
Data Mining Query Scheduling
for Apriori Common Counting∗

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{marek, mzakrz}@cs.put.poznan.pl

Abstract. In this paper we consider concurrent execution of multiple data
mining queries. If such data mining queries operate on similar parts of the
database, then their overall I/O cost can be reduced by integrating their data
retrieval operations. The integration requires that many data mining queries
are present in memory at the same time. If the memory size is not sufficient to
hold all the data mining queries, then the queries must be scheduled into
multiple phases of loading and processing. We discuss the problem of data
mining query scheduling and propose a heuristic algorithm to efficiently
schedule the data mining queries into phases.

Keywords. Data mining, data mining queries

1. Introduction

Data mining is a database research field that aims at the discovery of trends,
patterns and regularities in very large databases. We are currently witnessing the
evolution of data mining environments towards their full integration with DBMS
functionality. In this context, data mining is considered to be an advanced form of
database querying, where users formulate declarative data mining queries, which are
then optimized and executed by one of data mining algorithms built into the DBMS.
One of the most significant issues in data mining query processing is long execution
time, ranging from minutes to hours.

One of the most popular pattern types discovered by data mining queries are
frequent itemsets. Frequent itemsets describe co-occurrences of individual items in
sets of items stored in the database. An example of a frequent itemset can be a
collection of products that customers typically purchase together during their visits
to a supermarket. Such frequent itemset can be discovered in the database of
customer shopping baskets. Frequent itemsets are usually discovered using level-
wise algorithms, which divide the problem into multiple iterations of database
scanning and counting occurrences of candidate itemsets of equal size.

Due to long execution times, data mining queries are often performed in a batch
mode, where users submit sets of data mining queries to be executed during low

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee
for Scientific Research (KBN), Poland.

database activity time (e.g., night time). It is likely that the batches contain data
mining queries that operate on similar parts of the database. If such queries are
executed separately, the same parts of the database are retrieved multiple times. We
could reduce the overall I/O activity of the batch of data mining queries if we
integrated their data retrieval operations on the same portions of the database.

For a system with unlimited memory, the integration of execution of multiple
data mining queries consists in common counting [14][15] of candidate itemsets for
all the queries so that every portion of the database needs to be read only once per
iteration. However, if the memory is limited, we are not able to keep all candidate
itemsets of all the data mining queries in the memory at the same time. The whole
process must then be split into multiple phases of loading and counting the
candidates, and therefore the data mining queries must be divided into subsets to be
executed in each phase. We refer to the problem of dividing the data mining into
subsets as to the data mining query scheduling.

In this paper we discuss the problem of data mining query scheduling and we
introduce a heuristic algorithm to perform the scheduling for a system with limited
memory. The goal of the algorithm is to schedule the data mining queries in such a
way that the overall I/O cost for the whole batch is minimized.

1.1. Related Work

The problem of mining association rules was first introduced in [1] and an
algorithm called AIS was proposed. In [2], two new algorithms were presented,
called Apriori and AprioriTid that are fundamentally different from the previous
ones. The algorithms achieved significant improvements over AIS and became the
core of many new algorithms for mining association rules. Apriori and its variants
first generate all frequent itemsets (sets of items appearing together in a number of
database records meeting the user-specified support threshold) and then use them to
generate rules. Apriori and its variants rely on the property that an itemset can only
be frequent if all of its subsets are frequent. It leads to a level-wise procedure. First,
all possible 1-itemsets (itemsets containing 1 item) are counted in the database to
determine frequent 1-itemsets. Then, frequent 1-itemsets are combined to form
potentially frequent 2-itemsets, called candidate 2-itemsets. Candidate 2-itemsets are
counted in the database to determine frequent 2-itemsets. The procedure is continued
by combining the frequent 2-itemsets to form candidate 3-itemsets and so forth. A
disadvantage of the algorithm is that it requires K or K+1 passes over the database to
discover all frequent itemsets, where K is the size of the greatest frequent itemset
found.

In [4], an algorithm called FUP (Fast Update Algorithm) was proposed for
finding the frequent itemsets in the expanded database using the old frequent
itemsets. The major idea of FUP algorithm is to reuse the information of the old
frequent itemsets and to integrate the support information of the new frequent
itemsets in order to reduce the pool of candidate itemsets to be re-examined.
Another approach to incremental mining of frequent itemsets was presented in [11].
The algorithm introduced there required only one database pass and was applicable
not only for expanded but also for reduced database. Along with the itemsets, a
negative border [12] was maintained.

In [10] the issue of interactive mining of association rules was addressed and the
concept of knowledge cache was introduced. The cache was designed to hold
frequent itemsets that were discovered while processing other queries. Several cache
management schemas were proposed and their integration with the Apriori
algorithm was analyzed. An important contribution was an algorithm that used
itemsets discovered for higher support thresholds in the discovery process for the
same task, but with a lower support threshold.

The notion of data mining queries (or KDD queries) was introduced in [6]. The
need for Knowledge and Data Management Systems (KDDMS) as second-
generation data mining tools was expressed. The ideas of application programming
interfaces and data mining query optimizers were also mentioned. Several data
mining query languages that are extensions of SQL were proposed [3][5][7][8][9].

2. Basic Definitions and Problem Formulation

Definition. Frequent itemsets.
Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items

T be called an itemset. Let D be a set of variable length itemsets, where each itemset
T⊆L. We say that an itemset T supports an item x∈L if x is in T. We say that an
itemset T supports an itemset X⊆L if T supports every item in the set X. The support
of the itemset X is the percentage of T in D that support X. The problem of mining
frequent itemsets in D consists in discovering all itemsets whose support is above a
user-defined support threshold.

Definition. Apriori algorithm.

Apriori is an example of a level-wise algorithm for association discovery. It
makes multiple passes over the input data to determine all frequent itemsets. Let Lk
denote the set of frequent itemsets of size k and let Ck denote the set of candidate
itemsets of size k. Before making the k-th pass, Apriori generates Ck using Lk-1. Its
candidate generation process ensures that all subsets of size k-1 of Ck are all
members of the set Lk-1. In the k-th pass, it then counts the support for all the
itemsets in Ck. At the end of the pass all itemsets in Ck with a support greater than or
equal to the minimum support form the set of frequent itemsets Lk. Figure 1 provides
the pseudocode for the general level-wise algorithm, and its Apriori implementation.
The subset(t, k) function gives all the subsets of size k in the set t.

This method of pruning the Ck set using Lk-1 results in a much more efficient
support counting phase for Apriori when compared to the earlier algorithms. In
addition, the usage of a hash-tree data structure for storing the candidates provides a
very efficient support-counting process.

C1 = {all 1-itemsets from D}
for (k=1; Ck ≠ ∅; k++) do
begin
 count(Ck, D);
 Lk = {c ∈ Ck | c.count ≥ minsup};
 Ck+1 = generate_candidates(Lk);
end;
Answer = UkLk;

L1 = {frequent 1-itemsets}
for (k = 2; Lk-1 ≠ ∅; k++) do
begin
 Ck = generate_candidates(Lk-1);
 forall tuples t ∈ D do
 begin
 Ct=Ck ∩ subset(t, k);
 forall candidates c ∈ Ct do
 c.count++;
 end;
 Lk = {c ∈ Ck | c.count ≥ minsup}
end;
Answer = UkLk;

Figure 1. A general level-wise algorithm for association discovery (left) and its Apriori implementation
(right).

Definition. Data mining query
A data mining query is a tuple (R, a, Σ, Φ, β), where R is a database relation, a is

an attribute of R, Σ is a selection predicate on R, Φ is a selection predicate on
frequent itemsets, β is the minimum support for the frequent itemsets.

Example. Given is the database relation R1(attr1, attr2). The data mining query dmq1
= (R1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering
frequent itemsets in the set-valued attribute attr2 of the relation R1. The frequent
itemsets with support above 3 and length less than 4 are discovered in records
having attr1>5.

Definition. Multiple data mining query optimization

Given is a set of data mining queries DMQ={dmq1, dmq2, ..., dmqn}, where
dmqi=(R, a, Σi, Φi, βi), Σi is of the form “(li1min<a<li1max) ∨ (li2min<a<li2max) ∨..∨
(likmin<a<likmax)”, and there are at least two data mining queries dmqi=(Ri, a, Σi, Φi,
βi) and dmqj=(R, a, Σj, Φj, βj) such that σΣiR∩σΣjR ≠∅. The problem of multiple
data mining query optimization is to generate an algorithm to execute DMQ with the
minimal I/O cost.

Definition. Data sharing graph

Let S={s1, s2 ,..., sk} be a set of elementary data selection predicates for DMQ, i.e.
selection predicates over the attribute a or the relation R such that for all i,j we have
σsiR∩σsjR =∅ and for each i there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2). A graph DSG=(V,E) is called a data
sharing graph for the set of data mining queries DMQ iff V=DMQ∪S, E={(dmqi,sj)|
dmqj∈DMQ, sj∈S, σΣiR∩σsjR≠∅}.

dmq1

dmq2

l1
1min l1

1max l1
2min l1

2max

l2
1min l21max

R

s1

s2

s3

s4

s5

S

Figure 2. Example set of data mining queries and their elementary data selection predicates.

Example. Given is the relation R1=(attr1, attr2) and three data mining queries:
dmq1=(R1, "attr2", "5 < attr1 < 20", ∅, 3), dmq2=(R1, "attr2", "10 < attr1 < 30", ∅,
5), dmq3=(R1, "attr2", "15 < attr1 <40", ∅, 4). The set of elementary data selection
predicates is then S={s1=”5<attr1<10”, s2=”10<attr1<15”, s3=”15<attr1<20”,
s4=”20<attr1<30”, s5= ”30<attr1<40”}. The data sharing graph for {dmq1, dmq2,
dmq3} is shown in Fig. 3.

dmq1

dmq2

dmq3

5<attr1<10

10<attr1<15 20<attr1<30

30<attr1<40

data selection
predicate node

data mining
query node

15<attr1<20

Figure 3. Example data sharing graph.

Definition. Apriori Common Counting
A straightforward way to perform multiple data mining query optimization is

Apriori Common Counting algorithm. The algorithm proceeds as follows. In the first
step, Apriori Common Counting constructs separate candidate 1-itemset hash trees
(in memory) for each data mining query. Next, all database partitions corresponding
to the elementary selection predicates are scanned and the candidate itemsets for the
appropriate data mining queries are counted. This process is repeated for each
iteration: for candidate 2-itemsets, candidate 3-itemsets, etc. Notice that if a given
elementary selection predicate is shared by multiple data mining queries, then the

specific part of the database needs to be read only once (per iteration). This property
helps reduce the overall I/O cost of batched data mining query execution. The idea
of Apriori Common Counting algorithms is depicted in Fig. 4.

for (i=1; i<=n; i++) /* n = number of data mining queries */
 C1

i = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E} /* generate 1-candidates */
for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin
 for each sj∈S do begin
 CC= UCk

l: (dmql,sj)∈E; /* select the candidates to count now */
 if CC≠ ∅ then count(CC, σsjR);
 end
 for (i=1; i<=n; i++) do begin
 Lk

i = {c ∈ Ck
i | c.count ≥ minsupi}; /* identify frequent itemsets */

 Ck+1
i = generate_candidates(Lk

i);
end

 end
for (i=1; i<=n; i++) do
 Answeri = UkLk

i; /* generate responses */

Figure 4. Apriori Common Counting.

3. Data Mining Query Scheduling

The basic Apriori Common Counting described in the previous section assumes
unlimited memory for its operation. However, if the memory is limited, then it is not
possible to construct candidate hash trees for all the data mining queries. The whole
algorithm must then be split into multiple phases and every phase must consist in
executing a subset of the data mining queries. The key problem is which data mining
queries should be performed in the same phase and which of them can be performed
in separate phases. The task of dividing the set of data mining queries into subsets is
referred to as data mining query scheduling.

There are several aspects to consider when designing a data mining query
scheduling algorithm. Firstly, it is obvious that system memory size restricts the
number of data mining queries that may be processed in the same phase. Memory
requirements for the data mining queries are based on sizes of their candidate hash
trees, which in turn depend on data characteristics and the specific iteration of the
algorithm (typically, sizes of candidate hash trees systematically reduce for
iterations 3, 4, etc.). Since the candidate hash tree sizes change in each iteration, the
data mining query scheduling algorithm should be used before generating every new
tree, not only at the beginning of the data mining query processing. Another aspect
is that the goal of Apriori Common Counting is to reduce the overall I/O activity.
Therefore, similarities between data mining queries should be taken into account
when putting data mining queries into the same phase. Data mining queries that
operate on separate portions of the database can be processed in separate phases,
while data mining queries that operate on highly overlapping database portions
should be executed in the same phase. To measure the “overlapping” between data

mining queries one can rely on a traditional DBMS query optimizer, which
estimates predicate costs based on database statistics.

In order to schedule data mining queries, the sizes of their candidate hash trees
must be known. There are two options to derive the size. The first option is to
calculate the upper bounds on the candidate hash trees and use the upper bounds in
the scheduling algorithm. The upper bounds can be evaluated based on the number
of frequent itemsets discovered in the previous iteration. A disadvantage of this
approach is that the real candidate hash trees are smaller than the estimates, so the
scheduling algorithm is likely to miss the optimal solution. The second option is to
generate the candidate hash trees first, measure their sizes save them in temporary
files, perform the scheduling and then retrieve the appropriate trees from the files
while performing the phases. The main advantage of this approach is that the
scheduling algorithm operates on the exact sizes of the trees, and therefore it is able
to find the optimal solution. However, the additional I/O cost is introduced because
of the need to temporarily store the candidate hash trees on disk. Nevertheless, when
dealing with very large databases (in case of which candidate tree sizes are by
several orders of magnitude smaller than the database) that extra cost is going to be
compensated by reduction of database reads thanks to Common Counting.

Let us consider an example of data mining query scheduling based on our
previous set of data mining queries from Fig. 3. Let cost(s) be the I/O cost of
retrieving database records that satisfy the data selection predicate s. Let
treesize(dmq,k) be the k-item candidate hash tree size for the data mining query dmq.
Sample costs and tree sizes (e.g. for the third Apriori iteration) are given in the table
below. Let us assume the system memory limit of 10MB, meaning that at most two
of the data mining queries can fit in at a time (i.e. in one phase).

si cost(si)
5<attr1<10 5000
10<attr1<15 7000
15<attr1<20 2000
20<attr1<30 2000
30<attr1<40 1000

dmqi treesize(dmqi,3)
dmq1 4M
dmq2 5M
dmq3 3M

There exist four different schedules that satisfy the given constraints. The

schedules and the total costs of executing the sample set of data mining queries are
given below. The Schedule A represents a sequential execution of all the data mining
queries. One can notice that the optimal solution is the Schedule B, which reduces
the overall cost by 30%. This schedule has been also depicted in Fig. 5.

Schedule A

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq1 4M s1, s2, s3 14,000
2 dmq2 5M s2, s3, s4 11,000
3 dmq3 3M s3, s4, s5 5,000
total cost 30,000

Schedule B
phase data mining

queries
trees size data selection

predicates
phase

cost
1 dmq1, dmq2 9M s1, s2, s3, s4 16,000
2 dmq3 3M s3, s4, s5 5,000
total cost 21,000

Schedule C

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq1, dmq3 7M s1, s2, s3, s4, s5 17,000
2 dmq2 5M s2, s3, s4 11,000
total cost 28,000

Schedule D

phase data mining
queries

trees size data selection
predicates

phase
cost

1 dmq2, dmq3 8M s2, s3, s4, s5 12,000
2 dmq1 4M s1, s2, s3 14,000
total cost 26,000

dmq1

dmq3

5<attr1<10

10<attr1<15

15<attr1<20

15<attr1<20

20<attr1<30

30<attr1<40

20<attr1<30 dmq2

Figure 5. The optimal schedule for the sample set of data mining queries.

The data mining query scheduling problem can be solved using a combinatorial
approach, in which all possible (allowable) schedules are generated first, and then
their overall costs are calculated. The combinatorial approach can be suitable for a
small number of data mining queries in the set, however, for complex problems,
involving large numbers of data mining queries, the overhead of the approach would
be unacceptable. For a given number of data mining queries, the number of all
possible schedules is determined by Bell number – e.g. for 13 queries the number of
schedules exceeds 4 millions. Therefore we introduce a heuristic algorithm for
finding suboptimal schedules for executing a set of data mining queries.

3.1. Heuristic Scheduling Algorithm: CCRecursive

The algorithm iterates over all the elementary selection predicates, sorted in
descending order with respect to their I/O costs. For each elementary selection
predicate we identify all the data mining queries that include the predicate. If none
of the identified queries has been already scheduled, then we create a new phase and
we put all the queries into the new phase. Otherwise, we merge the phases to which
the scheduled queries belonged and we assign the other queries to this new phase. If
the size of the newly created phase exceeds the memory limit, then the phase is split
into smaller ones by recursive execution of the algorithm. At the end of the
algorithm, we perform phase compression, which consists in merging those phases
that do not consume all the available memory. The detailed structure of the
algorithm is given in Fig. 6. The auxiliary function treesize(Q), where Q is a set of
data mining queries, represents total memory size required to hold candidate hash
trees for all the data mining queries in Q.

Phases ← {∅}
sort S = <si , s2 ,..., sk> in descending order with respect to cost(si)
CCRecursive(S, DMQ, Phases):
begin

 ignore in S those predicates that are used by less than two dmqs
 for each si in S do begin
 tmpDMQ ← { dmqj | dmqj =(R, a, Σj, Φj, βj), si ⊆Σj , dmqj ∈ DMQ}
 commonPhases ← {p ∈ Phases | p∩ tmpDMQ ≠ ∅}
 if commonPhases = ∅ then
 newPhase ← tmpDMQ
 else
 newPhase ← tmpDMQ ∪ U p| p∈ commonPhases
 end if
 if treesize(newPhase) ≤ MEMSIZE then

Phases ← Phases \ commonPhases
Phases ← Phases ∪ newPhase

 else

 Phases ← CCRecursive(<si+1, … sk>, newPhase, Phases)
 end if

 end
 add phase for each unscheduled query
 compress Phases containing queries from DMQ
 return Phases
end

Figure 6. Heuristic scheduling algorithm: CCRecursive.

4. Experimental Evaluation

To evaluate our heuristic algorithm CCRecursive we performed a series of
simulations on a PC with AMD Duron 1200 MHz processor and 256 MB of main
memory. We focused on the isolated problem of scheduling queries into phases
fitting in main memory in a given iteration of Common Counting. We compared the
amount of data read from the database by our heuristic algorithm and the complete
“brute-force” algorithm testing all possible assignments of queries to phases.

We simulated actual batches of frequent set discovery tasks by randomly
generating a collection of queries. For each query, the database selection predicate
and the size of candidate tree was randomly generated. Then the amount of total
main memory was also randomly chosen in such a way that a number of queries
fitting into it ranged from one query to all the queries.

We performed 10 series of experiments for the number of queries ranging from 3
to 12. Each of the series consisted of 100 simulations. Figure 7 presents how the
accuracy of our heuristic algorithm changes with the number of queries. To assess
the accuracy we measured the relative amount of data read from the database by
schedules generated by our heuristics compared to the optimal schedules (generated
by the complete brute-force scheduling algorithm). For example, in the case of 11
queries, CCRecursive generates schedules that read on average about 3.5% more
data than the optimal schedules.

0,98

0,99

1

1,01

1,02

1,03

1,04

3 4 5 6 7 8 9 10 11

number of queries

nu
m

be
r

of
 d

at
a

bl
oc

ks
 r

ea
d

(r
el

at
iv

e)

CCRecursive

Brute-force

Figure 7. Amounts of data read by CCRecursive schedules and optimal schedules.

Figure 8 presents the execution times (times needed to generate schedules) of

CCRecursive and the brute-force algorithm. Although CCRecursive still scales
exponentially with the number of queries, its execution time increases less rapidly

than in case of the brute-force solution. For instance, the brute-force algorithm
consumes more than 1000 s already for 12 queries, while CCRecursive exceeds that
threshold in case of 22 queries (the chart presents the times for up to 15 queries).

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14 15

number of queries

sc
he

du
lin

g
tim

e
[s

]

CCRecursive

Brute-force

Figure 8. Execution times (logarithmic scale) of CCRecursive and the brute-force scheduling algorithm.

The results of conducted experiments show that CCRecursive significantly

outperforms the brute-force solution (with the exception of cases with 3 and 4
queries when execution times of both algorithms are negligible), which makes it
applicable for larger batches of data mining queries. We believe that the accuracy of
our heuristics (shown in Fig. 7) is acceptable. However, it should be noted that the
actual trade-off between extra disk accesses (introduced by the heuristics) and
reduction in the scheduling time cannot be assessed without knowing the database
size and hardware parameters.

5. Concluding Remarks

In this paper we addressed the problem of common counting of candidate itemsets
for multiple data mining queries. We have formally defined the problem of data
mining query scheduling, which consists in splitting the set of data mining queries
into subsets (phases) such that the candidate hash trees can fit in limited memory
and the overall I/O cost is minimized.

Since the number of possible schedules growth rapidly with the number of
queries, we proposed a heuristic scheduling algorithm, called CCRecursive. The
experiments show that our heuristics generates schedules that are close to optimal
and is more efficient than the brute-force solution and thus applicable for much
greater number of queries.

References

[1] Agrawal R., Imielinski T., Swami A. Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data, 1993.

[2] Agrawal R., Srikant R. Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases, 1994.

[3] Ceri S., Meo R., Psaila G. A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases, 1996.

[4] Cheung D.W., Han J., Ng V., Wong C.Y. Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE, 1996.

[5] Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,
Stefanovic N., Xia B., Zaiane O.R. DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference, 1996.

[6] Imielinski T., Mannila H. A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11, 1996.

[7] Imielinski T., Virmani A., Abdulghani A. Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference, 1996.

[8] Morzy T., Wojciechowski M., Zakrzewicz M. Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference, 2000.

[9] Morzy T., Zakrzewicz M. SQL-like Language for Database Mining. ADBIS’97
Symposium, 1997.

[10] Nag B., Deshpande P.M., DeWitt D.J. Using a Knowledge Cache for Interactive
Discovery of Association Rules. Proc. of the 5th KDD Conference, 1999.

[11] Thomas S., Bodagala S., Alsabti K., Ranka S. An Efficient Algorithm for the
Incremental Updation of Association Rules in Large Databases. Proc. of the 3rd KDD
Conference, 1997.

[12] Toivonen H. Sampling Large Databases for Association Rules. Proc. of the 22nd Int’l
Conference on Very Large Data Bases, 1996.

[13] Wojciechowski M., Zakrzewicz M. Itemset Materializing for Fast Mining of Association
Rules. Proc. of the 2nd ADBIS Conference, 1998.

[14] Wojciechowski M., Zakrzewicz M. Methods for Batch Processing of Data Mining
Queries. Proc. of the 5th International Baltic Conference on Databases and Information
Systems, 2002.

[15] Wojciechowski M., Zakrzewicz M. Evaluation of Common Counting Method for
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference, 2003.

