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Abstract 

The field of relational database research has developed many database 

accessing methods for effective data retrieval, e.g. B+ tree  indexing, Bitmap 

indexing, hash-based join, sort-merge join. These methods are oriented on finding 

or joining single items (represented by records) that satisfy point or range 

conditions. However, in the area of data mining research, there is often the need to 

effectively retrieve the multi-item sets that contain a given multi-item subset. We 

will refer to this type of retrieval as Subset Search Problem.  

In this paper we formally define the Subset Search Problem. We analyze and 

experimentally verify the usefulness and effectiveness of the most common 

database accessing methods applied to the Subset Search Problem. The results 

show that Bitmap indexing gives the best improvement to the implementation of 

the Subset Search Problem. 

 

 

Keywords: data mining, database indexing 
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1. Introduction 

 

Data Mining is a new area of database research that aims 

at finding previously unknown and potentially useful 

patterns in large databases [[5]]. The patterns are called 

knowledge and are usually represented by means of 

knowledge rules. There are many types of knowledge rules: 

classification, characteristic, discriminant, association etc., 

which are employed by different data mining tasks [[14]]. 

The most commonly sought patterns are association rules 

[[1]]. Intuitively, an association rule identifies a frequently 

occurring pattern of information in a database. Formally, by 

an association rule we mean a formula of the form X → Y, 

where X and Y are two sets of items. Association rules are 

discovered from database tables that store sets of items. 

Consider a supermarket database where the set of items 

purchased by a customer on a single visit to a store is re-

corded as a transaction. The supermarket managers might 

be interested in finding associations among the items 

purchased together in one transaction. An example of a 

supermarket database and the set of association rules 

derived from the database are presented in Figure 1. The 

example discovered rule: bread ∧ butter ∧ milk 

→ apples states that a customer who purchases bread, 

butter and milk, probably also purchases apples. We refer to 

the left hand side of the rule as body, and to the right hand 

side as head. We also say, that the rule is satisfied by a 

given item set (item set satisfies the rule) if X∪Y is 

contained in the set. We say, that the rule is violated by a 

given item set (item set  violates the rule) if the set contains 

X, but does not contain Y. Each rule has two measures of its 

statistical importance and strength: support and confidence. 

The support of the rule equals to the number of item sets 

that satisfy the rule divided by the number of all item sets. 

The rule confidence equals to the number of item sets that 

satisfy the rule divided by the number of item sets that 

contain X. 

The main application area of association rules discovery 

is basket analysis. The basket analysis consists in finding 

the dependencies between products bought by customers in 

a supermarket. The results of the basket analysis can help in 

marketing, pricing, inventory planning or shelf planning to 

increase transactions and profit. For example, the 

observation that when customers buy milk, they also buy 

corn flakes, may lead to the price promotion of milk to 

increase the sale of corn flakes. Another popular data 

mining application is deviation detection that identifies 

deviations from established statistical norms in order to find 

suspicious data that may be indicative of fraudulent activity. 

Through deviation detection, for example, a financial 

services company could easily detect possible fraudulent 

transactions by examining deviations in customer 

transaction patterns. Deviation detection consists mostly in 

finding the item sets that violate given set of rules. 

The data mining process is interactive and iterative in 

nature. Users are interested in finding rules that satisfy 

given constraints rather than finding all possible rules in a 

database. Such process requires an efficient knowledge 

 
 

Transaction_id items 
1 bread, butter 
2 bread, butter, milk, apples 
3 bread, butter, milk, apples 

 
bread → butter 
bread ∧ butter ∧ milk → apples 

 

Figure 1. Example of a database and discovered rules 

 



 3

discovery management system (KDDMS) [[7]] cooperating 

with a database management system (DBMS), and a special 

query language that allows users to express their specific 

rule discovery problems [[10]]. By means of a rule query, 

expressed in a query language, user specifies his 

requirements for rules to be discovered and KDDMS uses 

DBMS to explore the database tables and find rules that 

satisfy the user conditions. The rules are then returned to the 

user as the result of the data mining process. Such data 

mining process can produce hundreds or thousands of rules 

fulfilling user requirements. Usually, the rules are stored in 

a database for future retrieval by users or decision support 

systems. Having stored the rules, users may search and 

analyze them to find more specific rules e.g. rules that relate 

bread and milk. Later on, the users may constrain their 

search to rules that associate bread, milk plus apples. In 

general, the users may iteratively penetrate the set of rules 

discovered from the given database from many points of 

view. Moreover, users might be interested in finding 

customer transactions that e.g. violate the rule about bread 

and milk association. Generally, the users may look for data 

item sets that satisfy or violate given rule or set of rules.  

In this paper we consider the problem of retrieval of 

item sets stored in a relational database, which we refer to 

as the Subset Search Problem. We propose a data structure 

for the item sets storage in a database and we give examples 

of practical applications of such structure in data mining 

area. Then, we analyze and experimentally compare the 

performance of the most popular database accessing 

methods applied to the Subset Search Problem. 

1.1 Related Work 

 

Database researchers have developed many database 

accessing methods for effective data retrieval. These 

methods can be classified into two groups: 1. without use of 

any additional permanent data structures (sort-merge join, 

hash-based join, nested-loops join) and 2. using additional 

permanent data structures  (B+ tree indexing, Bitmap 

indexing etc.). 

The most popular methods of performing database joins 

on large database tables without use of any indexes are sort-

merge join and hash-based join. Both methods are based on 

full table scanning. To improve the performance of database 

join processing, sort-merge join method first sorts the 

joined tables and then performs the join [[9]]. The hash-

based join method first builds a hash table for one of the 

joined database tables, and then performs the join [[17]]. 

Database indexes provided today by most database 

systems are B+ tree indexes to retrieve records of a table 

with specified values involving one or more columns [[4]]. 

This type of index is very effective in performing point and 

range queries for sparsely-populated attribute values. 

However, performance of B+ tree index significantly 

decreases for attributes with relatively small number of key 

values compared to the number of records that are 

uniformly spread over the table. Another type of index that 

received recently significant attention and was implemented 

by most of commercial DBMSs is Bitmap index. Bitmap 

indexes were first developed for database use in the Model 

204 product from Computer Corporation of America [[12]]. 

They use Bitmaps to represent record identifier lists. It was 

shown in [[13]] that Bitmaps are usually more CPU and 

space efficient than traditional B+ tree indexes.  

1.2 Outline 

 

The paper is organized as follows. In Section 2 we 

introduce the Subset Search Problem, consider the data 

structures for item sets storage and explain the 

implementation of the Subset Search Problem in a 

relational, SQL-accessed database. In Section 3 we describe 

the application of the most popular database accessing 

methods to the Subset Search Problem. Section 4 contains 

our experimental results on synthetic data. Section 5 

contains final conclusions. 
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2. The Subset Search Problem 

2.1 Problem Formulation 

In this Section we define and analyze a generic structure 

for item sets storage in relational databases. Next, we 

introduce the Subset Search Problem and explain its 

implementation in a relational database. 

 

GROUP_ID ITEM

1 0

1 2

1 7

1 12

1 13

2 2

Table D

2 4

3 0

3 7

3 12

3 13

Searched Subset S

0 7 12 13

Subset Search Problem

Solution R

GROUP_ID=1

GROUP_ID=3
 

Figure 2: Example of the Subset Search Problem 

  

We are given a large database table of item sets D in 

which each record T has two attributes: GROUP_ID and 

ITEM. The attribute ITEM represents an item and the 

attribute GROUP_ID represents a set that contains the item. 

For the sake of simplicity, we will alternatively refer to the 

attribute GROUP_ID as the item set identifier. In other 

words, each item set consists of records with the same value 

of GROUP_ID attribute. Let ntrans denote the number of 

item sets and nitems denote the number of items. We assume 

that both attributes are integer numbers, GROUP_ID∈<0, 

ntrans> and ITEM∈<0, nitems>. We are also given a searched 

subset of items S which is a collection of the form {item1, 

item2, ..., itemn}, where itemi is an integer number, 

itemi∈<0, nitems> and n is referred to as searched subset 

size.  

Definition 1 

The Subset Search Problem is to find in the database 

table D all item sets that contain all items from the subset S. 

The solution of the Problem consists of the set R of integer 

values v representing the identifiers of those item sets that 

contain the subset S: 

 

{ }R v S item T ITEM v T GROUP ID
i n T D

i= ∀ ∃ = ∧ =
= ∈

: . . . _
..1

 

 

Let us consider the following example of the Subset 

Search Problem. Figure 2 presents the database table D of 

three item sets. The item set identified by the attribute 

GROUP_ID=1 contains the items: 0, 2, 7, 12, 13. The item 

set identified by the attribute GROUP_ID=2 contains the 

items: 2 and 4. Finally, the item set identified by the 

attribute GROUP_ID=3 contains the items:  0, 7, 12, 13. 

Let the searched subset of items S={0, 7, 12, 13}. The 

solution of this Subset Search Problem will be R={1, 3} 

because only the item sets identified by the attribute 

GROUP_ID=1 and GROUP_ID=3 contain all items from 

the set S. 

 
 

Table SHOPPING 
 

TRANSACTION_ID ITEM 
1 bread 
1 butter 
2 bread 
2 butter 
2 milk 
2 apples 
3 bread 
3 butter 
3 milk 
3 apples 

Figure 3: Example storage structure for purchase 

transactions 

 

The Subset Search Problem can be found in several data 

mining tasks. Let us first show some examples of database 

tables of item sets. The model of item set organization 

presented in Figure 2 is commonly used for storage of both 

supermarket purchase transactions and association rules. 

Figure 3 illustrates an example database table SHOPPING 
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that stores supermarket purchase data. The attribute 

TRANSACTION_ID identifies a purchase transaction and 

the attribute PRODUCT refers to a product purchased in the 

transaction. Figure 4 illustrates a data model and its 

example relational representation for association rules 

storage. Rule bodies and heads are placed in one database 

table, while the second table keeps specific rule parameters 

(e.g. support and confidence values). In this example, two 

rules from the Figure 1 are represented. Each item of the 

rule body or head is stored as a separate record in the table 

ELEMENTS. The attribute RULE_ID groups the rule items 

into rules and the attribute ITEM represents a rule body or 

head item. 

For the above form of item set organization we can 

distinguish two basic types of queries that are usually issued 

in searching purchase transactions or association rules: 

♦ retrieve all purchase transactions that contain given 

subset of items 

♦ retrieve all association rules that contain given subset 

of items in their bodies or heads 

We describe each of these queries in turn below.  

1.Retrieval of all purchase transactions that contain given 

subset of items. 

This type of retrieval can be used to determine the 

purchase transactions that satisfy or violate the specified 

rules. Finding the purchase transactions that violate 

strong rules allows deviation detection, described in the 

Introduction. This kind of queries could be also applied 

by a rule mining algorithm to discover association rules 

containing a specified set of items. 

2.Retrieval of all association rules that contain given subset 

of items in their bodies or heads. 

Queries for retrieval of association rules containing 

given items allow searching the database of rules for 

specific rules. Users impose the conditions on the 

contents of rules that are to be retrieved from the 

database, e.g. a user may look for all rules that have the 

items (bread,butter) in their bodies. 

Notice that both types of the queries are in fact instances of 

the Subset Search Problem - they consist in finding item 

sets that contain a given item subset. 

Let us analyze physical properties of the database tables 

that are subject to the Subset Search Problem. In practical 

applications the number of item sets ntrans may be very large 

(supermarkets incrementally register thousands of 

transactions every day) and the average size of an item set is 

of the order of 10-100. Therefore, the selectivity of the 

attribute GROUP_ID will be very high because only 10-100 

records from a large database table of even millions of 

records will have the same value of the attribute 

 

RULE
# Rule_id
* Support
* Confidence

BODY ELEMENT
* Item

HEAD ELEMENT
* Item

RULE ELEMENT

 

RULES   ELEMENTS 

rule_id support confidence  rule_id item type 
1 0.83 0.90  1 bread body 
2 0.25 0.13  1 butter head 
   2 bread body 
   2 butter body 
   2 milk body 
   2 apples head 

 

Figure 4 Example data model and tables for association rule storage 
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GROUP_ID. Moreover, since all items of an item set are 

usually being stored in a database at the same point of time, 

they are very likely to be located in one or very few 

adjacent disk blocks. 

Let us now consider the properties of the attribute 

ITEM. In practical applications the number of all items nitems 

is relatively small (supermarkets sell a constant number of 

hundreds of different products), however, an individual item 

may occur in large number of item sets (e.g. milk is 

included in almost every transaction, beer may be included 

in 30% of transactions etc.). Therefore, the selectivity of the 

attribute ITEM is very low and its individual values are 

sparsely populated in a database. 

2.2 Subset Searching Queries 

The Subset Search Problem is not well supported by 

SQL query language and traditional query execution 

techniques. To illustrate the subset searching, we present 

below an example of an SQL query retrieving from a 

database table D the identifiers of item sets containing the 

items 0, 7, 12 and 13. We will further refer to this type of 

query as the subset searching query: 

 
SELECT T1.GROUP_ID 
FROM   D T1, D T2, D T3, D T4 
WHERE  T1.GROUP_ID = T2.GROUP_ID 
AND    T2.GROUP_ID = T3.GROUP_ID 
AND    T3.GROUP_ID = T4.GROUP_ID 
AND    T1.ITEM = 0 
AND    T2.ITEM = 7 
AND    T3.ITEM = 12 
AND    T4.ITEM = 13; 
 

 

To demonstrate the nature of the subset searching query, 

let us consider its execution plan, given in Fig. 5. In fact, 

any execution plan for the query will have the similar 

structure. It will consist of four selection and three join 

operations. For the considered execution plan, at the first 

step, identifiers of all item sets containing items 0 and 7 are 

selected. These sets can be very large due to the low 

selectivity of the selection predicates - it is very likely that 

most of item sets (e.g. purchase transactions) will contain 

the items 0 and /or 7 (e.g. 0 may corresponds to “bread”, 7 

may correspond to “milk”, etc.). Then, at the next step, the 

set of identifiers found in the previous step is joined with a 

set of identifiers of item sets containing the item 12. At the 

last step, it is joined with a set of identifiers of item sets 

containing the item 13. As the result, identifiers of all item 

sets containing items 0, 7, 12, and 13 are returned. There 

are two main disadvantages of these plans. First, as it can be 

seen, the number of joins in the query execution plan 

strictly depends on the size of the searched subset. Larger 

searched subset results in larger subset search query. For 

searched subsets of the size greater than 10 we deal with 

large join queries that are not well supported by traditional 

query optimizers [[8],[15]]. Second, the intermediate tables 

resulting from the selection operations may be very large 

due to the low selectivity of the selection predicates. The 

intermediate tables are joined to select those item set 

identifiers that are contained in all tables. This subset 

containment procedure is performed in step-by-step manner. 

So, it may occur that the system has to deal with very large 

intermediate tables at consecutive steps of the procedure. In 

fact, as we will show it later, sizes of intermediate tables 

have the main impact on the execution cost of this type of 

queries.  

select group_id
from data_table
where item = 0

select group_id
from data_table
where item = 7

select group_id
from data_table
where item = 12

select group_id
from data_table
where item = 13

+

+

+

join

join

join  

Figure 5: Execution plan for the example query 
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3. Database Accessing Methods Applied To 

The Subset Search Problem 

 

In this Section we describe four most commonly 

implemented database accessing methods: sort-merge join 

with full table scan, hash-based join with full table scan, B+ 

tree indexing and Bitmap indexing. We consider their 

application to improving the performance of the subset 

searching queries presented in Section 2. 

The most primitive method of searching the database is 

full table scan. To perform a full table scan, DBMS reads 

all records of the table, examining each record to determine 

whether it satisfies the query's WHERE clause. Since 

DBMS reads every disk data block allocated to the table 

sequentially, a full table scan can be performed very 

efficiently using multiblock disk reads. During the full table 

scan, DBMS reads each disk data block only once. 

Although the full table scan is generally the worst method of 

searching the database, it may outperform the other methods 

when dealing with specific datasets (e.g. full table scan 

outperforms B+ trees for selection attributes with high 

number of key values).  

A popular method of performing database joins without 

help of any indexes is sort-merge join method [[9]]. In this 

method, the database tables are first sorted according to the 

value of the join attribute. Then a pointer is associated with 

each table. The pointers point initially to the first record of 

the respective tables. As the sort-merge algorithm proceeds, 

the pointers move through the table. A group of records of 

one table with the same value of the join attribute is read. 

Then the corresponding tuples of the other table is read. 

Since the tables are in sorted order, records with the same 

value of the join attribute are in consecutive order. 

Another method of performing database joins is hash-

based join [[17]]. The basic approach of several hash-based 

join methods is to dynamically build a hash table on the join 

attributes for one database table and then to probe this hash 

table using hash values on the join attributes of records 

from the other database table. The result of the join consists 

of the matching records. It is usually assumed that memory 

that is available is much smaller than the size of database 

tables to be joined, therefore it is impossible to build the 

hash table for the entire database table. The hash-join 

algorithms usually process the join in batches. In each 

batch, only a portion of a database table is read into 

memory and the corresponding hash table is built. 

The role of indexing in query optimization is well-

understood in the database community. The purpose of an 

index is to provide pointers to the records in a table that 

contain a given key value, thus enabling efficient access to a 

subset of a database. The most popular database indexing 

techniques are based on B+ trees. Figure 6 shows an 

example of the B+ tree. Each non-leaf node contains entries 

of the form (v, p) where v is the separator value which is 

derived from the keys of the records and is used to tell 

which subtree holds the searched key, and p is the pointer to 

its child node. Each leaf node contains entries of the form 

(k, p), where p is the pointer (not depicted in Figure 6) to 

the record corresponding to the key k. Searching a record in 

a database table with help of B+ tree index is 

straightforward. Let us consider an example of searching 

the record which has the key N. Beginning from the root 

node, we find that J<N<=S, that leads to the node which 

contains the separators N and Q. Next, we find that N<=N, 

thus the target record should be in the leaf-node which 

contains the keys L and N. The searching of this leaf-node 

results in locating N. 

B+ tree indexes are very effective in performing point 

and range queries for highly selective attributes. However, 

their performance significantly decreases for attributes that 

have a small number of key values compared to the number 

of records and that are uniformly spread over the database 

table. In the context of the Subset Search Problem, a B+ tree 

index could be used for improving the joins on the attribute 

GROUP_ID of the database table D. As we have already 

noticed, the attribute GROUP_ID joins the intermediate 

results of subset searching query and its selectivity is 

usually very high. A B+ tree index should not be used for 
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selections of the attribute ITEM because of its low 

selectivity. 

Another type of index that received recently significant 

attention and was implemented by most of commercial 

DBMSs is Bitmap index. Bitmap indexing benefits data 

warehousing applications which have large amounts of data 

and ad hoc queries, but a low level of concurrent 

transactions. The Bitmap index is a collection of k 0-1 

vectors, called bitmaps, where k is a number of indexed 

attribute’s key values. Each bit in the bitmap corresponds to 

a record, and if the bit is set, it means that the corresponding 

record contains the key value. Figure 7 shows an example 

of a database table and its Bitmap index. The example 

Bitmap index consists of three bitmaps, one for each key 

value of the attribute COL1. The data retrieval by means of 

the Bitmap index consists in fast scanning one or few of the 

bitmaps for non-zero elements. For example, searching the 

database table from Figure 7 for records that contain the key 

value ‘B’ is done by finding for which records the second 

bitmap has its bits set to 1. If the number of different key 

values is small, bitmaps are very space and time efficient. 

Moreover, Bitmap indexing efficiently merges indexes 

corresponding to several conditions in the WHERE clause 

of an SQL query. Records that satisfy some, but not all the 

conditions, are filtered out before the table itself is 

accessed. As a result, response time is improved. 

In the context of the Subset Search Problem, a Bitmap 

index could be used for selection improvement of the 

attribute ITEM of the database table D. As we have already 

noticed, the attribute ITEM is used to filter the database 

table D for only those items that appear in the searched 

subset S. Due to the relatively small number of the key 

values, its selectivity is usually very low. A Bitmap tree 

index should not be used for joins on the attribute 

GROUP_ID because of a huge number of its key values, 

that would result in huge number of bitmaps to be stored 

and processed.  

 

REC# COL1

1 A

2 B

3 A

4 C

5 B

6 C

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

1

COL1=A COL1=B COL1=C

Table Bitmaps

Figure 7: An example of the Bitmap index 

 

4. Experimental Results 

 

To assess the performance of the database accessing 

methods we performed several experiments on Oracle 7.3.1 

DBMS, working on 2-processor Sun SPARCserver 630MP, 

with 128 MB of main memory. In this Section, we describe 

the synthetic database and present the results of the subset 

searching using different database accessing methods. 

4.1 Synthetic Database  

 

Experimental data sets were created by synthetic data 

generator GEN from Quest project [[2]]. GEN generates 

 

 

 

J S Y

B H N Q U Z

A B E G H L N T U W XP Q Z

 

Figure 6: An example of the B+ tree 
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textual data files containing sets of numerical items. Several 

parameters affect the distribution of the synthetic data. 

These parameters are shown in Table 1. 

To load the contents of the data files into the database, 

Oracle SQL*Loader program was used. The item sets were 

stored in database tables of the following structure: 

 

attribute name datatype 
GROUP_ID NUMBER(6,0) 
ITEM NUMBER(6,0) 

 

 

parameter value 
ntrans number of item sets, 50,000 
nitems number of different items, 100 to 500 
tlen average items per set, 15 to 30 
npats number of patterns, 500 and 10000 
patlen average length of maximal pattern, 4 
corr correlation between patterns, 0.25 

Table 1 Synthetic data parameters 

4.2 Experimental Results 

 

The main performance metric of the subset searching 

was mean execution time of test queries. Oracle SQL query 

tracing and TKprof profiler were used to measure precisely 

query execution time. Four types of test queries were 

issued: the queries that used sort-merge join method, the 

queries that used hash-based join method and the queries 

using B+ tree index on the attribute GROUP_ID and Bitmap 

index on the attribute ITEM. 

Table 2 shows the explanation of labels from our 

experiment diagrams. 

Our first impression is that the Subset Search Problem is 

generally very time-consuming. The test queries execution 

times for 10-item searched subsets were of the order of 

hundreds of seconds while simple single selections in the 

same database tables could take only few seconds. 

Figure 8 shows the performance of database accessing 

methods for different sizes of a searched subset. For 

increasing size of a searched subset, the number of database 

accesses also increases because of a greater number of 

query joins to be performed. Thus, the performance of all 

the methods is getting worse when the searched subset size 

is increasing. In general, as we expected, usage of database 

indexing results in shorter query execution times. Both B+ 

tree and Bitmap indexing significantly outperformed sort-

merge join and hash-based join methods. The fastest 

database accessing method appeared Bitmap indexing, 

which provided four times faster retrieval than sort-merge 

join and hash-based join methods.  

Figure 9 demonstrates the effect of the average size of 

item sets on the performance of database accessing 

methods. For increasing average size of item sets, the 

number of records in the database table also increases and 

the query execution time gets longer. For item sets of the 

size greater than 20 items, hash-based join method performs 

better than sort-merge join method. In general, when the 

item set size increases, the size of the database D increases 

but the number of key values of its attribute GROUP_ID  

remains constant, therefore B+ tree index’ performance is 

getting relatively worse. As we have observed, when the 

average size of item sets was greater than 25, then hash-

based join method even outperformed B+ tree indexing 

method. Again, the best database accessing method for all 

examined item sets sizes appeared Bitmap indexing. 

 

label description 
sort-merge results of subset searching with Oracle sort-merge join 
hash-join results of subset searching with Oracle hash-based join 
B+ tree results of subset searching with Oracle B+tree index for the attribute GROUP_ID 
bitmap results of subset searching with Oracle bitmap index for the attribute ITEM 

Table 2 Labels from the experiment diagrams 
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Figure 10 demonstrates the effect of the number of items 

stored in the database on the performance of database 

accessing methods. The number of items influences the size 

of intermediate join results during query execution process. 

When the number of items is greater, the selectivity of the 

attribute ITEM is higher, thus the intermediate join results 

are smaller. The experiment showed, that this property does 

not significantly improve the performance of sort-merge 

join, hash-based join as well as B+ tree indexing.  We have 

observed a lowering improvement of Bitmap indexing 

performance for increasing number of items. Once again, 

the best database accessing method for all examined 

numbers of items was Bitmap indexing. 

5. Concluding Remarks 

 

In this paper we introduced the Subset Search Problem 

in relational databases which consists in retrieval of multi-

item sets that contain a given multi-item subset. The Subset 

Search Problem has many applications in the field of data 

mining. We analyzed and compared the performance of the 

subset searching queries for different database accessing 

methods. We showed experimentally that Bitmap indexing 

is the best method of improving the subset searching queries 

performance. However, we realize that even Bitmap 

indexing results in hardly acceptable query execution times. 

The results of this paper can be extended in several 

directions. First, we may study any alternative plans of 

executing the Subset Search queries. As we have noticed, 

the number of joins in the presented query execution plan 

strictly depends on the size of the searched subset. Larger 

searched subset results in larger subset search query. This 
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Fig.8: Query execution time vs. searched subset size 
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Fig.9: Query execution time vs. average item set size 
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Fig.10: Query execution time vs. number of items 
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property significantly reduces the performance of large 

subset searching queries. Second, new index structures 

could be invented to reduce time of large subset searching 

in large relational databases. We suspect that if an index 

structure was built over data sets instead of items, the 

performance of the subset searching could be significantly 

better. Furthermore, we would like to analyze different data 

storage strategies (e.g. index clusters, hash clusters) for their 

application to the Subset Search Problem.  
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