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Abstract: Data mining is a useful decision support technique, which can be used to find 
trends and regularities in warehouses of corporate data. A serious problem of 
its practical applications is long processing time required by data mining 
algorithms. Current systems consume minutes or hours to answer single 
requests, while typically batches of the requests are delivered the systems. In 
this paper we present the problem of batch processing of data mining requests. 
We introduce methods that analyze similarities between separate requests to 
reduce the processing cost. We also perform a comparative performance 
analysis of the proposed methods. 
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1. INTRODUCTION 

1 

Data mining, also referred to as database mining or knowledge discovery 
in databases (KDD), aims at discovery of useful patterns from large 
databases or warehouses [1][2][4][6][10][11][12]. Currently we are 
observing the evolution of data mining environments from specialized tools 
to multi-purpose data mining systems offering some level of integration with 
existing database management systems. From a user’s point of view data 
mining can be seen as advanced querying: a user specifies the source data set 
and the requested class of patterns, the system chooses the right data mining 
algorithm and returns discovered patterns to the user [3][5][7][8][9]. The 
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most serious problem concerning data mining queries is a long response 
time. Current systems consume minutes or hours to answer single queries.  

Data mining applications typically execute data mining queries during 
nights, when system activity is low. Sets of data mining queries are 
scheduled and then automatically evaluated by a data mining system. It is 
possible that the data mining queries delivered to the system are somehow 
similar, eg. their source data sets overlap. Unfortunately, none of the 
proposed data mining algorithms tried to employ such similarity of data 
mining requests to reduce their processing cost. 

In this paper we present the problem of batch processing of data mining 
queries. We describe and analyze three methods of executing batches of data 
mining queries in a more efficient way. We illustrate our methods with many 
examples expressed in MineSQL, which is a declarative, multi-purpose SQL-
like language for interactive and iterative data mining in relational databases, 
developed by us over the last couple of years [8][9].  

1.1 Basic Definitions 

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. 
Let a non-empty set of items T be called an itemset. Let D be a set of 
variable length itemsets, where each itemset T⊆L. We say that an itemset T 
supports an item x∈L if x is in T. We say that an itemset T supports an 
itemset X⊆L if T supports every item in the set X. The support of the itemset 
X is the percentage of T in D that support X. The problem of mining frequent 
itemsets in D consists in discovering all itemsets whose support is above a 
user-defined support threshold.  

Apriori algorithm. Apriori is an example of a level-wise algorithm for 
association discovery. It makes multiple passes over the input data to 
determine all frequent itemsets. Let Lk denote the set of  frequent itemsets of 
size k and let Ck denote the set of candidate itemsets of size k. Before making 
the k-th pass, Apriori generates Ck using Lk-1. Its candidate generation 
process ensures that all subsets of size k-1 of Ck are all members of the set 
Lk-1. In the k-th pass, it then counts the support for all the itemsets in Ck. At 
the end of the pass all itemsets in Ck with a support greater than or equal to 
the minimum support form the set of frequent itemsets Lk. Figure 1 provides 
the pseudocode for the general level-wise algorithm, and its Apriori 
implementation. The subset(t, k) function gives all the subsets of size k in the 
set t.  

This method of pruning the Ck set using Lk-1 results in a much more 
efficient support counting phase for Apriori when compared to the earlier 
algorithms. In addition, the usage of a hash-tree data structure for storing the 
candidates provides a very efficient support-counting process. 
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C1 = {all 1-itemsets from D} 
for (k=1; Ck ≠ ∅; k++) 
            count(Ck, D); 
 Lk = {c ∈ Ck | c.count ≥ minsup}; 
 Ck+1 = generate_candidates(Lk); 
Answer = UkLk; 
 

L1 = {frequent 1-itemsets} 
for (k = 2; Lk-1 ≠ ∅; k++) 
 Ck = generate_candidates(Lk-1); 
 forall tuples t ∈ D 
      Ct=Ck ∩ subset(t, k); 
      forall candidates c ∈ Ct 
         c.count++; 
   Lk = {c ∈ Ck | c.count ≥ minsup} 
Answer = UkLk; 

Figure -1. Level-wise algorithm for association discovery and its Apriori implementation 

1.2 MineSQL Data Mining Query Language 

MineSQL is a SQL language extension we presented in [9] as a tool to 
formulate data mining queries. The main MineSQL statement is MINE, 
designed to discover frequent patterns from a result of a SELECT query. The 
discovered patterns may be filtered by means of user-defined conditions. We 
also introduced new datatypes to allow to store itemsets in database 
relations: SET OF CHAR, SET OF INTEGER, etc., the SET() grouping 
function, as well as the CONTAINS operator used to determine if one set of 
items contains another set of items. In [8][13] we extended MineSQL with 
data mining materialized views and sequential pattern processing operators. 

The following example statements illustrate MineSQL capabilities to 
create a database relation to hold sets of integers and to discover all frequent 
itemsets with support greater than 10 in the first 100 tuples of the relation. 

 
create table mysets 
(i integer, 
 s set of integer) 
 

mine itemset 
from (select s 
      from   mysets 
      where  i<=100) 
where support(itemset) > 10 

 

The next example illustrates MineSQL capabilities to store results of a 
data mining query: 

 
create table mypatterns 
(s set of integer) 
 

insert into mypatterns 
mine itemset 
from (select s 
      from   mysets 
      where  i<=100) 
where support(itemset) > 10 

2. PRELIMINARIES AND PROBLEM STATEMENT 

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ), 
where R is a relation, a is an attribute of R, Σ is a condition involving the 
attributes of the relation R, Φ is a condition involving discovered patterns. 
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The result of the data mining query is a set of patterns discovered in πaσΣ 
and satisfying Φ. 

Example. Given the relation R1 shown in Fig. 1a, the result of the data 
mining query DMQ1=(R1, “iset”, “id>5 AND id<10”, “minsup ≥ 3”) is 
shown in Fig. 1b. 
 

mine itemset from (select items from R1 where id>5 and id<10) 
where support(itemset)>=3; 

 
R1:    id  iset 

-------- 
1   a,b,c 
4   a,c 
6   d,f,g 
7   f,g,k,m 
8   e,f,g 
15  a,f 

 

Figure -2a Example relation R1 

 
 
 

result of DMQ1: 
 

{f} 
{g} 

{f,g} 
 

Figure -2b DMQ1 query result 

Problem statement. Given a set S = {DMQ1, DMQ2, …, DMQn} of data 
mining queries, where DMQi = (Ri, ai, Σi, Φi) and ∀i ∃j≠i σΣi (Ri) ∩ σΣj (Rj) ≠ 
∅, the goal is to minimize the I/O cost and the CPU cost of executing S. 

2.1 Motivating example 

Consider a relation Sales(uad, basket, time) to store purchases made by 
users of an internet shop. Since data sets of this kind tend to be very large, 
there is a need for automated analysis of their contents. Assume a shop 
manager is interested in finding sets of products that were frequently co-
occurring in the users’ purchases. The shop manager plans to create two 
reports: one showing the frequent sets that appeared in more than 350 
purchases in Jan 2002 and one showing the frequent sets that appeared in 
more than 20 purchases made by clients from France. Two required data 
mining queries are shown below. 

 
DMQ  A
mine itemset 
from (select basket from   sales 
      where  time between ’01-01-02’ 
                      and ’01-31-02’) 
where support(itemset) > 350 

DMQ  B
mine itemset 
from (select basket 
      from   sales 
      where  uad like ‘%.fr’)
where support(itemset) > 20 

 

If the size of the Sales relation is very large, each of the above data 
mining queries can take a significant amount of time to execute. Part of this 
time will be spent on reading the Sales relation from disk in order to count 
occurrences of candidate itemsets. Notice that the sets of bloks to be read by 
the two data mining queries may overlap. If we try to merge the processing 
of the two data mining queries, we can reduce redundancy resulting from 
this overlapping. In the remaining of this paper we will use this example to 
illustrate particular methods. 
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3. MODEL OF A LEVEL-WISE ASSOCIATION 

DISCOVERY ALGORITHM 

In order to describe methods for batch processing of data mining queries, 
we first need to introduce a notation to express steps of a level-wise 
association discovery algorithm. We decided to use the extended relational 
algebra to model the level-wise algorithm processing in the following way. 
Each candidate counting step is represented as a relational join, followed by 
grouping and selection operations. Figure 3 shows the SQL query and the 
relational algebra graph for the candidate counting step; C(s) is the 
candidates relation, R(s) is the database relation. The candidate generation 
step is represented as a simple relational join. Figure 4 shows the SQL query 
and the relational algebra graph for this case. 

 
select   c.s, count(r.s) 
from     c, r 
where    r.s contains c.s  
group by c.s 
having   count(r.s)>=minsup 

 

 

R C 

C.s ⊆ R.s 

γ C.s, COUNT(R.s) 

σ COUNT(R.s)≥minsup 

 
Figure -3. Candidate counting-pruning step modeled with relational algebra 

 
select   union(l1.s, l2.s) as cand 
from     l l1, l l2 
where   size(difference(l1.s,l2.s)) = 1 
group by cand 
having   count(*) = k*(k-1)/2 

|L1.s - L2.s| = 1 

π L1.s ∪L2.s 

L L 

γ L1.s ∪L2.s, COUNT(*) 

σ COUNT(*) = k(k-1)/2 

 

Figure -4. Candidate generation step for Ck modeled with relational algebra 

In order to analyze the general cost model of the level-wise association 
discovery algorithm, we make the following assumptions: (1) the size of the 
database is much larger than the size of all candidate itemsets, (2) the size of 
all candidate itemsets is larger than the memory size, and (3) frequent 
itemsets fit in memory. The notation we use is given in Table 1. 
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Table 1. Notation used in cost models 
M main memory size (blocks) 
|D| number of itemsets in the database 
||D|| size of the database (blocks) 
|Ci| number of candidate itemsets for step I 
||Ci|| size of all candidate itemsets for step i (blocks), ||Ci||<<||D||, ||Ci||<M 
|Li| number of frequent itemsets for step i, |Li|<|Ci| 
||Li|| size of all frequent itemsets for step i (blocks), ||Li||<M 

 
The cost of performing the general level-wise association discovery 

algorithm is as follows: 
1.  Candidate counting-pruning. Candidate itemsets must be read from 

disk in portions equal to the available memory size. For each portion, the 
database must be scanned to join itemsets from Ci with itemsets from D. 
Next, the candidate itemsets with support greater or equal to minsup 
become frequent itemsets and must be written to disk. The I/O cost of a 
single iteration i is the following: 

i
i

iOI LD
M
C

C ++=/cost  

The dominant part of the CPU cost is join condition verification. For the 
simplicity, we assume the cost of comparing two itemsets does not 
depend on their sizes and equals 1. Thus, the CPU cost of a single 
iteration i is the following: 

DCiCPU =cost  
 

2.  Candidate generation. Frequent itemsets from the previous iteration 
must be read from disk, joined in memory, and saved as new candidate 
itemsets. The I/O cost of a single iteration i is the following: 

1/cost ++= iiOI CL  
The CPU cost of this phase of the algorithm is the following: 

iiCPU LL=cost  
Therefore, if K is the number of iterations, the overall cost of the level-

wise algorithm is as follows: 

∑
=

+ 







+++=

K

i
ii

i
iOI CLD

M
C

C
1

1/ 2cost  

( )∑
=

+ +=
K

i
iiCPU LDC

1

2
1cost  
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4. METHODS FOR BATCH PROCESSING OF DATA 

MINING QUERIES 

In this Section we present three methods for processing batches of data 
mining queries. The first one represents a trivial approach, where we execute 
each DMQ separately. We call this method Sequential Processing. The 
second method, called Common Counting, integrates the counting phase of 
the level-wise algorithm to reduce I/O. The third method, called Mine 
Merge, splits DMQs into a new set of disjoint DMQs. Their results are used 
to answer the original queries. 

4.1 Sequential Processing 

In the Sequential Processing method, each DMQ is executed separately. 
We do not try to benefit from using common disk blocks by two separate 
data mining queries. Figure 5 gives the model and pseudocode for this 
method (Ci

A means Ci generated for DMQA
, etc.). The cost of this method is 

equal to the sum of independent execution of each of the queries: 

∑
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4.2 Common Counting 

When two or more different DMQs count their candidate itemsets in the 
same part of the database, the common part of their counting steps is 
integrated and requires only one scan of the involved part of the database. A 
model of a single step of the Common Counting algorithm and its procedural 
implementation are shown in Fig 6. 

Example. Using the original database selection conditions, we construct 
three separate dataset definitions: 

 

1.  select basket from   sales 
where  time between ’01-01-02’ and ’01-31-02’ 
  and  NOT uad like ‘%.fr’ 

2.  select basket from   sales 
where  time between ’01-01-02’ and ’01-31-02’ 
  and  uad like ‘%.fr’ 

 



8 Marek Wojciechowski and Maciej Zakrzewicz
 

 

DA CA 

C.s ⊆ D.s 

γ C.s, COUNT(D.s) 

σ COUNT(D.s)≥minsup 

|C1.s - C2.s| = 1 

π C1.s ∪C2.s 

γ C1.s ∪C2.s, COUNT(*) 

σ COUNT(*) = k(k-1)/2 

DB CB 

C.s ⊆ D.s 

γ C.s, COUNT(D.s) 

σ COUNT(D.s)≥minsup 

|C1.s - C2.s| = 1 

π C1.s ∪C2.s 

γ C1.s ∪C2.s, COUNT(*) 

σ COUNT(*) = k(k-1)/2 

π C.s π C.s 

LA LB

 

C1
A = {all 1-itemsets from DA} 

for (k=1; Ck
A ∪ Ck

B ≠ ∅; k++) 
            count(Ck

A, DA); 
 Lk

A = {c ∈ Ck
A | c.count ≥ minsupA}; 

 Ck+1
A = generate_candidates(Lk

A); 
AnswerA = UkLk

A; 
 
C1

B = {all 1-itemsets from DB} 
for (k=1; Ck

B ≠ ∅; k++) 
            count(Ck

B, DB); 
 Lk

B = {c ∈ Ck
B | c.count ≥ minsupB}; 

 Ck+1
B = generate_candidates(Lk

B); 
AnswerB = UkLk

B; 
 

 

Figure -5 Model of the Sequential Processing method 
 

DA-DB CA 

C.s ⊆ D.s 

γ C.s, COUNT(D.s) 

π C1.s , C1.COUNT(D.s)+ L2.COUNT(D.s) 

π C.s 

|C1.s - C2.s| = 1 

π C1.s ∪C2.s 

DA∩DB CA∪CB 

C.s ⊆ D.s 

γ C.s, COUNT(D.s) 

DB-DACB 

C.s ⊆ D.s 

γ C.s, COUNT(D.s) 

C1.s = C2.s C1.s = C2.s 

π C1.s , C1.COUNT(D.s)+ C2.COUNT(D.s)  

σ COUNT(D.s)≥minsupA σ COUNT(D.s)≥minsupA 

π C.s 

|C1.s - C2.s| = 1 

π C1.s ∪C2.s 

LA
 LB

 

 

C1
A = {all 1-itemsets from DA} 

C1
B = {all 1-itemsets from DB} 

for (k=1; Ck
A ∪ Ck

A ≠ ∅; k++) 
if Ck

A ≠ ∅ count(Ck
A, DA - DB); 

            if Ck
B ≠ ∅ count(Ck

B, DB - DA); 
            count(Ck

A ∪ Ck
B, DA ∩ DA); 

 Lk
A = {c ∈ Ck

A | c.count ≥ minsupA}; 
 Lk

B = {c ∈ Ck
B | c.count ≥ minsupB}; 

 Ck+1
A = generate_candidates(Lk

A); 
 Ck+1

B = generate_candidates(Lk
B); 

AnswerA = UkLk
A; 

AnswerB = UkLk
B; 

 
 

Figure -6. Model of the Common Counting method 
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3.  select basket 

from   sales 
where  NOT time between ’01-01-02’ 
                    and ’01-31-02’ 

 
  and  uad like ‘%.fr’ 

Next, we scan the first query’s result in order to count DMQA candidate 
itemsets, then we scan the second query’s result in order to count both 
DMQA and DMQB candidate itemsets, finally we scan the third query’s result 
in order to count DMQB candidate itemsets. Notice that none of the database 
blocks nedeed to be read twice, if the candidate itemsets fit in memory. 
 Let us analyze the cost of this method. Candidate itemsets of DMQA must 
be read, joined with DA-DB, counted, and saved to disk. Also, candidate 
itemsets of DMQB must be read, joined with DB-DA, counted, and saved to 
disk. Next, all candidates of DMQA and DMQB must be read, joined with 
DA∩ DB, counted, and saved to disk. The candidate itemsets with support 
greater or equal to, respectively, minsupA or minsupB, become frequent 
itemsets and are written to disk. In order to generate new candidate itemsets, 
all frequent itemsets must be read from disk and new candidate itemsets 
must be written to disk. Therefore, the I/O cost of this method is the 
following: 
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Similarly, the CPU cost is as follows: 
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4.3 Mine Merge 

This method employs the property that an itemset which is frequent in a 
whole data set, must also be frequent in at least one portion of it [4,13]. In 
the Mine Merge method, each pair of overlapping DMQs is divided into 
three separate DMQs. Next, the new DMQs are executed sequentially. The 
results of the new DMQs are candidates to determine the results of the 
original DMQs. Therefore, an additional counting step is needed to finally 
answer the original DMQs. The pseudocode of the method and a model of 
the additional step are given in Fig. 7.  
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DA U LA-B ∪ U LA∩B 

L.s ⊆ D.s 

γ L.s, COUNT(D.s) 

σ COUNT(D.s)≥minsup 

DB U LB-A ∪ U LA∩B 

L.s ⊆ D.s 

γ L.s, COUNT(D.s) 

σ COUNT(D.s)≥minsup 

 

C1
A-B = {all 1-itemsets from DA - DB } 

for (k=1; Ck
A-B ≠ ∅; k++) 

count(Ck
A-B, DA - DB); 

 Lk
A-B = {c ∈ Ck

A-B | c.count ≥ minsupA}; 
 Ck+1

A-B = generate_candidates(Lk
A-B); 

AnswerA-B = UkLk
A-B; 

 
C1

B-A = {all 1-itemsets from DB - DA } 
for (k=1; Ck

 B-A ≠ ∅; k++) 
count(Ck

 B-A, DB – DA); 
 Lk

 B-A = {c ∈ Ck
 B-A | c.count ≥ minsupB}; 

 Ck+1
 B-A = generate_candidates(Lk

 B-A); 
AnswerB-A = UkLk

B-A; 
 
C1

A∩B = {all 1-itemsets from DA ∩ DB } 
for (k=1; Ck

 A∩B ≠ ∅; k++) 
count(Ck

 A∩B, DA ∩ DB); 
 Lk

 A∩B =  
  {c ∈ Ck

 A∩B | c.count ≥ min(minsupA , minsupB)}; 
 Ck+1

 A∩B = generate_candidates(Lk
 A∩B); 

Answer A∩B = UkLk
 A∩B; 

 
count(AnswerA-B ∪ Answer A∩B, DA); 
AnswerA =  
 {c ∈ AnswerA-B ∪ Answer A∩B | c.count ≥ minsupA); 
 
count(AnswerB-A ∪ Answer A∩B, DB); 
AnswerB =  
 {c ∈ AnswerB-A ∪ Answer A∩B | c.count ≥ minsupB); 

 
Figure –7. Model of the Mine Merge method 

 
Example. Using the original database selection conditions, we construct 

three new data mining queries. Assume the intermediate results are written 
to the relation Intermediate(label,itemset). 

 
DMQ1: 
insert into intermediate mine ‘DMQ1’, itemset  
from ( select basket from sales 
       where  time between ’01-01-02’ and ’01-31-02’ 
       and  NOT uad like ‘%.fr’) 
where support(itemset)>350 
DMQ2: 
insert into intermediate mine ‘DMQ2’, itemset  
from (select basket from sales 

  where  time between ’01-01-02’ and ’01-31-02’ 
  and  uad like ‘%.fr’) 

where support(itemset)>20 
DMQ3: 
insert into intermediate mine ‘DMQ3’, itemset  
from (select basket from sales 
      where  NOT time between ’01-01-02’ and ’01-31-02’ 
      and  uad like ‘%.fr’) 
where support(itemset)>20 
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The above queries discover frequent itemsets in the three partitions of the 
original data sets. In the next step, we have to merge the partitions and verify 
the itemsets’ final supports: 
 
1. select itemset  
   from   (select  distinct itemset from intermediate) i,  
          sales s 
   where  label in (‘DMQ1’,’DMQ2’) 
   and    s.itemset contains i.itemset 
   group by i.itemset 
   having count(*)>350; 
2.    select itemset  
   from   (select  distinct itemset from intermediate) i,  
          sales s 
   where  label in (‘DMQ2’,’DMQ3’) 
   and    s.itemset contains i.itemset 
   group by i.itemset 
   having count(*)>20; 

 

The itemsets selected by the first Select query form the result of DMQA, 
and the itemsets selected by the second Select query form the result of 
DMQB. 

Let us analyze the cost of this method. The I/O cost of executing the 
three new data mining queries is the following: 
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The I/O cost of verifying the discovered itemsets’ supports is the cost of 
performing the join operation: 
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The CPU cost of the complete method is the following: 
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5. CONCLUSIONS 

In this paper we have presented the problem of efficient executing 
batches of data mining queries. We have built a relational algebra model for 
a level-wise association discovery algorithm and we used this model to 
describe our methods of executing batched data mining queries. For the three 
described methods, we analyzed their performance in terms of I/O cost and 
CPU cost. 
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