
Data Mining Query Scheduling  
for Apriori Common Counting∗ 

Marek Wojciechowski, Maciej Zakrzewicz 

Poznan University of Technology 
Institute of Computing Science 

ul. Piotrowo 3a, 60-965 Poznan, Poland 
{marek, mzakrz}@cs.put.poznan.pl 

Abstract. In this paper we consider concurrent execution of multiple data 
mining queries. If such data mining queries operate on similar parts of the 
database, then their overall I/O cost can be reduced by integrating their data 
retrieval operations. The integration requires that many data mining queries 
are present in memory at the same time. If the memory size is not sufficient to 
hold all the data mining queries, then the queries must be scheduled into 
multiple phases of loading and processing. We discuss the problem of data 
mining query scheduling and propose a heuristic algorithm to efficiently 
schedule the data mining queries into phases.  
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1. Introduction 

Data mining is a database research field that aims at the discovery of trends, 
patterns and regularities in very large databases. We are currently witnessing the 
evolution of data mining environments towards their full integration with DBMS 
functionality. In this context, data mining is considered to be an advanced form of 
database querying, where users formulate declarative data mining queries, which are 
then optimized and executed by one of data mining algorithms built into the DBMS. 
One of the most significant issues in data mining query processing is long execution 
time, ranging from minutes to hours. 

One of the most popular pattern types discovered by data mining queries are 
frequent itemsets. Frequent itemsets describe co-occurrences of individual items in 
sets of items stored in the database. An example of a frequent itemset can be a 
collection of products that customers typically purchase together during their visits 
to a supermarket. Such frequent itemset can be discovered in the database of 
customer shopping baskets. Frequent itemsets are usually discovered using level-
wise algorithms, which divide the problem into multiple iterations of database 
scanning and counting occurrences of candidate itemsets of equal size. 

Due to long execution times, data mining queries are often performed in a batch 
mode, where users submit sets of data mining queries to be executed during low 
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database activity time (e.g., night time). It is likely that the batches contain data 
mining queries that operate on similar parts of the database. If such queries are 
executed separately, the same parts of the database are retrieved multiple times. We 
could reduce the overall I/O activity of the batch of data mining queries if we 
integrated their data retrieval operations on the same portions of the database. 

For a system with unlimited memory, the integration of execution of multiple 
data mining queries consists in common counting [14][15] of candidate itemsets for 
all the queries so that every portion of the database needs to be read only once per 
iteration. However, if the memory is limited, we are not able to keep all candidate 
itemsets of all the data mining queries in the memory at the same time. The whole 
process must then be split into multiple phases of loading and counting the 
candidates, and therefore the data mining queries must be divided into subsets to be 
executed in each phase. We refer to the problem of dividing the data mining into 
subsets as to the data mining query scheduling. 

In this paper we discuss the problem of data mining query scheduling and we 
introduce a heuristic algorithm to perform the scheduling for a system with limited 
memory. The goal of the algorithm is to schedule the data mining queries in such a 
way that the overall I/O cost for the whole batch is minimized.  

1.1. Related Work 

The problem of mining association rules was first introduced in [1] and an 
algorithm called AIS was proposed. In [2], two new algorithms were presented, 
called Apriori and AprioriTid that are fundamentally different from the previous 
ones. The algorithms achieved significant improvements over AIS and became the 
core of many new algorithms for mining association rules. Apriori and its variants 
first generate all frequent itemsets (sets of items appearing together in a number of 
database records meeting the user-specified support threshold) and then use them to 
generate rules. Apriori and its variants rely on the property that an itemset can only 
be frequent if all of its subsets are frequent. It leads to a level-wise procedure. First, 
all possible 1-itemsets (itemsets containing 1 item) are counted in the database to 
determine frequent 1-itemsets. Then, frequent 1-itemsets are combined to form 
potentially frequent 2-itemsets, called candidate 2-itemsets. Candidate 2-itemsets are 
counted in the database to determine frequent 2-itemsets. The procedure is continued 
by combining the frequent 2-itemsets to form candidate 3-itemsets and so forth. A 
disadvantage of the algorithm is that it requires K or K+1 passes over the database to 
discover all frequent itemsets, where K is the size of the greatest frequent itemset 
found.  

In [4], an algorithm called FUP (Fast Update Algorithm) was proposed for 
finding the frequent itemsets in the expanded database using the old frequent 
itemsets. The major idea of FUP algorithm is to reuse the information of the old 
frequent itemsets and to integrate the support information of the new frequent 
itemsets in order to reduce the pool of candidate itemsets to be re-examined. 
Another approach to incremental mining of frequent itemsets was presented in [11]. 
The algorithm introduced there required only one database pass and was applicable 
not only for expanded but also for reduced database. Along with the itemsets, a 
negative border [12] was maintained. 



In [10] the issue of interactive mining of association rules was addressed and the 
concept of knowledge cache was introduced. The cache was designed to hold 
frequent itemsets that were discovered while processing other queries. Several cache 
management schemas were proposed and their integration with the Apriori 
algorithm was analyzed. An important contribution was an algorithm that used 
itemsets discovered for higher support thresholds in the discovery process for the 
same task, but with a lower support threshold. 

The notion of data mining queries (or KDD queries) was introduced in [6]. The 
need for Knowledge and Data Management Systems (KDDMS) as second-
generation data mining tools was expressed. The ideas of application programming 
interfaces and data mining query optimizers were also mentioned. Several data 
mining query languages that are extensions of SQL were proposed [3][5][7][8][9]. 

2. Basic Definitions and Problem Formulation 

Definition. Frequent itemsets.  
Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items 

T be called an itemset. Let D be a set of variable length itemsets, where each itemset 
T⊆L. We say that an itemset T supports an item x∈L if x is in T. We say that an 
itemset T supports an itemset X⊆L if T supports every item in the set X. The support 
of the itemset X is the percentage of T in D that support X. The problem of mining 
frequent itemsets in D consists in discovering all itemsets whose support is above a 
user-defined support threshold.  
 
Definition. Apriori algorithm.  

Apriori is an example of a level-wise algorithm for association discovery. It 
makes multiple passes over the input data to determine all frequent itemsets. Let Lk 
denote the set of  frequent itemsets of size k and let Ck denote the set of candidate 
itemsets of size k. Before making the k-th pass, Apriori generates Ck using Lk-1. Its 
candidate generation process ensures that all subsets of size k-1 of Ck are all 
members of the set Lk-1. In the k-th pass, it then counts the support for all the 
itemsets in Ck. At the end of the pass all itemsets in Ck with a support greater than or 
equal to the minimum support form the set of frequent itemsets Lk. Figure 1 provides 
the pseudocode for the general level-wise algorithm, and its Apriori implementation. 
The subset(t, k) function gives all the subsets of size k in the set t.  

This method of pruning the Ck set using Lk-1 results in a much more efficient 
support counting phase for Apriori when compared to the earlier algorithms. In 
addition, the usage of a hash-tree data structure for storing the candidates provides a 
very efficient support-counting process. 

 



C1 = {all 1-itemsets from D} 
for (k=1; Ck ≠ ∅; k++) do 
begin 
    count(Ck, D); 
    Lk = {c ∈ Ck | c.count ≥ minsup}; 
    Ck+1 = generate_candidates(Lk); 
end; 
Answer = UkLk; 
 

L1 = {frequent 1-itemsets} 
for (k = 2; Lk-1 ≠ ∅; k++) do 
begin 
    Ck = generate_candidates(Lk-1); 
    forall tuples t ∈ D do 
    begin 
        Ct=Ck ∩ subset(t, k); 
        forall candidates c ∈ Ct do 
            c.count++; 
    end; 
    Lk = {c ∈ Ck | c.count ≥ minsup} 
end; 
Answer = UkLk; 

Figure 1.  A general level-wise algorithm for association discovery (left) and its Apriori implementation 
(right). 

Definition. Data mining query 
A data mining query is a tuple (R, a, Σ, Φ, β), where R is a database relation, a is 

an attribute of R, Σ is a selection predicate on R, Φ is a selection predicate on 
frequent itemsets, β is the minimum support for the frequent itemsets.  

 
Example. Given is the database relation R1(attr1, attr2). The data mining query dmq1 
= (R1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering 
frequent itemsets in the set-valued attribute attr2 of the relation R1. The frequent 
itemsets with support above 3 and length less than 4 are discovered in records 
having attr1>5. 

 
Definition. Multiple data mining query optimization 

Given is a set of data mining queries DMQ={dmq1, dmq2, ..., dmqn}, where 
dmqi=(R, a, Σi, Φi, βi), Σi is of the form “(li1min<a<li1max) ∨  (li2min<a<li2max) ∨..∨ 
(likmin<a<likmax)”, and there are at least two data mining queries dmqi=(Ri, a, Σi, Φi, 
βi) and dmqj=(R, a, Σj, Φj, βj) such that σΣiR∩σΣjR ≠∅. The problem of multiple 
data mining query optimization is to generate an algorithm to execute DMQ with the 
minimal I/O cost. 

 
Definition. Data sharing graph 

Let S={s1, s2 ,..., sk} be a set of elementary data selection predicates for DMQ, i.e. 
selection predicates over the attribute a or the relation R such that for all i,j we have 
σsiR∩σsjR =∅ and for each i there exist integers a, b, ..., m such that 
σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2). A graph DSG=(V,E) is called a data 
sharing graph for the set of data mining queries DMQ iff V=DMQ∪S, E={(dmqi,sj)| 
dmqj∈DMQ, sj∈S, σΣiR∩σsjR≠∅}.  
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Figure 2.  Example set of data mining queries and their elementary data selection predicates. 

Example. Given is the relation R1=(attr1, attr2) and three data mining queries: 
dmq1=(R1, "attr2", "5 < attr1 < 20", ∅, 3), dmq2=(R1, "attr2", "10 < attr1 < 30", ∅, 
5), dmq3=(R1, "attr2", "15 <  attr1 <40", ∅, 4). The set of elementary data selection 
predicates is then S={s1=”5<attr1<10”, s2=”10<attr1<15”, s3=”15<attr1<20”, 
s4=”20<attr1<30”, s5= ”30<attr1<40”}. The data sharing graph for {dmq1, dmq2, 
dmq3} is shown in Fig. 3. 
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Figure 3.  Example data sharing graph. 

Definition. Apriori Common Counting 
A straightforward way to perform multiple data mining query optimization is 

Apriori Common Counting algorithm. The algorithm proceeds as follows. In the first 
step, Apriori Common Counting constructs separate candidate 1-itemset hash trees 
(in memory) for each data mining query. Next, all database partitions corresponding 
to the elementary selection predicates are scanned and the candidate itemsets for the 
appropriate data mining queries are counted. This process is repeated for each 
iteration: for candidate 2-itemsets, candidate 3-itemsets, etc. Notice that if a given 
elementary selection predicate is shared by multiple data mining queries, then the 



specific part of the database needs to be read only once (per iteration). This property 
helps reduce the overall I/O cost of batched data mining query execution. The idea 
of Apriori Common Counting algorithms is depicted in Fig. 4.  

 
for (i=1; i<=n; i++)   /* n = number of data mining queries */ 
  C1

i = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E}  /* generate 1-candidates */ 
for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin 
   for each sj∈S do begin       
      CC= UCk

l: (dmql,sj)∈E; /* select the candidates to count now */ 
      if CC≠ ∅ then count(CC, σsjR); 
   end 
   for (i=1; i<=n; i++) do begin 
     Lk

i = {c ∈ Ck
i | c.count ≥ minsupi};  /* identify frequent itemsets */ 

     Ck+1
i = generate_candidates(Lk

i);  
end 

    end 
for (i=1; i<=n; i++) do 
   Answeri = UkLk

i;  /* generate responses */ 
 

Figure 4.  Apriori Common Counting. 

3. Data Mining Query Scheduling 

The basic Apriori Common Counting described in the previous section assumes 
unlimited memory for its operation. However, if the memory is limited, then it is not 
possible to construct candidate hash trees for all the data mining queries. The whole 
algorithm must then be split into multiple phases and every phase must consist in 
executing a subset of the data mining queries. The key problem is which data mining 
queries should be performed in the same phase and which of them can be performed 
in separate phases. The task of dividing the set of data mining queries into subsets is 
referred to as data mining query scheduling.  

There are several aspects to consider when designing a data mining query 
scheduling algorithm. Firstly, it is obvious that system memory size restricts the 
number of data mining queries that may be processed in the same phase. Memory 
requirements for the data mining queries are based on sizes of their candidate hash 
trees, which in turn depend on data characteristics and the specific iteration of the 
algorithm (typically, sizes of candidate hash trees systematically reduce for 
iterations 3, 4, etc.). Since the candidate hash tree sizes change in each iteration, the 
data mining query scheduling algorithm should be used before generating every new 
tree, not only at the beginning of the data mining query processing. Another aspect 
is that the goal of Apriori Common Counting is to reduce the overall I/O activity. 
Therefore, similarities between data mining queries should be taken into account 
when putting data mining queries into the same phase. Data mining queries that 
operate on separate portions of the database can be processed in separate phases, 
while data mining queries that operate on highly overlapping database portions 
should be executed in the same phase. To measure the “overlapping” between data 



mining queries one can rely on a traditional DBMS query optimizer, which 
estimates predicate costs based on database statistics. 

In order to schedule data mining queries, the sizes of their candidate hash trees 
must be known. There are two options to derive the size. The first option is to 
calculate the upper bounds on the candidate hash trees and use the upper bounds in 
the scheduling algorithm. The upper bounds can be evaluated based on the number 
of frequent itemsets discovered in the previous iteration. A disadvantage of this 
approach is that the real candidate hash trees are smaller than the estimates, so the 
scheduling algorithm is likely to miss the optimal solution. The second option is to 
generate the candidate hash trees first, measure their sizes save them in temporary 
files, perform the scheduling and then retrieve the appropriate trees from the files 
while performing the phases. The main advantage of this approach is that the 
scheduling algorithm operates on the exact sizes of the trees, and therefore it is able 
to find the optimal solution. However, the additional I/O cost is introduced because 
of the need to temporarily store the candidate hash trees on disk. Nevertheless, when 
dealing with very large databases (in case of which candidate tree sizes are by 
several orders of magnitude smaller than the database) that extra cost is going to be 
compensated by reduction of database reads thanks to Common Counting. 

Let us consider an example of data mining query scheduling based on our 
previous set of data mining queries from Fig. 3. Let cost(s) be the I/O cost of 
retrieving database records that satisfy the data selection predicate s. Let 
treesize(dmq,k) be the k-item candidate hash tree size for the data mining query dmq. 
Sample costs and tree sizes (e.g. for the third Apriori iteration) are given in the table 
below. Let us assume the system memory limit of 10MB, meaning that at most two 
of the data mining queries can fit in at a time (i.e. in one phase). 

 
si cost(si) 
5<attr1<10 5000 
10<attr1<15 7000 
15<attr1<20 2000 
20<attr1<30 2000 
30<attr1<40 1000  

dmqi treesize(dmqi,3) 
dmq1 4M 
dmq2 5M 
dmq3 3M  

 
There exist four different schedules that satisfy the given constraints. The 

schedules and the total costs of executing the sample set of data mining queries are 
given below. The Schedule A represents a sequential execution of all the data mining 
queries. One can notice that the optimal solution is the Schedule B, which reduces 
the overall cost by 30%. This schedule has been also depicted in Fig. 5. 

 
Schedule A 

phase data mining 
queries 

trees size data selection 
predicates 

phase 
cost 

1 dmq1 4M s1, s2, s3 14,000 
2 dmq2 5M s2, s3, s4 11,000 
3 dmq3 3M s3, s4, s5   5,000 
total cost   30,000 

 



Schedule B 
phase data mining 

queries 
trees size data selection 

predicates 
phase 

cost 
1 dmq1, dmq2 9M s1, s2, s3, s4 16,000 
2 dmq3 3M s3, s4, s5   5,000 
total cost   21,000 

 
Schedule C 

phase data mining 
queries 

trees size data selection 
predicates 

phase 
cost 

1 dmq1, dmq3 7M s1, s2, s3, s4, s5 17,000 
2 dmq2 5M s2, s3, s4 11,000 
total cost   28,000 

 
Schedule D 

phase data mining 
queries 

trees size data selection 
predicates 

phase 
cost 

1 dmq2, dmq3 8M s2, s3, s4, s5 12,000 
2 dmq1 4M s1, s2, s3 14,000 
total cost   26,000 
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Figure 5.  The optimal schedule for the sample set of data mining queries. 

The data mining query scheduling problem can be solved using a combinatorial 
approach, in which all possible (allowable) schedules are generated first, and then 
their overall costs are calculated. The combinatorial approach can be suitable for a 
small number of data mining queries in the set, however, for complex problems, 
involving large numbers of data mining queries, the overhead of the approach would 
be unacceptable. For a given number of data mining queries, the number of all 
possible schedules is determined by Bell number – e.g. for 13 queries the number of 
schedules exceeds 4 millions. Therefore we introduce a heuristic algorithm for 
finding suboptimal schedules for executing a set of data mining queries. 



3.1. Heuristic Scheduling Algorithm: CCRecursive 

The algorithm iterates over all the elementary selection predicates, sorted in 
descending order with respect to their I/O costs. For each elementary selection 
predicate we identify all the data mining queries that include the predicate. If none 
of the identified queries has been already scheduled, then we create a new phase and 
we put all the queries into the new phase. Otherwise, we merge the phases to which 
the scheduled queries belonged and we assign the other queries to this new phase. If 
the size of the newly created phase exceeds the memory limit, then the phase is split 
into smaller ones by recursive execution of the algorithm. At the end of the 
algorithm, we perform phase compression, which consists in merging those phases 
that do not consume all the available memory. The detailed structure of the 
algorithm is given in Fig. 6. The auxiliary function treesize(Q), where Q is a set of 
data mining queries, represents total memory size required to hold candidate hash 
trees for all the data mining queries in Q. 

 
Phases ← {∅}  
sort S = <si , s2 ,..., sk> in descending order with respect to cost(si) 
CCRecursive(S, DMQ, Phases): 
begin 

  ignore in S those predicates that are used by less than two dmqs 
  for each si in S do begin 
    tmpDMQ ← { dmqj | dmqj =(R, a, Σj, Φj, βj), si ⊆Σj , dmqj ∈ DMQ} 
    commonPhases ← {p ∈ Phases | p∩ tmpDMQ  ≠ ∅}  
    if  commonPhases = ∅ then 
      newPhase ← tmpDMQ 
    else  
      newPhase ← tmpDMQ ∪ U p| p∈ commonPhases  
    end if 
    if treesize(newPhase) ≤ MEMSIZE then  

Phases ← Phases \  commonPhases  
Phases ← Phases ∪ newPhase 

    else 

    Phases ← CCRecursive(<si+1, … sk>, newPhase, Phases) 
    end if  

  end 
  add phase for each unscheduled query 
  compress Phases containing queries from DMQ 
  return Phases 
end 

 

Figure 6. Heuristic scheduling algorithm: CCRecursive. 



4. Experimental Evaluation 

To evaluate our heuristic algorithm CCRecursive we performed a series of 
simulations on a PC with AMD Duron 1200 MHz processor and 256 MB of main 
memory. We focused on the isolated problem of scheduling queries into phases 
fitting in main memory in a given iteration of Common Counting. We compared the 
amount of data read from the database by our heuristic algorithm and the complete 
“brute-force” algorithm testing all possible assignments of queries to phases.  

We simulated actual batches of frequent set discovery tasks by randomly 
generating a collection of queries. For each query, the database selection predicate 
and the size of candidate tree was randomly generated. Then the amount of total 
main memory was also randomly chosen in such a way that a number of queries 
fitting into it ranged from one query to all the queries.  

We performed 10 series of experiments for the number of queries ranging from 3 
to 12. Each of the series consisted of 100 simulations. Figure 7 presents how the 
accuracy of our heuristic algorithm changes with the number of queries. To assess 
the accuracy we measured the relative amount of data read from the database by 
schedules generated by our heuristics compared to the optimal schedules (generated 
by the complete brute-force scheduling algorithm). For example, in the case of 11 
queries, CCRecursive generates schedules that read on average about 3.5% more 
data than the optimal schedules. 
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Figure 8 presents the execution times (times needed to generate schedules) of 

CCRecursive and the brute-force algorithm. Although CCRecursive still scales 
exponentially with the number of queries, its execution time increases less rapidly 



than in case of the brute-force solution. For instance, the brute-force algorithm 
consumes more than 1000 s already for 12 queries, while CCRecursive exceeds that 
threshold in case of 22 queries (the chart presents the times for up to 15 queries).  
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The results of conducted experiments show that CCRecursive significantly 

outperforms the brute-force solution (with the exception of cases with 3 and 4 
queries when execution times of both algorithms are negligible), which makes it 
applicable for larger batches of data mining queries. We believe that the accuracy of 
our heuristics (shown in Fig. 7) is acceptable. However, it should be noted that the 
actual trade-off between extra disk accesses (introduced by the heuristics) and 
reduction in the scheduling time cannot be assessed without knowing the database 
size and hardware parameters.  

5. Concluding Remarks 

In this paper we addressed the problem of common counting of candidate itemsets 
for multiple data mining queries. We have formally defined the problem of data 
mining query scheduling, which consists in splitting the set of data mining queries 
into subsets (phases) such that the candidate hash trees can fit in limited memory 
and the overall I/O cost is minimized.  

Since the number of possible schedules growth rapidly with the number of 
queries, we proposed a heuristic scheduling algorithm, called CCRecursive. The 
experiments show that our heuristics generates schedules that are close to optimal 
and is more efficient than the brute-force solution and thus applicable for much 
greater number of queries. 
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