
On Effectiveness of Database Accessing Methods

for Subset Searching

Maciej Zakrzewicz

Institute of Computing Science

Poznan University of Technology

ul. Piotrowo 3a, 60-965 Poznan, Poland

Tel.: (+48) 61 878 23 78

Fax: (+48) 61 877 15 25

mzakrz@cs.put.poznan.pl

Abstract

The field of relational database research has developed many database

accessing methods for effective data retrieval, e.g. B+ tree indexing, Bitmap

indexing, hash-based join, sort-merge join. These methods are oriented on finding

or joining single items (represented by records) that satisfy point or range

conditions. However, in the area of data mining research, there is often the need to

effectively retrieve the multi-item sets that contain a given multi-item subset. We

will refer to this type of retrieval as Subset Search Problem.

In this paper we formally define the Subset Search Problem. We analyze and

experimentally verify the usefulness and effectiveness of the most common

database accessing methods applied to the Subset Search Problem. The results

show that Bitmap indexing gives the best improvement to the implementation of

the Subset Search Problem.

Keywords: data mining, database indexing

 2

1. Introduction

Data Mining is a new area of database research that aims

at finding previously unknown and potentially useful

patterns in large databases [[5]]. The patterns are called

knowledge and are usually represented by means of

knowledge rules. There are many types of knowledge rules:

classification, characteristic, discriminant, association etc.,

which are employed by different data mining tasks [[14]].

The most commonly sought patterns are association rules

[[1]]. Intuitively, an association rule identifies a frequently

occurring pattern of information in a database. Formally, by

an association rule we mean a formula of the form X → Y,

where X and Y are two sets of items. Association rules are

discovered from database tables that store sets of items.

Consider a supermarket database where the set of items

purchased by a customer on a single visit to a store is re-

corded as a transaction. The supermarket managers might

be interested in finding associations among the items

purchased together in one transaction. An example of a

supermarket database and the set of association rules

derived from the database are presented in Figure 1. The

example discovered rule: bread ∧ butter ∧ milk

→ apples states that a customer who purchases bread,

butter and milk, probably also purchases apples. We refer to

the left hand side of the rule as body, and to the right hand

side as head. We also say, that the rule is satisfied by a

given item set (item set satisfies the rule) if X∪Y is

contained in the set. We say, that the rule is violated by a

given item set (item set violates the rule) if the set contains

X, but does not contain Y. Each rule has two measures of its

statistical importance and strength: support and confidence.

The support of the rule equals to the number of item sets

that satisfy the rule divided by the number of all item sets.

The rule confidence equals to the number of item sets that

satisfy the rule divided by the number of item sets that

contain X.

The main application area of association rules discovery

is basket analysis. The basket analysis consists in finding

the dependencies between products bought by customers in

a supermarket. The results of the basket analysis can help in

marketing, pricing, inventory planning or shelf planning to

increase transactions and profit. For example, the

observation that when customers buy milk, they also buy

corn flakes, may lead to the price promotion of milk to

increase the sale of corn flakes. Another popular data

mining application is deviation detection that identifies

deviations from established statistical norms in order to find

suspicious data that may be indicative of fraudulent activity.

Through deviation detection, for example, a financial

services company could easily detect possible fraudulent

transactions by examining deviations in customer

transaction patterns. Deviation detection consists mostly in

finding the item sets that violate given set of rules.

The data mining process is interactive and iterative in

nature. Users are interested in finding rules that satisfy

given constraints rather than finding all possible rules in a

database. Such process requires an efficient knowledge

Transaction_id items
1 bread, butter
2 bread, butter, milk, apples
3 bread, butter, milk, apples

bread → butter
bread ∧ butter ∧ milk → apples

Figure 1. Example of a database and discovered rules

 3

discovery management system (KDDMS) [[7]] cooperating

with a database management system (DBMS), and a special

query language that allows users to express their specific

rule discovery problems [[10]]. By means of a rule query,

expressed in a query language, user specifies his

requirements for rules to be discovered and KDDMS uses

DBMS to explore the database tables and find rules that

satisfy the user conditions. The rules are then returned to the

user as the result of the data mining process. Such data

mining process can produce hundreds or thousands of rules

fulfilling user requirements. Usually, the rules are stored in

a database for future retrieval by users or decision support

systems. Having stored the rules, users may search and

analyze them to find more specific rules e.g. rules that relate

bread and milk. Later on, the users may constrain their

search to rules that associate bread, milk plus apples. In

general, the users may iteratively penetrate the set of rules

discovered from the given database from many points of

view. Moreover, users might be interested in finding

customer transactions that e.g. violate the rule about bread

and milk association. Generally, the users may look for data

item sets that satisfy or violate given rule or set of rules.

In this paper we consider the problem of retrieval of

item sets stored in a relational database, which we refer to

as the Subset Search Problem. We propose a data structure

for the item sets storage in a database and we give examples

of practical applications of such structure in data mining

area. Then, we analyze and experimentally compare the

performance of the most popular database accessing

methods applied to the Subset Search Problem.

1.1 Related Work

Database researchers have developed many database

accessing methods for effective data retrieval. These

methods can be classified into two groups: 1. without use of

any additional permanent data structures (sort-merge join,

hash-based join, nested-loops join) and 2. using additional

permanent data structures (B+ tree indexing, Bitmap

indexing etc.).

The most popular methods of performing database joins

on large database tables without use of any indexes are sort-

merge join and hash-based join. Both methods are based on

full table scanning. To improve the performance of database

join processing, sort-merge join method first sorts the

joined tables and then performs the join [[9]]. The hash-

based join method first builds a hash table for one of the

joined database tables, and then performs the join [[17]].

Database indexes provided today by most database

systems are B+ tree indexes to retrieve records of a table

with specified values involving one or more columns [[4]].

This type of index is very effective in performing point and

range queries for sparsely-populated attribute values.

However, performance of B+ tree index significantly

decreases for attributes with relatively small number of key

values compared to the number of records that are

uniformly spread over the table. Another type of index that

received recently significant attention and was implemented

by most of commercial DBMSs is Bitmap index. Bitmap

indexes were first developed for database use in the Model

204 product from Computer Corporation of America [[12]].

They use Bitmaps to represent record identifier lists. It was

shown in [[13]] that Bitmaps are usually more CPU and

space efficient than traditional B+ tree indexes.

1.2 Outline

The paper is organized as follows. In Section 2 we

introduce the Subset Search Problem, consider the data

structures for item sets storage and explain the

implementation of the Subset Search Problem in a

relational, SQL-accessed database. In Section 3 we describe

the application of the most popular database accessing

methods to the Subset Search Problem. Section 4 contains

our experimental results on synthetic data. Section 5

contains final conclusions.

 4

2. The Subset Search Problem

2.1 Problem Formulation

In this Section we define and analyze a generic structure

for item sets storage in relational databases. Next, we

introduce the Subset Search Problem and explain its

implementation in a relational database.

GROUP_ID ITEM

1 0

1 2

1 7

1 12

1 13

2 2

Table D

2 4

3 0

3 7

3 12

3 13

Searched Subset S

0 7 12 13

Subset Search Problem

Solution R

GROUP_ID=1

GROUP_ID=3

Figure 2: Example of the Subset Search Problem

We are given a large database table of item sets D in

which each record T has two attributes: GROUP_ID and

ITEM. The attribute ITEM represents an item and the

attribute GROUP_ID represents a set that contains the item.

For the sake of simplicity, we will alternatively refer to the

attribute GROUP_ID as the item set identifier. In other

words, each item set consists of records with the same value

of GROUP_ID attribute. Let ntrans denote the number of

item sets and nitems denote the number of items. We assume

that both attributes are integer numbers, GROUP_ID∈<0,

ntrans> and ITEM∈<0, nitems>. We are also given a searched

subset of items S which is a collection of the form {item1,

item2, ..., itemn}, where itemi is an integer number,

itemi∈<0, nitems> and n is referred to as searched subset

size.

Definition 1

The Subset Search Problem is to find in the database

table D all item sets that contain all items from the subset S.

The solution of the Problem consists of the set R of integer

values v representing the identifiers of those item sets that

contain the subset S:

{ }R v S item T ITEM v T GROUP ID
i n T D

i= ∀ ∃ = ∧ =
= ∈

: . . . _
..1

Let us consider the following example of the Subset

Search Problem. Figure 2 presents the database table D of

three item sets. The item set identified by the attribute

GROUP_ID=1 contains the items: 0, 2, 7, 12, 13. The item

set identified by the attribute GROUP_ID=2 contains the

items: 2 and 4. Finally, the item set identified by the

attribute GROUP_ID=3 contains the items: 0, 7, 12, 13.

Let the searched subset of items S={0, 7, 12, 13}. The

solution of this Subset Search Problem will be R={1, 3}

because only the item sets identified by the attribute

GROUP_ID=1 and GROUP_ID=3 contain all items from

the set S.

Table SHOPPING

TRANSACTION_ID ITEM
1 bread
1 butter
2 bread
2 butter
2 milk
2 apples
3 bread
3 butter
3 milk
3 apples

Figure 3: Example storage structure for purchase

transactions

The Subset Search Problem can be found in several data

mining tasks. Let us first show some examples of database

tables of item sets. The model of item set organization

presented in Figure 2 is commonly used for storage of both

supermarket purchase transactions and association rules.

Figure 3 illustrates an example database table SHOPPING

 5

that stores supermarket purchase data. The attribute

TRANSACTION_ID identifies a purchase transaction and

the attribute PRODUCT refers to a product purchased in the

transaction. Figure 4 illustrates a data model and its

example relational representation for association rules

storage. Rule bodies and heads are placed in one database

table, while the second table keeps specific rule parameters

(e.g. support and confidence values). In this example, two

rules from the Figure 1 are represented. Each item of the

rule body or head is stored as a separate record in the table

ELEMENTS. The attribute RULE_ID groups the rule items

into rules and the attribute ITEM represents a rule body or

head item.

For the above form of item set organization we can

distinguish two basic types of queries that are usually issued

in searching purchase transactions or association rules:

♦ retrieve all purchase transactions that contain given

subset of items

♦ retrieve all association rules that contain given subset

of items in their bodies or heads

We describe each of these queries in turn below.

1.Retrieval of all purchase transactions that contain given

subset of items.

This type of retrieval can be used to determine the

purchase transactions that satisfy or violate the specified

rules. Finding the purchase transactions that violate

strong rules allows deviation detection, described in the

Introduction. This kind of queries could be also applied

by a rule mining algorithm to discover association rules

containing a specified set of items.

2.Retrieval of all association rules that contain given subset

of items in their bodies or heads.

Queries for retrieval of association rules containing

given items allow searching the database of rules for

specific rules. Users impose the conditions on the

contents of rules that are to be retrieved from the

database, e.g. a user may look for all rules that have the

items (bread,butter) in their bodies.

Notice that both types of the queries are in fact instances of

the Subset Search Problem - they consist in finding item

sets that contain a given item subset.

Let us analyze physical properties of the database tables

that are subject to the Subset Search Problem. In practical

applications the number of item sets ntrans may be very large

(supermarkets incrementally register thousands of

transactions every day) and the average size of an item set is

of the order of 10-100. Therefore, the selectivity of the

attribute GROUP_ID will be very high because only 10-100

records from a large database table of even millions of

records will have the same value of the attribute

RULE
Rule_id
* Support
* Confidence

BODY ELEMENT
* Item

HEAD ELEMENT
* Item

RULE ELEMENT

RULES ELEMENTS

rule_id support confidence rule_id item type
1 0.83 0.90 1 bread body
2 0.25 0.13 1 butter head
 2 bread body
 2 butter body
 2 milk body
 2 apples head

Figure 4 Example data model and tables for association rule storage

 6

GROUP_ID. Moreover, since all items of an item set are

usually being stored in a database at the same point of time,

they are very likely to be located in one or very few

adjacent disk blocks.

Let us now consider the properties of the attribute

ITEM. In practical applications the number of all items nitems

is relatively small (supermarkets sell a constant number of

hundreds of different products), however, an individual item

may occur in large number of item sets (e.g. milk is

included in almost every transaction, beer may be included

in 30% of transactions etc.). Therefore, the selectivity of the

attribute ITEM is very low and its individual values are

sparsely populated in a database.

2.2 Subset Searching Queries

The Subset Search Problem is not well supported by

SQL query language and traditional query execution

techniques. To illustrate the subset searching, we present

below an example of an SQL query retrieving from a

database table D the identifiers of item sets containing the

items 0, 7, 12 and 13. We will further refer to this type of

query as the subset searching query:

SELECT T1.GROUP_ID
FROM D T1, D T2, D T3, D T4
WHERE T1.GROUP_ID = T2.GROUP_ID
AND T2.GROUP_ID = T3.GROUP_ID
AND T3.GROUP_ID = T4.GROUP_ID
AND T1.ITEM = 0
AND T2.ITEM = 7
AND T3.ITEM = 12
AND T4.ITEM = 13;

To demonstrate the nature of the subset searching query,

let us consider its execution plan, given in Fig. 5. In fact,

any execution plan for the query will have the similar

structure. It will consist of four selection and three join

operations. For the considered execution plan, at the first

step, identifiers of all item sets containing items 0 and 7 are

selected. These sets can be very large due to the low

selectivity of the selection predicates - it is very likely that

most of item sets (e.g. purchase transactions) will contain

the items 0 and /or 7 (e.g. 0 may corresponds to “bread”, 7

may correspond to “milk”, etc.). Then, at the next step, the

set of identifiers found in the previous step is joined with a

set of identifiers of item sets containing the item 12. At the

last step, it is joined with a set of identifiers of item sets

containing the item 13. As the result, identifiers of all item

sets containing items 0, 7, 12, and 13 are returned. There

are two main disadvantages of these plans. First, as it can be

seen, the number of joins in the query execution plan

strictly depends on the size of the searched subset. Larger

searched subset results in larger subset search query. For

searched subsets of the size greater than 10 we deal with

large join queries that are not well supported by traditional

query optimizers [[8],[15]]. Second, the intermediate tables

resulting from the selection operations may be very large

due to the low selectivity of the selection predicates. The

intermediate tables are joined to select those item set

identifiers that are contained in all tables. This subset

containment procedure is performed in step-by-step manner.

So, it may occur that the system has to deal with very large

intermediate tables at consecutive steps of the procedure. In

fact, as we will show it later, sizes of intermediate tables

have the main impact on the execution cost of this type of

queries.

select group_id
from data_table
where item = 0

select group_id
from data_table
where item = 7

select group_id
from data_table
where item = 12

select group_id
from data_table
where item = 13

+

+

+

join

join

join

Figure 5: Execution plan for the example query

 7

3. Database Accessing Methods Applied To

The Subset Search Problem

In this Section we describe four most commonly

implemented database accessing methods: sort-merge join

with full table scan, hash-based join with full table scan, B+

tree indexing and Bitmap indexing. We consider their

application to improving the performance of the subset

searching queries presented in Section 2.

The most primitive method of searching the database is

full table scan. To perform a full table scan, DBMS reads

all records of the table, examining each record to determine

whether it satisfies the query's WHERE clause. Since

DBMS reads every disk data block allocated to the table

sequentially, a full table scan can be performed very

efficiently using multiblock disk reads. During the full table

scan, DBMS reads each disk data block only once.

Although the full table scan is generally the worst method of

searching the database, it may outperform the other methods

when dealing with specific datasets (e.g. full table scan

outperforms B+ trees for selection attributes with high

number of key values).

A popular method of performing database joins without

help of any indexes is sort-merge join method [[9]]. In this

method, the database tables are first sorted according to the

value of the join attribute. Then a pointer is associated with

each table. The pointers point initially to the first record of

the respective tables. As the sort-merge algorithm proceeds,

the pointers move through the table. A group of records of

one table with the same value of the join attribute is read.

Then the corresponding tuples of the other table is read.

Since the tables are in sorted order, records with the same

value of the join attribute are in consecutive order.

Another method of performing database joins is hash-

based join [[17]]. The basic approach of several hash-based

join methods is to dynamically build a hash table on the join

attributes for one database table and then to probe this hash

table using hash values on the join attributes of records

from the other database table. The result of the join consists

of the matching records. It is usually assumed that memory

that is available is much smaller than the size of database

tables to be joined, therefore it is impossible to build the

hash table for the entire database table. The hash-join

algorithms usually process the join in batches. In each

batch, only a portion of a database table is read into

memory and the corresponding hash table is built.

The role of indexing in query optimization is well-

understood in the database community. The purpose of an

index is to provide pointers to the records in a table that

contain a given key value, thus enabling efficient access to a

subset of a database. The most popular database indexing

techniques are based on B+ trees. Figure 6 shows an

example of the B+ tree. Each non-leaf node contains entries

of the form (v, p) where v is the separator value which is

derived from the keys of the records and is used to tell

which subtree holds the searched key, and p is the pointer to

its child node. Each leaf node contains entries of the form

(k, p), where p is the pointer (not depicted in Figure 6) to

the record corresponding to the key k. Searching a record in

a database table with help of B+ tree index is

straightforward. Let us consider an example of searching

the record which has the key N. Beginning from the root

node, we find that J<N<=S, that leads to the node which

contains the separators N and Q. Next, we find that N<=N,

thus the target record should be in the leaf-node which

contains the keys L and N. The searching of this leaf-node

results in locating N.

B+ tree indexes are very effective in performing point

and range queries for highly selective attributes. However,

their performance significantly decreases for attributes that

have a small number of key values compared to the number

of records and that are uniformly spread over the database

table. In the context of the Subset Search Problem, a B+ tree

index could be used for improving the joins on the attribute

GROUP_ID of the database table D. As we have already

noticed, the attribute GROUP_ID joins the intermediate

results of subset searching query and its selectivity is

usually very high. A B+ tree index should not be used for

 8

selections of the attribute ITEM because of its low

selectivity.

Another type of index that received recently significant

attention and was implemented by most of commercial

DBMSs is Bitmap index. Bitmap indexing benefits data

warehousing applications which have large amounts of data

and ad hoc queries, but a low level of concurrent

transactions. The Bitmap index is a collection of k 0-1

vectors, called bitmaps, where k is a number of indexed

attribute’s key values. Each bit in the bitmap corresponds to

a record, and if the bit is set, it means that the corresponding

record contains the key value. Figure 7 shows an example

of a database table and its Bitmap index. The example

Bitmap index consists of three bitmaps, one for each key

value of the attribute COL1. The data retrieval by means of

the Bitmap index consists in fast scanning one or few of the

bitmaps for non-zero elements. For example, searching the

database table from Figure 7 for records that contain the key

value ‘B’ is done by finding for which records the second

bitmap has its bits set to 1. If the number of different key

values is small, bitmaps are very space and time efficient.

Moreover, Bitmap indexing efficiently merges indexes

corresponding to several conditions in the WHERE clause

of an SQL query. Records that satisfy some, but not all the

conditions, are filtered out before the table itself is

accessed. As a result, response time is improved.

In the context of the Subset Search Problem, a Bitmap

index could be used for selection improvement of the

attribute ITEM of the database table D. As we have already

noticed, the attribute ITEM is used to filter the database

table D for only those items that appear in the searched

subset S. Due to the relatively small number of the key

values, its selectivity is usually very low. A Bitmap tree

index should not be used for joins on the attribute

GROUP_ID because of a huge number of its key values,

that would result in huge number of bitmaps to be stored

and processed.

REC# COL1

1 A

2 B

3 A

4 C

5 B

6 C

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

1

COL1=A COL1=B COL1=C

Table Bitmaps

Figure 7: An example of the Bitmap index

4. Experimental Results

To assess the performance of the database accessing

methods we performed several experiments on Oracle 7.3.1

DBMS, working on 2-processor Sun SPARCserver 630MP,

with 128 MB of main memory. In this Section, we describe

the synthetic database and present the results of the subset

searching using different database accessing methods.

4.1 Synthetic Database

Experimental data sets were created by synthetic data

generator GEN from Quest project [[2]]. GEN generates

J S Y

B H N Q U Z

A B E G H L N T U W XP Q Z

Figure 6: An example of the B+ tree

 9

textual data files containing sets of numerical items. Several

parameters affect the distribution of the synthetic data.

These parameters are shown in Table 1.

To load the contents of the data files into the database,

Oracle SQL*Loader program was used. The item sets were

stored in database tables of the following structure:

attribute name datatype
GROUP_ID NUMBER(6,0)
ITEM NUMBER(6,0)

parameter value
ntrans number of item sets, 50,000
nitems number of different items, 100 to 500
tlen average items per set, 15 to 30
npats number of patterns, 500 and 10000
patlen average length of maximal pattern, 4
corr correlation between patterns, 0.25

Table 1 Synthetic data parameters

4.2 Experimental Results

The main performance metric of the subset searching

was mean execution time of test queries. Oracle SQL query

tracing and TKprof profiler were used to measure precisely

query execution time. Four types of test queries were

issued: the queries that used sort-merge join method, the

queries that used hash-based join method and the queries

using B+ tree index on the attribute GROUP_ID and Bitmap

index on the attribute ITEM.

Table 2 shows the explanation of labels from our

experiment diagrams.

Our first impression is that the Subset Search Problem is

generally very time-consuming. The test queries execution

times for 10-item searched subsets were of the order of

hundreds of seconds while simple single selections in the

same database tables could take only few seconds.

Figure 8 shows the performance of database accessing

methods for different sizes of a searched subset. For

increasing size of a searched subset, the number of database

accesses also increases because of a greater number of

query joins to be performed. Thus, the performance of all

the methods is getting worse when the searched subset size

is increasing. In general, as we expected, usage of database

indexing results in shorter query execution times. Both B+

tree and Bitmap indexing significantly outperformed sort-

merge join and hash-based join methods. The fastest

database accessing method appeared Bitmap indexing,

which provided four times faster retrieval than sort-merge

join and hash-based join methods.

Figure 9 demonstrates the effect of the average size of

item sets on the performance of database accessing

methods. For increasing average size of item sets, the

number of records in the database table also increases and

the query execution time gets longer. For item sets of the

size greater than 20 items, hash-based join method performs

better than sort-merge join method. In general, when the

item set size increases, the size of the database D increases

but the number of key values of its attribute GROUP_ID

remains constant, therefore B+ tree index’ performance is

getting relatively worse. As we have observed, when the

average size of item sets was greater than 25, then hash-

based join method even outperformed B+ tree indexing

method. Again, the best database accessing method for all

examined item sets sizes appeared Bitmap indexing.

label description
sort-merge results of subset searching with Oracle sort-merge join
hash-join results of subset searching with Oracle hash-based join
B+ tree results of subset searching with Oracle B+tree index for the attribute GROUP_ID
bitmap results of subset searching with Oracle bitmap index for the attribute ITEM

Table 2 Labels from the experiment diagrams

 10

Figure 10 demonstrates the effect of the number of items

stored in the database on the performance of database

accessing methods. The number of items influences the size

of intermediate join results during query execution process.

When the number of items is greater, the selectivity of the

attribute ITEM is higher, thus the intermediate join results

are smaller. The experiment showed, that this property does

not significantly improve the performance of sort-merge

join, hash-based join as well as B+ tree indexing. We have

observed a lowering improvement of Bitmap indexing

performance for increasing number of items. Once again,

the best database accessing method for all examined

numbers of items was Bitmap indexing.

5. Concluding Remarks

In this paper we introduced the Subset Search Problem

in relational databases which consists in retrieval of multi-

item sets that contain a given multi-item subset. The Subset

Search Problem has many applications in the field of data

mining. We analyzed and compared the performance of the

subset searching queries for different database accessing

methods. We showed experimentally that Bitmap indexing

is the best method of improving the subset searching queries

performance. However, we realize that even Bitmap

indexing results in hardly acceptable query execution times.

The results of this paper can be extended in several

directions. First, we may study any alternative plans of

executing the Subset Search queries. As we have noticed,

the number of joins in the presented query execution plan

strictly depends on the size of the searched subset. Larger

searched subset results in larger subset search query. This

t_len = 15
n_items = 100

-

20,00

40,00

60,00

80,00

100,00

120,00

140,00

2 3 4 5 6 7 8 9 10

searched subset size

ex
ec

u
ti

o
n

 t
im

e
[s

]

sort-merge

hash-join

b+ tree

bitmap

Fig.8: Query execution time vs. searched subset size

n_items = 100

-

50,00

100,00

150,00

200,00

250,00

300,00

350,00

15 20 25 30

average item set size (t_len)

ex
ec

u
ti

o
n

 t
im

e
[s

]

sort-merge

hash-join

b+ tree

bitmap

Fig.9: Query execution time vs. average item set size

t_len = 15

-

20,00

40,00

60,00

80,00

100,00

120,00

140,00

100 200 300 400 500

number of items (n_items)

ex
ec

u
ti

o
n

 t
im

e
[s

]

sort-merge

hash-join

b+ tree

bitmap

Fig.10: Query execution time vs. number of items

 11

property significantly reduces the performance of large

subset searching queries. Second, new index structures

could be invented to reduce time of large subset searching

in large relational databases. We suspect that if an index

structure was built over data sets instead of items, the

performance of the subset searching could be significantly

better. Furthermore, we would like to analyze different data

storage strategies (e.g. index clusters, hash clusters) for their

application to the Subset Search Problem.

6. Bibliography

[1] Agrawal R., Imielinski T., Swami A., Mining

Association Rules Between Sets of Items in Large

Databases, Proc. of the 1993 ACM SIGMOD

International Conference on Management of Data,

Washington, DC, May 26-28 1993,

[2] Agrawal R., Mehta M., Shafer J., Srikant R., Arning A.,

Bollinger T., The Quest Data Mining System,

[3] Agrawal R., Srikant R., Fast Algorithms for Mining

Association Rules, Proc. of the 20th VLDB Conference,

Santiago, Chile, 1994,

[4] Comer D., The Ubiquitous B-tree, Comput. Surv. 11,

1979,

[5] Fayyad U., Piatetsky-Shapiro G., Smyth P., The KDD

Process for Extracting Useful Knowledge from Volumes

of Data, Comm. of the ACM, Vol. 39, No. 11,

November 1996,

[6] Han J., Fu Y., Discovery of Multiple-Level Association

Rules from Large Databases, Proc. of the 21st VLDB

Conf., Swizerland, 1995,

[7] Imielinski T., Manilla H., A Database Perspective on

Knowledge Discovery, Comm. of the ACM, Vol. 39,

No. 11, November 1996,

[8] Ioannidis Y.E., Kang Y., Left-deep vs Bushy Trees: An

Analysis of Strategy Spaces and Its Implications for

Query Optimization, Proc. of the ACM SIGMOD Int.

Conference on Management of Data, Denver, USA,

1991,

[9] Korth H. F., Silberschatz A., Database Systems

Concepts, McGraw-Hill, 1986,

[10] Morzy T., Zakrzewicz M., SQL-Like Language For

Database Mining, ADBIS’97 Symposium, St.

Petersburg, September 1997,

[11] O’Neil P., Graefe G., Multi-Table Joins Through

Bitmapped Join Indices, SIGMOD Record, September,

1995,

[12] O’Neil P., Model 204 Architecture and Performance,

Springer-Verlag Lecture Notes in Computer Science

359, 2nd Int. Workshop on High Performance

Transactions Systems (HTPS), Asilomar, CA, 1987,

[13] O’Neil P., Quass D., Improved Query Performance

with Variant Indexes, Proc. Of the 1997 ACM

SIGMOD, Tucson, Arizona, 1997,

[14] Piatetsky-Shapiro G., Frawley W.J., editors,

Knowledge Discovery in Databases, MIT Press, 1991,

[15] Salza S., Morzy T., Matysiak M., Tabu Search

Optimization of Large Join Queries, Proc. of 4th Int.

Conf. EDBT’94, Cambridge (UK), 1994,

[16] Savasere A., Omiecinski E., Navathe S., An Efficient

Algorithm for Mining Association Rules in Large

Databases, Proc. of the 21st VLDB Conference, Zurich,

Swizerland, 1995,

[17] Shapiro L. D., Join processing in database systems

with large memories, ACM Trans. Database Syst., Vol.

11, No. 3, 1986

[18] Srikant R., Agrawal R., Mining Generalized

Association Rules, Proc. of the 21st VLDB Conf.,

Swizerland, 1995,

[19] Toivonnen H., Sampling Large Databases for

Association Rules, Proc. of the 22nd VLDB Conf.,

India, 1996,

