iterative
process. Users interacting with the data mining system specify the class of patterns
of their interest by means of data mining queries involving various types of
constraints. It is very likely that a user will execute a series of similar queries,
before he or she gets satisfying results. Unfortunately, data mining algorithms
currently available suffer from long processing times, which is unacceptable in
case of interactive mining. One possible solution, applicable in certain cases, is
exploiting materialized results of previous queries when answering a new query.
In this paper we discuss cost-based data mining query optimization in presence of
materialized results of previous queries, focusing on one of the popular data
mining techniques, called discovery of sequential patterns.

Keywords: data mining, sequential patterns, query optimization

1 Introduction

Data mining aims at discovery of useful patterns from large databases or
warehouses. One of the well-known data mining methods is sequential pattern
discovery introduced in [2]. Informally, sequential patterns are the most frequently
occurring subsequences in sequences of sets of items. Typical sequential pattern
mining algorithms discover all patterns whose support exceeds a user-specified
threshold. Some of them allow users to specify time constraints [10] to be used
when checking if a given source sequence contains a given pattern.

From a user’s point of view, data mining can be seen as an interactive and
iterative process of advanced querying: a user specifies the source dataset and the
requested class of patterns, the system chooses the appropriate data mining
algorithm and returns discovered patterns to the user [5][6]. A user interacting
with a data mining system has to specify several constraints on patterns to be

discovered. However, usually it is not trivial to find a set of constraints leading to
the satisfying set of patterns. Thus, users are likely to execute a series of similar
data mining queries before they find what they need. Unfortunately, data mining
algorithms require long processing times, which makes such interaction difficult.

One possible solution to that problem is exploiting materialized results of
previous queries when answering a new query [3][7][9]. A data mining system
should be able to determine which materialized query results can be used to
answer the current query, and then to choose the one leading to the shortest
response time. In has been observed [3] that the three particularly interesting
relationships between two mining queries DMQ1 and DMQ2 extracting patterns
from the same data are equivalence, inclusion, and dominance. The three
relationships refer to results of the queries, not to their syntax, and are interesting
since they represent situations, where one data mining query can be efficiently
answered using the results of another query with no actual mining process.
Equivalence, inclusion, and dominance relationships were introduced in the
context of association rules. Nevertheless, they are general relationships
applicable to many pattern types and constraint models.

Previous research on exploiting materialized patterns focused on identification
of queries whose materialized results can be used to answer the current query. It
has been shown experimentally that using materialized results of one of the
previous queries is usually much more efficient than running a complete mining
algorithm. However, none of the works addressed the problem of estimating the
cost of answering a data mining query using materialized results of another query.
Cost estimation is necessary in order to choose the optimal query answering plan
when many possible strategies are applicable. In this paper, we discuss cost-based
sequential pattern query optimization in the presence of materialized results of
previous sequential pattern queries. The only goal of the optimization that we
consider is minimizing the query execution time. We build on our previous work
[11] where we identified situations in which one sequential pattern query can be
answered using the results of another sequential pattern query. In this paper, we
discuss strategies that can be used by a data mining query optimizer exploiting
materialized results of previous queries. We provide cost functions for query
answering algorithms exploiting materialized patterns. These cost functions are
then used to choose an optimal (in terms of the execution time) query execution
plan when many applicable materialized sets of patterns are available.

1.1 Related Work

To facilitate interactive and iterative pattern discovery, [9] proposed to materialize
patterns discovered with the least restrictive selection criteria, and answer
incoming queries by filtering the materialized pattern collection. In [7], the idea of
caching intermediate results of association rule queries was discussed. In the
approach, materialization of frequent itemsets instead of rules was proposed.
However, in some cases it was required to materialize also some of the infrequent
itemsets.

Cost-based query optimization is widely used in database management systems
(see e.g. [4] for a review). One of the techniques used by query optimizers is
exploiting results of previous queries available in the form of materialized views
(see e.g. [8]). The cost-based optimizer chooses the query execution plan with the
lowest estimated cost. The cost of a given execution strategy is estimated using
known cost functions for the algorithms being used and certain statistics
maintained for the database.

2 Basic Definitions

2.1 Sequential Patterns

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set
of items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>,
where Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. The size of
a sequence is the number of items in the sequence. The length of a sequence is the
number of elements in the sequence. Let D be a set of variable length sequences
(called data-sequences), where for each sequence S = <X1 X2 ... Xn>, a timestamp
is associated with each Xi.

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained
in a data-sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such
that X1 ⊆ Yi1, X2 ⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y.
We consider the following user-specified time constraints while looking for
occurrences of a given sequence: minimal and maximal gap allowed between
consecutive elements of an occurrence of the sequence (called min-gap and max-
gap), and time window that allows a group of consecutive elements of a data-
sequence to be merged and treated as a single element as long as their timestamps
are within the user-specified window-size.

The support of a sequence <X1 X2 ... Xn> in D is the fraction of data-sequences
in D that contain the sequence. A sequential pattern is a sequence whose support
in D is above the user-specified threshold.

2.2 Relationships between Results of Data Mining Queries

Two data mining queries are equivalent if for all datasets they both return the
same set of patterns and the values of statistical significance measures (e.g.
support) for each pattern are the same in both cases. A data mining query DMQ1
includes a data mining query DMQ2 if for all datasets each pattern in the results of
DMQ2 is also returned by DMQ1 with the same values of the statistical
significance measures. A data mining query DMQ1 dominates a data mining query
DMQ2 if for all datasets each pattern in the results of DMQ2 is also returned by
DMQ1, and for each pattern returned by both queries its values of the statistical
significance measures evaluated by DMQ1 are not less than is case of DMQ2.

Equivalence is a particular case of inclusion, and inclusion is a particular case of
dominance. Equivalence, inclusion, and dominance meet the transitivity property.

If for a given query, results of a query equivalent to it, including it, or
dominating it are available, the query can be answered without running a costly
mining algorithm. In case of equivalence no processing is required, since the
queries have the same results. In case of inclusion, one scan of the materialized
query results is necessary to filter out patterns that do not satisfy constraints of the
included query. In case of dominance, one scan of the source dataset is necessary
to evaluate the statistical significance of materialized patterns (filtering out the
patterns that do not satisfy constraints of the dominated query is also required).

3 Sequential Pattern Queries

In constraint-based sequential pattern mining, we identify three classes of
constraints: database, pattern, and time constraints. Database constraints are used
to specify the source dataset. Pattern constraints specify which patterns are
interesting and should be returned by the query. Finally, time constraints influence
the process of checking whether a given data-sequence contains a given pattern.

The basic formulation of the sequential pattern discovery problem introduces
three time constraints: max-gap, min-gap, and time window, and assumes only one
pattern constraint (expressed by means of the minimum support threshold). We
model pattern constraints as complex Boolean predicates having the form of a
conjunction of basic Boolean predicates of types presented below:

• π(SPG, α, pattern) – true if pattern support is greater than α, false otherwise;
• π(SL, α, pattern) – true if pattern size is less than α, false otherwise;
• π(SG, α, pattern) – true if pattern size is greater than α, false otherwise;
• π(LL, α, pattern) – true if pattern length is less than α, false otherwise;
• π(LG, α, pattern) – true if pattern length is greater than α, false otherwise;
• π(C, β, pattern) – true if β is a subsequence of the pattern, false otherwise;
• π(NC, β, pattern) – true if β is not a subsequence of the pattern, false

otherwise.
Analyzing syntactic differences between sequential pattern queries leading to
equivalence, inclusion, and dominance relationships between the queries, in [11]
we identified two useful relationships regarding pattern and time constraints of
sequential pattern queries, which can be informally defined as follows:
− DMQ2 extends pattern constraints of DMQ1 if pattern constraints of DMQ1 can

be transformed into pattern constraints of DMQ2 by appending new basic
Boolean pattern predicates or replacing basic Boolean pattern predicates with
more selective predicates of the same types.

− DMQ2 extends time constraints of DMQ1 if it restricts at least one of the time
parameters and does not relax any time parameters.

The following three theorems (proved in [11]) capture the influence of syntactic
differences between queries on the differences between query results:

Theorem 1 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on
the same dataset and having the same time constraints. If DMQ2 extends pattern
constraints of DMQ1, then DMQ1 includes DMQ2.
Theorem 2 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on
the same dataset and having the same pattern constraints. If DMQ2 extends time
constraints of DMQ1, then DMQ1 dominates DMQ2.
Theorem 3 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on
the same dataset. If DMQ2 extends pattern constraints of DMQ1 and DMQ2
extends time constraints of DMQ1, then DMQ1 dominates DMQ2.

4 Cost Analysis of Sequential Pattern Query Execution
Plans Exploiting Materialized Results of Another Query

Given a sequential pattern query DMQ and materialized results of a sequential
pattern query DMQV operating on the same dataset, there are four classes of
syntactic differences between the queries resulting in situations where DMQ can
be answered efficiently using the materialized results of DMQV since they
correspond to equivalence, inclusion, and dominance relationships between DMQV
and DMQ. These cases are listed below:

1. If DMQV and DMQ have the same pattern and time constraints, then the
results of DMQ are equal to the results of DMQV (equivalence);

2. If DMQV and DMQ have the same time constraints, and DMQ extends
pattern constraints of DMQV, then DMQ can be answered by filtering out the
patterns returned by DMQV not satisfying pattern constraints of DMQ
(inclusion according to the Theorem 1);

3. If DMQV and DMQ have the same pattern constraints, and DMQ extends
time constraints of DMQV, then DMQ can be answered by evaluating the
support of the patterns returned by DMQV using the time constraints of
DMQ, and filtering out patterns not satisfying the minimum support
threshold of DMQ. (dominance according to the Theorem 2);

4. If DMQ extends both pattern and time constraints of DMQV, then DMQ can
be answered by evaluating the support of the patterns returned by DMQV
using the time constraints of DMQ, and filtering out patterns not satisfying
the pattern constraints of DMQ. (dominance according to the Theorem 3).

In all the cases we assume that the results of the user-specified query are to be
written to disk. Answering the query in the case of equivalence is trivial (the
results are already known and stored on the disk), therefore we concentrate on
details concerning inclusion and dominance relationships.

In all algorithms presented below, DMQ represents the sequential pattern query
issued by a user, DMQV is a query whose results are stored on disk, and D is the
source dataset (a collection of data-sequences). Analyzing the cost (in terms of
execution time) of the proposed algorithms, we assume that the following values
are known: the number of data-sequences in the dataset (rD) and the number of
patterns in materialized query results (rP); the number of disk blocks occupied by

the dataset (bD) and materialized query results (bP). The following costs of disk
and memory operations also appear in our cost formulas: the average cost of
access to a disk block (cD); the cost of checking if a pattern support exceeds a
given threshold (cS); the average cost of checking if a pattern satisfies given
pattern constraints (cF); the average cost of checking if a pattern is contained in a
given data-sequence (cC). For simplicity’s sake, we treat checking pattern
constraints and the containment test as elementary operations and use their
average costs. We do not expect exact values of the last four parameters to be
known. However, we believe that certain assumptions can made e.g. cD is
significantly larger than cS, cF, and cC, cC is greater than cS, etc.

The overall cost of a given algorithm includes the cost of disk operations
(reading the materialized patterns and the source dataset as well as writing the
results) and computations in main memory. Operations in main memory concern
individual data-sequences and patterns. The atomic portion of data read from or
written to the disk is one disk block, which usually contains a number of patterns
or data-sequences.

For the second case (inclusion due to extending pattern constraints) we propose
an algorithm that performs one sequential scan of the materialized patterns,
processing one pattern at a time. Each pattern is tested if it satisfies these basic
Boolean pattern predicates from the pattern constraints of DMQ that were not in
DMQV. All the basic Boolean pattern predicates of DMQ that were in DMQV must
be satisfied by all the materialized patterns since pattern constraints in our model
have the form of a conjunction of basic predicates. The algorithm for the second
case is presented below.

Algorithm 1 (Result Filtering)
 Answer = results of DMQV;
 for each p ∈ results of DMQV do
 begin
 for each basic Boolean pattern predicate b such that
 b is in pattern constraints of DMQ and
 b is not in pattern constraints of DMQv do
 if not (p satisfies b) then
 Answer = Answer \ {p};
 break;
 end if;
 end;
 output Answer;

The cost of Algorithm 1 can be expressed by the following formula (bP” is the
number of disk blocks to be occupied by the results of the query being answered):

CF = bP * cD + rP* cF + bP” * cD (1)

Algorithms for the third and fourth cases (both leading to the dominance
relationship) have to scan the source dataset once in order to re-evaluate the
support of materialized patterns. In the third case, all that has to be done after the
support re-evaluation is checking if new support values exceed the minimum
support threshold of DMQ. The algorithm for the third case is presented below.

Algorithm 2 (Result Verification)
 Answer = results of DMQV;
 scan D once evaluating the support of patterns
 in Answer using time constraints of DMQ;
 for each p ∈ Answer do
 if p exceeds the minimum support threshold of DMQ
 then output p; end if;

The cost of Algorithm 2 can be expressed by the following formula:

CV = (bP + bD) * cD + rD * rP * cC + rP * cS + bP” * cD (2)

The above formula is based on the assumption that the set of materialized patterns
fits into main memory. Thus, the collection of materialized patterns is read only
once. It should be noted that we do not make similar assumptions regarding the
size of the source dataset. While scanning the source dataset, data-sequences can
be read and processed one at a time.

For the fourth case (domination due to extending time and pattern constraints)
we propose two algorithms. Algorithm 3, before scanning the source dataset,
filters out patterns that do not satisfy pattern constraints of DMQ (including the
minimum support threshold) using Algorithm 1. After the scan of the dataset, the
minimum support threshold is checked again (it is the only one of predicate types
that for a given pattern could by true before the support re-evaluation, and false
after that operation). Algorithm 4 is a straightforward solution. It first re-evaluates
the support of patterns being the results of DMQV, and then filters out patterns that
do not satisfy pattern constraints of DMQ. The two algorithms exploiting results
of a dominating query extending pattern constraints of the query to be answered
are presented below:

Algorithm 3 (Result Filtering and Verification)
 Answer = patterns in results of DMQV satisfying
 pattern constraints of DMQ; /* Algorithm 1 */
 scan D once evaluating the support of patterns
 in Answer using time constraints of DMQ;
 for each p ∈ Answer do
 if p exceeds the minimum support threshold of DMQ
 then output p; end if;

The cost of Algorithm 3 can be expressed by the following formula (rP’ is the
number of patterns whose support has to be re-evaluated during the dataset scan):

CFV = (bP + bD) * cD + rP * cF + rD * rP’ * cC + rP’ * cS + bP” * cD (3)

Algorithm 4 (Result Verification and Filtering)
 Answer = results of DMQV;
 scan D once evaluating the support of patterns
 in Answer using time constraints of DMQ;
 for each p ∈ Answer do
 if p satisfies pattern constraints of DMQ
 then output p; end if;

The cost of Algorithm 4 can be expressed by the following formula:

CVF = (bP + bD) * cD + rD * rP * cC + rP * cF + bP” * cD (4)

The advantage of the Algorithm 3 over the Algorithm 4 is the possible reduction
of the number of patterns whose support has to be re-evaluated. However,
Algorithm 3 compares supports of some patterns with the minimum support
threshold twice (before and after the support re-evaluation). Let us evaluate the
difference between the cost of applying the Algorithms 3 and 4 for the same query
and exploiting the same materialized results of a previous dominating query:

CFV - CVF = rD * rP’ * cC + rP’ * cS - rD * rP * cC (5)

If we assume that the Algorithm 3 during its initial pattern filtering phase filters
out x patterns (rP - rP’ = x), then we have:

CFV - CVF = (rP - x) * cS - rD * x * cC (6)

Assuming that the number of materialized patterns used is smaller than the
number of data-sequences in the source dataset (rP < rD), and the cost of pattern
containment test is larger than the cost of comparing pattern’s support with the
minimum support threshold (cC > cS), the above formula states that if the initial
filtering phase of the Algorithm 3 filters out at least one pattern (x > 0), then the
Algorithm 3 outperforms the Algorithm 4. Thus, generating possible execution
plans we do not consider application of the Algorithm 4 at all.

5 Cost-Based Optimization of Sequential Pattern Queries
in Presence of Materialized Results of Previous Queries

A cost-based query optimizer works as follows. First, it generates all possible
query execution plans. Next, the cost of each plan is estimated. Finally, based on
the estimation, the plan with the lowest estimated cost is chosen. Since the
decision is made using estimated cost values, the plan chosen may actually not be
optimal. The quality of optimizer decisions depends on the complexity and
accuracy of cost functions used. Cost functions that are used in practice usually do
not take into consideration all the factors contributing to the execution costs. Cost
estimation procedures have to be relatively simple, so that the time spent on
optimization does not contribute significantly to the overall processing time.

We observe that the cost formulas that we provided in the previous section are
not appropriate for the cost-based optimization for two major reasons. Firstly, the
costs of disk and memory operations depend on a particular machine
configuration. Secondly, the number of patterns after initial filtration in the cost
formula for the Algorithm 3 is not known a priori. While the ratio between cost of
disk and memory operations can be easily determined, estimating the size of
materialized pattern collection after filtration according to a given pattern
predicate is not trivial. The actual problem is that the selectivity of a given pattern

predicate depends not only on the predicate itself but also on the patterns being
filtered. To be able to estimate the selectivity of a given predicate on a given
collection of patterns, the system could apply the predicate to a random sample of
patterns. However, this would clearly result in more time spent on optimization,
which is not desirable. Taking all this into account, we propose to use simplified
cost functions expressed in terms of the number of disk blocks accessed. Since for
a given query all correct execution plans have to lead to the same set of resulting
patterns, in the simplified cost formulas we omit the blocks written while storing
the results on disk. Thus, the new cost functions for the Algorithm 1 (F),
Algorithm 2 (V), and Algorithm 3 (FV) look as follows:

 CF = bP CV = bP + bD CFV = bP + bD (7)

Our optimizer performs the cost analysis only if there is more than one previous
query including or dominating the current query, and no equivalent query can be
found among the queries whose materialized results are available. The number of
considered execution plans is equal to the number of including and dominating
queries (Algorithm 1 is used for including queries, Algorithm 2 for dominating
queries having the same pattern constraints, and Algorithm 3 for dominating
queries extending pattern constraints of the current query). If the optimizer finds
more than one including or dominating query, the cost of each execution plan has
to be estimated using the cost formulas presented above. Then, the query is
answered according to the plan with the lowest estimated cost. Of course, if no
equivalent, including, or dominating query can be found, a complete sequential
pattern mining algorithm has to be run.

6 Experimental Results

To support and verify our theoretical analysis, we performed several experiments
on synthetic datasets generated by means of the GEN generator from the Quest
project [1]. The size of the source dataset used in our experiments ranged from
1000 to 100000 data-sequences. For all datasets the total number of different items
was 1000, average size of a data-sequence was 8 items, and the data distribution
was the same. The time gap between two adjacent elements of each data-sequence
was always equal to one time unit. The materialized collections of patterns
contained from 800 to more than 6000 patterns. The source datasets and
materialized query results were stored in a local Oracle8i database.

The first goal of the experiments was to verify whether disk activity is really a
dominant contributor to the cost (expressed in terms of execution time) of the
algorithms exploiting materialized patterns. For Algorithm 1, time spent on disk
operations was on average 97% of the total time. However, in case of Algorithms
2 and 3 the average value of the above ratio was 78% and 92% respectively. The
percentage of time spent on disk operations in case of Algorithm 3 varied
significantly (from 75% to 98%) with the selectivity of pattern constraints used in
queries. The experimental results prove that simplifying the cost formulas to the

number of disk blocks accessed was justified. Nevertheless, it can lead to
underestimating the cost of execution plans involving Algorithms 2 and 3.

The second goal was to check if the execution strategy chosen as the one
resulting in the smallest number of disk accesses is really the optimal one. In
general, minimizing disk accesses led to optimal execution plans. However, when
we provided two materialized collections of patterns slightly differing in the
number of occupied disk blocks, minimizing disk activity sometimes resulted in a
non-optimal plan if at least one of the materialized collections of patterns required
the application of the Algorithm 2 or 3. This is no surprise, since in case of those
algorithms, main memory computations (not consider by simplified cost
functions) are much more significant than in case of Algorithm 1. Nevertheless,
the actual cost of the chosen strategy was never higher than the cost of the actual
optimal strategy by more than 30%, which seems to be acceptable.

7 Conclusions

We addressed the problem of efficient answering sequential pattern queries in the
presence of materialized results of previous sequential pattern queries. We focused
on estimating the cost of execution strategies involving materialized collection of
patterns. By comparing estimated costs of all execution strategies available for a
given sequential pattern query, the data mining system can choose the execution
plan that is optimal or close to optimal.

References

1. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd KDD Conference (1996)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. 11th ICDE Conf. (1995)
3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proc. of the 1st

DaWaK Conference (1999)
4. Elmasri R., Navathe S.B.: Fundamentals of Database Systems, Second Edition (1994)
5. Han J., Lakshmanan L., Ng R.: Constraint-Based Multidimensional Data Mining. IEEE

Computer, Vol. 32, No. 8 (1999)
6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.

Communications of the ACM, Vol. 39, No. 11 (1996)
7. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive

Discovery of Association Rules. Proc. of the 5th KDD Conference (1999)
8. Oracle9i Database Performance Guide and Reference. Oracle Corporation (2001)
9. Parthasarathy S., Zaki M.J., Ogihara M., Dwarkadas S.: Incremental and Interactive

Sequence Mining. Proc. of the 8th CIKM Conference (1999)
10. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance

Improvements. Proc. of the 5th EDBT Conference (1996)
11. Wojciechowski M.: Interactive Constraint-Based Sequential Pattern Mining. Proc. of

the 5th ADBIS Conference (2001)

