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Abstract. Data mining is very often regarded as an interactive and iterative 
process. Users interacting with the data mining system specify the class of patterns 
of their interest by means of data mining queries involving various types of 
constraints. It is very likely that a user will execute a series of similar queries, 
before he or she gets satisfying results. Unfortunately, data mining algorithms 
currently available suffer from long processing times, which is unacceptable in 
case of interactive mining. One possible solution, applicable in certain cases, is 
exploiting materialized results of previous queries when answering a new query. 
In this paper we discuss cost-based data mining query optimization in presence of 
materialized results of previous queries, focusing on one of the popular data 
mining techniques, called discovery of sequential patterns.  

 
Keywords: data mining, sequential patterns, query optimization 

1   Introduction 

Data mining aims at discovery of useful patterns from large databases or 
warehouses. One of the well-known data mining methods is sequential pattern 
discovery introduced in [2]. Informally, sequential patterns are the most frequently 
occurring subsequences in sequences of sets of items. Typical sequential pattern 
mining algorithms discover all patterns whose support exceeds a user-specified 
threshold. Some of them allow users to specify time constraints [10] to be used 
when checking if a given source sequence contains a given pattern. 

From a user’s point of view, data mining can be seen as an interactive and 
iterative process of advanced querying: a user specifies the source dataset and the 
requested class of patterns, the system chooses the appropriate data mining 
algorithm and returns discovered patterns to the user [5][6]. A user interacting 
with a data mining system has to specify several constraints on patterns to be 



discovered. However, usually it is not trivial to find a set of constraints leading to 
the satisfying set of patterns. Thus, users are likely to execute a series of similar 
data mining queries before they find what they need. Unfortunately, data mining 
algorithms require long processing times, which makes such interaction difficult. 

One possible solution to that problem is exploiting materialized results of 
previous queries when answering a new query [3][7][9]. A data mining system 
should be able to determine which materialized query results can be used to 
answer the current query, and then to choose the one leading to the shortest 
response time. In has been observed [3] that the three particularly interesting 
relationships between two mining queries DMQ1 and DMQ2 extracting patterns 
from the same data are equivalence, inclusion, and dominance. The three 
relationships refer to results of the queries, not to their syntax, and are interesting 
since they represent situations, where one data mining query can be efficiently 
answered using the results of another query with no actual mining process. 
Equivalence, inclusion, and dominance relationships were introduced in the 
context of association rules. Nevertheless, they are general relationships 
applicable to many pattern types and constraint models. 

Previous research on exploiting materialized patterns focused on identification 
of queries whose materialized results can be used to answer the current query. It 
has been shown experimentally that using materialized results of one of the 
previous queries is usually much more efficient than running a complete mining 
algorithm. However, none of the works addressed the problem of estimating the 
cost of answering a data mining query using materialized results of another query. 
Cost estimation is necessary in order to choose the optimal query answering plan 
when many possible strategies are applicable. In this paper, we discuss cost-based 
sequential pattern query optimization in the presence of materialized results of 
previous sequential pattern queries. The only goal of the optimization that we 
consider is minimizing the query execution time. We build on our previous work 
[11] where we identified situations in which one sequential pattern query can be 
answered using the results of another sequential pattern query. In this paper, we 
discuss strategies that can be used by a data mining query optimizer exploiting 
materialized results of previous queries. We provide cost functions for query 
answering algorithms exploiting materialized patterns. These cost functions are 
then used to choose an optimal (in terms of the execution time) query execution 
plan when many applicable materialized sets of patterns are available. 

1.1   Related Work 

To facilitate interactive and iterative pattern discovery, [9] proposed to materialize 
patterns discovered with the least restrictive selection criteria, and answer 
incoming queries by filtering the materialized pattern collection. In [7], the idea of 
caching intermediate results of association rule queries was discussed. In the 
approach, materialization of frequent itemsets instead of rules was proposed. 
However, in some cases it was required to materialize also some of the infrequent 
itemsets.  



Cost-based query optimization is widely used in database management systems 
(see e.g. [4] for a review). One of the techniques used by query optimizers is 
exploiting results of previous queries available in the form of materialized views 
(see e.g. [8]). The cost-based optimizer chooses the query execution plan with the 
lowest estimated cost. The cost of a given execution strategy is estimated using 
known cost functions for the algorithms being used and certain statistics 
maintained for the database. 

2   Basic Definitions 

2.1   Sequential Patterns 

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set 
of items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>, 
where Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. The size of 
a sequence is the number of items in the sequence. The length of a sequence is the 
number of elements in the sequence. Let D be a set of variable length sequences 
(called data-sequences), where for each sequence S = <X1 X2 ... Xn>, a timestamp 
is associated with each Xi. 

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained 
in a data-sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such 
that X1 ⊆ Yi1, X2 ⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y. 
We consider the following user-specified time constraints while looking for 
occurrences of a given sequence: minimal and maximal gap allowed between 
consecutive elements of an occurrence of the sequence (called min-gap and max-
gap), and time window that allows a group of consecutive elements of a data-
sequence to be merged and treated as a single element as long as their timestamps 
are within the user-specified window-size. 

The support of a sequence <X1 X2 ... Xn> in D is the fraction of data-sequences 
in D that contain the sequence. A sequential pattern is a sequence whose support 
in D is above the user-specified threshold. 

2.2   Relationships between Results of Data Mining Queries 

Two data mining queries are equivalent if for all datasets they both return the 
same set of patterns and the values of statistical significance measures (e.g. 
support) for each pattern are the same in both cases. A data mining query DMQ1 
includes a data mining query DMQ2 if for all datasets each pattern in the results of 
DMQ2 is also returned by DMQ1 with the same values of the statistical 
significance measures. A data mining query DMQ1 dominates a data mining query 
DMQ2 if for all datasets each pattern in the results of DMQ2 is also returned by 
DMQ1, and for each pattern returned by both queries its values of the statistical 
significance measures evaluated by DMQ1 are not less than is case of DMQ2. 



Equivalence is a particular case of inclusion, and inclusion is a particular case of 
dominance. Equivalence, inclusion, and dominance meet the transitivity property.  

If for a given query, results of a query equivalent to it, including it, or 
dominating it are available, the query can be answered without running a costly 
mining algorithm. In case of equivalence no processing is required, since the 
queries have the same results. In case of inclusion, one scan of the materialized 
query results is necessary to filter out patterns that do not satisfy constraints of the 
included query. In case of dominance, one scan of the source dataset is necessary 
to evaluate the statistical significance of materialized patterns (filtering out the 
patterns that do not satisfy constraints of the dominated query is also required).   

3   Sequential Pattern Queries 

In constraint-based sequential pattern mining, we identify three classes of 
constraints: database, pattern, and time constraints. Database constraints are used 
to specify the source dataset. Pattern constraints specify which patterns are 
interesting and should be returned by the query. Finally, time constraints influence 
the process of checking whether a given data-sequence contains a given pattern.  

The basic formulation of the sequential pattern discovery problem introduces 
three time constraints: max-gap, min-gap, and time window, and assumes only one 
pattern constraint (expressed by means of the minimum support threshold). We 
model pattern constraints as complex Boolean predicates having the form of a 
conjunction of basic Boolean predicates of types presented below: 

• π(SPG, α, pattern) – true if pattern support is greater than α, false otherwise; 
• π(SL, α, pattern) – true if pattern size is less than α, false otherwise; 
• π(SG, α, pattern) – true if pattern size is greater than α, false otherwise; 
• π(LL, α, pattern) – true if pattern length is less than α, false otherwise; 
• π(LG, α, pattern) – true if pattern length is greater than α, false otherwise; 
• π(C, β, pattern) – true if β is a subsequence of the pattern, false otherwise; 
• π(NC, β, pattern) – true if β is not a subsequence of the pattern, false 

otherwise. 
Analyzing syntactic differences between sequential pattern queries leading to 
equivalence, inclusion, and dominance relationships between the queries, in [11] 
we identified two useful relationships regarding pattern and time constraints of 
sequential pattern queries, which can be informally defined as follows: 
− DMQ2 extends pattern constraints of DMQ1 if pattern constraints of DMQ1 can 

be transformed into pattern constraints of DMQ2 by appending new basic 
Boolean pattern predicates or replacing basic Boolean pattern predicates with 
more selective predicates of the same types. 

− DMQ2 extends time constraints of DMQ1 if it restricts at least one of the time 
parameters and does not relax any time parameters. 

The following three theorems (proved in [11]) capture the influence of syntactic 
differences between queries on the differences between query results:  



Theorem 1 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on 
the same dataset and having the same time constraints. If DMQ2 extends pattern 
constraints of DMQ1, then DMQ1 includes DMQ2. 
Theorem 2 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on 
the same dataset and having the same pattern constraints. If DMQ2 extends time 
constraints of DMQ1, then DMQ1 dominates DMQ2. 
Theorem 3 Let DMQ1 and DMQ2 be two sequential pattern queries, operating on 
the same dataset. If DMQ2 extends pattern constraints of DMQ1 and DMQ2 
extends time constraints of DMQ1, then DMQ1 dominates DMQ2. 

4   Cost Analysis of Sequential Pattern Query Execution 
Plans Exploiting Materialized Results of Another Query 

Given a sequential pattern query DMQ and materialized results of a sequential 
pattern query DMQV operating on the same dataset, there are four classes of 
syntactic differences between the queries resulting in situations where DMQ can 
be answered efficiently using the materialized results of DMQV since they 
correspond to equivalence, inclusion, and dominance relationships between DMQV 
and DMQ. These cases are listed below: 

1. If DMQV and DMQ have the same pattern and time constraints, then the 
results of DMQ are equal to the results of DMQV (equivalence); 

2. If DMQV and DMQ have the same time constraints, and DMQ extends 
pattern constraints of DMQV, then DMQ can be answered by filtering out the 
patterns returned by DMQV not satisfying pattern constraints of DMQ 
(inclusion according to the Theorem 1); 

3. If DMQV and DMQ have the same pattern constraints, and DMQ extends 
time constraints of DMQV, then DMQ can be answered by evaluating the 
support of the patterns returned by DMQV using the time constraints of 
DMQ, and filtering out patterns not satisfying the minimum support 
threshold of DMQ. (dominance according to the Theorem 2); 

4. If DMQ extends both pattern and time constraints of DMQV, then DMQ can 
be answered by evaluating the support of the patterns returned by DMQV 
using the time constraints of DMQ, and filtering out patterns not satisfying 
the pattern constraints of DMQ. (dominance according to the Theorem 3). 

In all the cases we assume that the results of the user-specified query are to be 
written to disk. Answering the query in the case of equivalence is trivial (the 
results are already known and stored on the disk), therefore we concentrate on 
details concerning inclusion and dominance relationships. 

In all algorithms presented below, DMQ represents the sequential pattern query 
issued by a user, DMQV is a query whose results are stored on disk, and D is the 
source dataset (a collection of data-sequences). Analyzing the cost (in terms of 
execution time) of the proposed algorithms, we assume that the following values 
are known: the number of data-sequences in the dataset (rD) and the number of 
patterns in materialized query results (rP); the number of disk blocks occupied by 



the dataset (bD) and materialized query results (bP). The following costs of disk 
and memory operations also appear in our cost formulas: the average cost of 
access to a disk block (cD); the cost of checking if a pattern support exceeds a 
given threshold (cS); the average cost of checking if a pattern satisfies given 
pattern constraints (cF); the average cost of checking if a pattern is contained in a 
given data-sequence (cC). For simplicity’s sake, we treat checking pattern 
constraints and the containment test as elementary operations and use their 
average costs. We do not expect exact values of the last four parameters to be 
known. However, we believe that certain assumptions can made e.g. cD is 
significantly larger than cS, cF, and cC, cC is greater than cS, etc. 

The overall cost of a given algorithm includes the cost of disk operations 
(reading the materialized patterns and the source dataset as well as writing the 
results) and computations in main memory. Operations in main memory concern 
individual data-sequences and patterns. The atomic portion of data read from or 
written to the disk is one disk block, which usually contains a number of patterns 
or data-sequences. 

For the second case (inclusion due to extending pattern constraints) we propose 
an algorithm that performs one sequential scan of the materialized patterns, 
processing one pattern at a time. Each pattern is tested if it satisfies these basic 
Boolean pattern predicates from the pattern constraints of DMQ that were not in 
DMQV. All the basic Boolean pattern predicates of DMQ that were in DMQV must 
be satisfied by all the materialized patterns since pattern constraints in our model 
have the form of a conjunction of basic predicates. The algorithm for the second 
case is presented below. 

Algorithm 1 (Result Filtering) 
  Answer = results of DMQV; 
  for each p ∈ results of DMQV do  
  begin 
    for each basic Boolean pattern predicate b such that     
      b is in pattern constraints of DMQ and  
      b is not in pattern constraints of DMQv do  
        if not (p satisfies b) then 
          Answer = Answer \ {p}; 
          break; 
        end if; 
  end; 
  output Answer; 

The cost of Algorithm 1 can be expressed by the following formula (bP” is the 
number of disk blocks to be occupied by the results of the query being answered): 

CF = bP * cD + rP* cF + bP” * cD (1) 

Algorithms for the third and fourth cases (both leading to the dominance 
relationship) have to scan the source dataset once in order to re-evaluate the 
support of materialized patterns. In the third case, all that has to be done after the 
support re-evaluation is checking if new support values exceed the minimum 
support threshold of DMQ. The algorithm for the third case is presented below. 



Algorithm 2 (Result Verification) 
  Answer = results of DMQV; 
  scan D once evaluating the support of patterns  
  in Answer using time constraints of DMQ;  
  for each p ∈ Answer do  
    if p exceeds the minimum support threshold of DMQ   
    then output p; end if; 

The cost of Algorithm 2 can be expressed by the following formula: 

CV = (bP + bD) * cD + rD * rP * cC + rP * cS + bP” * cD (2) 

The above formula is based on the assumption that the set of materialized patterns 
fits into main memory. Thus, the collection of materialized patterns is read only 
once. It should be noted that we do not make similar assumptions regarding the 
size of the source dataset. While scanning the source dataset, data-sequences can 
be read and processed one at a time. 

For the fourth case (domination due to extending time and pattern constraints) 
we propose two algorithms. Algorithm 3, before scanning the source dataset, 
filters out patterns that do not satisfy pattern constraints of DMQ (including the 
minimum support threshold) using Algorithm 1. After the scan of the dataset, the 
minimum support threshold is checked again (it is the only one of predicate types 
that for a given pattern could by true before the support re-evaluation, and false 
after that operation). Algorithm 4 is a straightforward solution. It first re-evaluates 
the support of patterns being the results of DMQV, and then filters out patterns that 
do not satisfy pattern constraints of DMQ. The two algorithms exploiting results 
of a dominating query extending pattern constraints of the query to be answered 
are presented below:  

Algorithm 3 (Result Filtering and Verification) 
  Answer = patterns in results of DMQV satisfying  
           pattern constraints of DMQ; /* Algorithm 1 */ 
  scan D once evaluating the support of patterns  
  in Answer using time constraints of DMQ;  
  for each p ∈ Answer do  
    if p exceeds the minimum support threshold of DMQ   
    then output p; end if; 

The cost of Algorithm 3 can be expressed by the following formula (rP’ is the 
number of patterns whose support has to be re-evaluated during the dataset scan): 

CFV = (bP + bD) * cD + rP * cF + rD * rP’ * cC + rP’ * cS + bP” * cD (3) 

Algorithm 4 (Result Verification and Filtering) 
  Answer = results of DMQV; 
  scan D once evaluating the support of patterns  
  in Answer using time constraints of DMQ;  
  for each p ∈ Answer do  
    if p satisfies pattern constraints of DMQ   
    then output p; end if; 



The cost of Algorithm 4 can be expressed by the following formula: 

CVF = (bP + bD) * cD + rD * rP * cC + rP * cF + bP” * cD (4) 

The advantage of the Algorithm 3 over the Algorithm 4 is the possible reduction 
of the number of patterns whose support has to be re-evaluated. However, 
Algorithm 3 compares supports of some patterns with the minimum support 
threshold twice (before and after the support re-evaluation). Let us evaluate the 
difference between the cost of applying the Algorithms 3 and 4 for the same query 
and exploiting the same materialized results of a previous dominating query: 

CFV - CVF = rD * rP’ * cC + rP’ * cS - rD * rP * cC (5) 

If we assume that the Algorithm 3 during its initial pattern filtering phase filters 
out x patterns (rP - rP’ = x), then we have: 

CFV - CVF = (rP - x) * cS - rD * x * cC (6) 

Assuming that the number of materialized patterns used is smaller than the 
number of data-sequences in the source dataset (rP < rD), and the cost of pattern 
containment test is larger than the cost of comparing pattern’s support with the 
minimum support threshold (cC > cS), the above formula states that if the initial 
filtering phase of the Algorithm 3 filters out at least one pattern (x > 0), then the 
Algorithm 3 outperforms the Algorithm 4. Thus, generating possible execution 
plans we do not consider application of the Algorithm 4 at all. 

5   Cost-Based Optimization of Sequential Pattern Queries 
in Presence of Materialized Results of Previous Queries 

A cost-based query optimizer works as follows. First, it generates all possible 
query execution plans. Next, the cost of each plan is estimated. Finally, based on 
the estimation, the plan with the lowest estimated cost is chosen. Since the 
decision is made using estimated cost values, the plan chosen may actually not be 
optimal. The quality of optimizer decisions depends on the complexity and 
accuracy of cost functions used. Cost functions that are used in practice usually do 
not take into consideration all the factors contributing to the execution costs. Cost 
estimation procedures have to be relatively simple, so that the time spent on 
optimization does not contribute significantly to the overall processing time. 

We observe that the cost formulas that we provided in the previous section are 
not appropriate for the cost-based optimization for two major reasons. Firstly, the 
costs of disk and memory operations depend on a particular machine 
configuration. Secondly, the number of patterns after initial filtration in the cost 
formula for the Algorithm 3 is not known a priori. While the ratio between cost of 
disk and memory operations can be easily determined, estimating the size of 
materialized pattern collection after filtration according to a given pattern 
predicate is not trivial. The actual problem is that the selectivity of a given pattern 



predicate depends not only on the predicate itself but also on the patterns being 
filtered. To be able to estimate the selectivity of a given predicate on a given 
collection of patterns, the system could apply the predicate to a random sample of 
patterns. However, this would clearly result in more time spent on optimization, 
which is not desirable. Taking all this into account, we propose to use simplified 
cost functions expressed in terms of the number of disk blocks accessed. Since for 
a given query all correct execution plans have to lead to the same set of resulting 
patterns, in the simplified cost formulas we omit the blocks written while storing 
the results on disk. Thus, the new cost functions for the Algorithm 1 (F), 
Algorithm 2 (V),  and Algorithm 3 (FV) look as follows: 

 CF = bP  CV = bP + bD       CFV = bP + bD (7) 

Our optimizer performs the cost analysis only if there is more than one previous 
query including or dominating the current query, and no equivalent query can be 
found among the queries whose materialized results are available. The number of 
considered execution plans is equal to the number of including and dominating 
queries (Algorithm 1 is used for including queries, Algorithm 2 for dominating 
queries having the same pattern constraints, and Algorithm 3 for dominating 
queries extending pattern constraints of the current query). If the optimizer finds 
more than one including or dominating query, the cost of each execution plan has 
to be estimated using the cost formulas presented above. Then, the query is 
answered according to the plan with the lowest estimated cost. Of course, if no 
equivalent, including, or dominating query can be found, a complete sequential 
pattern mining algorithm has to be run.  

6   Experimental Results 

To support and verify our theoretical analysis, we performed several experiments 
on synthetic datasets generated by means of the GEN generator from the Quest 
project [1]. The size of the source dataset used in our experiments ranged from 
1000 to 100000 data-sequences. For all datasets the total number of different items 
was 1000, average size of a data-sequence was 8 items, and the data distribution 
was the same. The time gap between two adjacent elements of each data-sequence 
was always equal to one time unit. The materialized collections of patterns 
contained from 800 to more than 6000 patterns. The source datasets and 
materialized query results were stored in a local Oracle8i database. 

The first goal of the experiments was to verify whether disk activity is really a 
dominant contributor to the cost (expressed in terms of execution time) of the 
algorithms exploiting materialized patterns. For Algorithm 1, time spent on disk 
operations was on average 97% of the total time. However, in case of Algorithms 
2 and 3 the average value of the above ratio was 78% and 92% respectively. The 
percentage of time spent on disk operations in case of Algorithm 3 varied 
significantly (from 75% to 98%) with the selectivity of pattern constraints used in 
queries. The experimental results prove that simplifying the cost formulas to the 



number of disk blocks accessed was justified. Nevertheless, it can lead to 
underestimating the cost of execution plans involving Algorithms 2 and 3. 

The second goal was to check if the execution strategy chosen as the one 
resulting in the smallest number of disk accesses is really the optimal one. In 
general, minimizing disk accesses led to optimal execution plans. However, when 
we provided two materialized collections of patterns slightly differing in the 
number of occupied disk blocks, minimizing disk activity sometimes resulted in a 
non-optimal plan if at least one of the materialized collections of patterns required 
the application of the Algorithm 2 or 3. This is no surprise, since in case of those 
algorithms, main memory computations (not consider by simplified cost 
functions) are much more significant than in case of Algorithm 1. Nevertheless, 
the actual cost of the chosen strategy was never higher than the cost of the actual 
optimal strategy by more than 30%, which seems to be acceptable. 

7   Conclusions 

We addressed the problem of efficient answering sequential pattern queries in the 
presence of materialized results of previous sequential pattern queries. We focused 
on estimating the cost of execution strategies involving materialized collection of 
patterns. By comparing estimated costs of all execution strategies available for a 
given sequential pattern query, the data mining system can choose the execution 
plan that is optimal or close to optimal.  
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