
Data Mining Within DBMS Functionality

Maciej Zakrzewicz

Poznan University of Technology, Poland
mzakrz@cs.put.poznan.pl

Abstract

Data mining slowly evolves from simple discovery of frequent patterns and regularities in large data sets
toward interactive, user-oriented, on-demand decision supporting. Since data to be mined is usually
located in a database, there is a promising idea of integrating data mining methods into database
management systems (DBMS). In this paper we present the results of developing our research prototype
for DBMS-integrated data mining. We focus on two main contributions: query language for data mining
and constraints-driven algorithm for association rules discovery.

Keywords: data mining algorithms, data mining architectures.

1. Introduction

Data mining, also referred to as database mining or knowledge discovery in databases (KDD),
is a new research area that aims at the discovery of useful information from large datasets. Data
mining uses statistical analysis and inference to extract interesting trends and events, create useful
reports, support decision making etc. It exploits the massive amounts of data to achieve business,
operational or scientific goals. One of the most promising data mining applications is affinity
analysis, which provides a user with the knowledge about item co-occurrences in item sets. The
most common representation of item co-occurrences are association rules.

The problem of association rules discovery is an interesting subfield of data mining. By an
association rule, that holds in a database of item sets (e.g. big-store transactions), we mean a
formula of the form X → Y, where X and Y are two sets of items. We refer to the left hand side of
the rule as the body and to the right hand side as the head. Additionally, each rule has two
associated measures of statistical significance and strength: support and confidence. The support is
the joint probability to find X and Y in the same items group. The rule confidence is the conditional
probability to find in the item group Y having found X.

A number of association rules discovery algorithms has been proposed. Most of them discover
rules that have support and confidence greater than given minimum values, however, the data
mining process is more interactive and more iterative in nature. It requires not only high-
performance and rapid-response algorithms, but also the environmental support that assists users in
data selection, rule generation and rule filtering.

In this paper we present the architecture of our research prototype, called RD2, which extends
DBMS functionality toward on-demand association rules discovery. The prototype implements our
improved algorithm for association rules discovery and provides a user with an SQL-like query
language which is used to control the algorithm. The paper illustrates the need and the solution for
integrating data mining methods with core DBMS functions.

1.1 BASIC DEFINITIONS

Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items T be called
an itemset. Let D be a set of variable length itemsets, where each itemset T⊆L. We say that an
itemset T supports an item x∈L if x is in T. We say that an itemset T supports an itemset X⊆L if T
supports every item in the set X.

Maciej Zakrzewicz

An association rule is an implication of the form X→Y, where X⊂L, Y⊂L, X∩Y=∅. Each rule
has associated measures of its statistical significance and strength, called support and confidence.
The support of the rule X→Y in the set D is:

{ }

������� � � 	

 	
 � �

	
� � �→ =

∈ ∪� ����	
��

In other words, the rule X→Y holds in the set D with support s if (100*s)% of itemsets in D support
X∪Y. The confidence of the rule X→Y in the set D is:

{ }

{ }��������� � � 	

 	
 � �

 	
 �
� � �→ =

∈ ∪

∈

� ����	
��

� ����	
��

In other words, the rule X→Y has confidence c if (100*c)% of itemsets in D that support X also
support Y.

Example. Consider a supermarket with a large collection of products. When a customer buys a set
of products, the whole purchase is stored in a database and referred to as a transaction having a
unique identifier, date, and a customer code. Each transaction contains the set of purchased products
together with their quantity and price. An example of the database of customer transactions is
depicted below. The attribute trans_id represents the transaction identifier, cust_id - the customer
code, product - the purchased product, qty - the quantity and price - the price.

trans_id cust_id product date Qty Price
1 908723 soda_03 02/22/98 6 0.20
1 908723 potato_chips_12 02/22/98 3 0.99
2 032112 beer_10 02/22/98 4 0.49
2 032112 potato_chips_12 02/22/98 1 0.99
2 032112 diapers_b01 02/22/98 1 1.49
3 504725 soda_03 02/23/98 10 0.20
4 002671 soda_03 02/24/98 6 0.20
4 002671 beer_10 02/24/98 2 0.49
4 002671 potato_chips_12 02/24/98 4 0.99
5 078938 beer_10 02/24/98 2 0.49
5 078938 potato_chips_12 02/24/98 4 0.99
5 078938 diapers_b01 02/24/98 10 1.49

The strongest association rules that can be found in the example database are listed below:

beer_10 → potato_chips_12 support=0.60 confidence=1.00

potato_chips_12 → beer_10 support=0.60 confidence=0.75

beer_10 ∧ diapers_b01 → potato_chips_12 support=0.40 confidence=1.00

diapers_b01 ∧ potato_chips_12 → beer_10 support=0.40 confidence=1.00

diapers_b01 → beer_10 ∧ potato_chips_12 support=0.40 confidence=1.00

diapers_b01 → beer_10 support=0.40 confidence=1.00

diapers_b01 → potato_chips_12 support=0.40 confidence=1.00

beer_10 ∧ potato_chips_12 → diapers_b01 support=0.40 confidence=0.67

beer_10 → diapers_b01 ∧ potato_chips_12 support=0.40 confidence=0.67

beer_10 → diapers_b01 support=0.40 confidence=0.67

soda_03 → potato_chips_12 support=0.40 confidence=0.67

potato_chips_12 → beer_10 ∧ diapers_b01 support=0.40 confidence=0.50

potato_chips_12 → diapers_b01 support=0.40 confidence=0.50

potato_chips_12 → soda_03 support=0.40 confidence=0.50

For example, the association rule "beer_10 → potato_chips_12 (support=0.60, confidence=1.00)"

states that every time the product beer_10 is purchased, the product potato_chips_12 is purchased
too and that this pattern occurs in 60 percent of all transactions. Knowing that 60 percent of

Data Mining Within DBMS Functionality

customers who buy a certain brand of beer also buy a certain brand of potato chips can help the
retailer determine appropriate promotional displays, optimal use of shelf space, and effective sales
strategies. As a result of doing this type of association rules discovery, the retailer might decide not
to discount potato chips whenever the beer is on sale, as doing so would needlessly reduce profits.

1.2 BASIC ALGORITHM FOR ASSOCIATION RULES DISCOVERY

The first algorithm for association rules discovery was presented in the paper of Agrawal,
Imielinski and Swami [1]. The algorithm discovered all association rules whose support and
confidence were greater than some user specified minimum values. In [5], an algorithm called
SETM was proposed to solve this problem using relational operators. In [2], two new algorithms
called Apriori and AprioriTID were proposed. These algorithms achieved significant improvements
over the previous algorithms and became the core of many new ones [9, 4, 11, 10, 12, 3].

The algorithm called Apriori discovers in a given database all association rules with support
and confidence above some minimum values. We assume that items in each itemset are kept sorted
in their lexicographic order. In this algorithm, the problem of association rules discovery is
decomposed into two subproblems:
1. Iteratively find all possible itemsets that have support greater or equal to a given minimum

support value (minsup). Itemsets satisfying the above constraint are called large itemsets, and all
others are small itemsets. The first pass of the algorithm counts item occurrences to determine
the large 1-itemsets (each 1-itemset contains exactly one item). In each of the next passes, the
large itemsets Lk-1 found in the (k-1)th pass are used to generate the candidate itemsets Ck, using
apriori-gen function described below. Then, the database is scanned and the support of
candidates in Ck is counted. The output of the first phase of the Apriori algorithm consists of a
set of k-itemsets (k=1, 2, ...), that have support greater or equal to a given minimum support
value. Figure 1 presents a formal description of this part of the algorithm.

2. Use the large itemsets to generate the desired rules. For each large itemset l, find all non-empty
subsets a of l. For each subset a, output a rule of the form a → (l - a) if support(l)/support(a) is
greater or equal to a given minimum confidence value (minconf). Notice, that if a rule a → (l -
 a) has the confidence value less than minconf, then any rule b → (l - b), where b ⊂ a, also has
the confidence values less than minconf. Thus, the rule generation begins with the empty head
that is being expanded unless the confidence value falls below minconf.

L1 = {large 1-itemsets};
for (k = 2; Lk-1 ≠ 0; k++) do begin
 Ck = apriori_gen (Lk-1);
 forall transactions t ∈ D do begin
 Ct = subset (Ck , t);
 forall candidates c ∈ Ct do
 c.count ++;
 end
 Lk = { c ∈ Ck | c.count ≥ minsup};
end
Answer = ∪k Lk;

Figure 1. Large itemset generation phase of Apriori algorithm

In the algorithm Apriori, candidate itemsets Ck are generated from previously found large

itemsets Lk-1, using the apriori-gen function. The apriori-gen function works in two steps: 1. join
step and 2. prune step. First, in the join step, large itemsets from Lk-1 are joined with other large
itemsets from Lk-1 in the following SQL-like manner:

Maciej Zakrzewicz

insert into Ck
select p.item1, p.item2, ..., p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1 q
where p.item1 = q.item1
 and p.item2 = q.item2
 ...
 and p.itemk-2 = q.itemk-2
 and p.itemk-1 < q.itemk-1;

Next, in the prune step, each itemset c∈Ck such that some (k-1)-subset of c is not in Lk-1 is deleted:

forall itemsets c∈Ck do
 forall (k-1)-subsets s of c do
 if (s ∉ Lk-1) then delete c from Ck;

The set of candidate k-itemsets Ck is then returned as a result of the function apriori-gen.

2. RD2 System Architecture

RD2 is our prototype extension to Oracle DBMS which implements association rules
discovery methods. From a user’s point of view, RD2 is a transparent layer, located on top of Oracle
DBMS, extending SQL language with a set of new statements and functions, which can be used to
discover association rules in database tables. From a programmer’s point of view, RD2 delivers a
universal API (Application Programmer Interface), which can be used to build data mining
applications.

A user, or an application, specifies data mining problems in the form of declarative queries,
similar to those in SQL. The queries are processed by RD2 and the association rules satisfying given
constraints are discovered and presented to the user. The user can analyse the rules or store them in
the same database for future retrieval.

The general architecture of RD2 is given in Figure 2. The user application sends the queries
via the RD2 network layer, using TCP/IP protocol. The queries are parsed by the extended SQL
parser, and then either processed by a data mining algorithm or sent directly to the DBMS for further
processing. Finally, the discovered association rules are returned to the user.

RD2 core modules are located on the machine running the DBMS. It results in fast database
access, without the need to transfer large data volumes through networks.

We have also developed a user tool for ad-hoc rule queries execution. The tool window is
presented in Figure 3 – the user specifies the rule query from keyboard and watch the resulting
association rules on the screen.

��� ���

�	
�� ��

���������
�

���
	�

���	
������ ����
����

���
	�

���	

���
	�

�����	
���

��	�	

����
�����

!	���

���	���

!	���

�"#�

!��

Figure 2. RD2 internal architecture

Figure 3. The user tool for ad-hoc rule queries

Data Mining Within DBMS Functionality

2.1 SQL LANGUAGE EXTENSION

We have proposed the extension of industry-standard SQL language to handle data mining,
called MineSQL. In MineSQL, users express their specific problems by means of rule queries. The
rule queries are processed by a data mining engine, which generates demanded rules from the given
relational database. Sets of discovered rules are then returned to the users.

The main difference between industry-standard SQL language and the MineSQL language is
the addition of the MINE statement, which is used to extract rules from database tables. The MINE
statement can also be used as a query or subquery in another statement (e.g. SELECT, INSERT). The
general syntax of the MINE statement is defined as follows:

MINE rule_expr [,...]
[FOR {data_expr [USING tax_name][,...]| *}]
[TO {data_expr [USING tax_name][,...]| *}]
FROM table [, table] ...
[WHERE {data_condition|rule_condition}
[{AND|OR}{data_condition|rule_condition}]
 ...]
[GROUP BY data_expr [, data_expr]... [HAVING condition]]
[ORDER BY rule_expr [{ASC|DESC}][,...]]

The MINE statement produces a set of rules or rule expressions. It defines the structure of

rules: the body is defined as a subset of attribute expressions in the FOR clause, the head is defined
as a subset of attribute expressions in the TO clause. The AS keyword can specify a taxonomy
(conceptual hierarchy) used in generalizing item values. The clause FROM specifies which tables or
views to explore. The selection constraints for both table data and rules extracted are specified in
the WHERE section. The MINE statement inspects table records grouped by attributes indicated in
the GROUP BY clause: records belonging to a group are characterized by the same value of the
grouping attribute. The result rules may be sorted by the ORDER BY expressions in ascending or
descending order. We also support user-defined discretization of attribute values by means of stored
database procedures.

Rule expressions used in the MINE statement are combinations of rules, constants and rule
functions. The MineSQL language supports a wide collection of rule functions. The rule functions
operate on rules. The most commonly used rule functions are:
• ���������� - returns the support value of the rule r,
• 	�
���
	���� - returns the confidence value of the rule r,
• ������ - returns the rule r body,
• ������ - returns the rule r head,
• �����
��� - returns the number of rule r body elements,
• �����
��� - returns the number of rule r head elements,
• ������
��� - returns the number of rule r body and head elements.

The MineSQL language also allows IN and NOT IN set operators to be used on a rule, rule
body and rule head items. For two sets of items A and B, the expression A IN B is true if: A ≠∅ and
A ⊆ B.

To illustrate the MINE statement, let us consider the following example.

Example. Assume that a user looks for all association rules about products of today's big-store
transactions such that: the body of the rule contains the element product='milk' or product='butter',
the confidence of the rule is at least 10%, the support is at least 20% and the head of the rule
contains only one element. Additionally, the user would like to explore only this year's transactions.

Maciej Zakrzewicz

The query specified above is represented in MineSQL as follows:

mine rule, support(rule)
for product
from shoppings P
where (‘product=‘‘milk’’’ in body(rule)
 or ‘product=‘‘butter’’’ in body(rule))
 and confidence(rule) > 0.1
 and support(rule) > 0.2
 and headlen(rule)=1
 and p.date >= ‘01.01.97’
group by transaction_id
order by support(rule)

Let us assume that the customer's purchase table Shoppings is organized as follows:

TRANS_ID CUST PRODUCT DATE PRICE QUANT
-------- ---- ------- -------- ----- ------
1 101 BREAD 17/02/97 0.75 1
1 101 MILK 17/02/97 0.40 2
2 100 BUTTER 17/02/97 1.80 1
2 100 BREAD 17/02/97 0.75 3
2 100 MILK 17/02/97 0.40 1
3 105 BUTTER 28/12/96 1.80 1
4 100 WINE 20/12/96 9.90 1
4 100 MILK 20/12/96 0.40 2
4 100 PAPER 20/12/96 2.50 1

Then the result of the query is:

RULE SUPPORT(RULE)
--- -------------
PRODUCT='MILK'->PRODUCT='BREAD' 1.00
PRODUCT='BUTTER'->PRODUCT='BREAD' 0.50
PRODUCT='BUTTER'->PRODUCT='MILK' 0.50
PRODUCT='BUTTER' & PRODUCT='MILK'->PRODUCT='BREAD' 0.50
PRODUCT='BREAD' & PRODUCT='BUTTER'->PRODUCT='MILK' 0.50

3. Constraints-Driven Algorithm For Association Rules Discovery

In this Section, our constraints-driven algorithm for on-demand mining of association rules is
presented. It is built as an extension of the basic Apriori algorithm. However, it introduces the
general techniques that can be applied to a wide variety of association rules mining algorithms.

The key idea of the constraints-driven algorithm is following. User expresses the rule query
using MineSQL language. The rule query contains selection constraints that should be satisfied by
extracted rules. These constraints are then converted into an external selection formula, which is a
logical combination of binary functions, representing simple selection conditions. In the next step,
the external selection formula is transformed into an internal selection formula, which is directly
applied in rule generation phase. For each conjunction of the internal selection formula, a set of
rules is generated.

The algorithm reduces the processing time as well as temporary storage requirements by:
• filtering out input item groups that contain unnecessary items (such constraints are called dataset

filtering constraints), e.g. if only rules involving an item x in the body are of interest, then it is
sufficient to process only those record groups that contain x,

• not accepting the candidate itemsets that do not satisfy the extended constraints (not only the
minimum support constraint), called itemset preaccepting constraints, e.g. if rules of length d are
of interest, then it is unnecessary to accept candidates that are longer than d,

Data Mining Within DBMS Functionality

• pruning the itemsets accepted in the previous iteration of the algorithm (itemset accepting
constraints). We can prune only those itemsets that will not be needed to determine rules'
confidence factors. For example, if only rules involving an item x are of interest, then we can
prune all itemsets that do not contain x, on the condition that they will not be needed to
determine other rules' confidence,

• controlling the rules generation process - pruning the rules that do not satisfy the extended
constraints, called rules accepting constraints, e.g. if only rules containing x in the body are of
interest, then it is unnecessary to continue generating rules that do not contain x in the body
(remember that the rule head can only expand in a rule generation process).

3.1 SELECTION CONSTRAINTS

We first introduce some definitions necessary to define the algorithm.

Definition. External selection predicate σ(class, value) is a binary function that evaluates to 1 if the
condition described by class is satisfied by a value. The value is a constant of integer, real, character
or set type.
We consider the following external selection predicate types:
• support predicates, concerning the number of data groups that support a rule:

σ(SG, α) = 1, if: support(rule) =< α
σ(SL, α) = 1, if: α =< support(rule)

• confidence predicates, concerning the measure of rule's strength:
σ(CG, α) = 1, if: confidence(rule)=< α
σ(CL, α) = 1, if: α =<confidence(rule)

• contents predicates, concerning restrictions on items that can appear in a rule:
σ(IH, A) = 1, if: A IN head(rule)
σ(IB, A) = 1, if: A IN body(rule)
σ(IR, A) = 1, if: A IN rule
σ(EB, A) = 1, if: body(rule) = A
σ(EH, A) = 1, if: head(rule) = A
σ(ER, A) = 1, if: rule = A
σ(BI, A) = 1, if: body(rule) IN A
σ(HI, A) = 1, if: head(rule) IN A
σ(RI, A) = 1, if: rule IN A
σ(NIH, A) = 1, if: A NOT IN head(rule)
σ(NIB, A) = 1, if: A NOT IN body(rule)
σ(NIR, A) = 1, if: A NOT IN rule
σ(NEH, A) = 1, if: head(rule) <> A
σ(NEB, A) = 1, if: body(rule) <> A
σ(NER, A) = 1, if: rule <> A
σ(HNI, A) = 1, if: head(rule) NOT IN A
σ(BNI, A) = 1, if: body(rule) NOT IN A
σ(RNI, A) = 1, if: rule NOT IN A

• cardinality predicates, concerning the length of the rule, of the body or of the head:
σ(RLL, α) = 1, if: α < rulelen(rule)
σ(BLL, α) = 1, if: α < bodylen(rule)
σ(HLL, α) = 1, if: α < headlen(rule)
σ(RLS, α) = 1, if: rulelen(rule) < α

Maciej Zakrzewicz

σ(BLS, α) = 1, if: bodylen(rule) < α

σ(HLS, α) = 1, if: headlen(rule) < α
• complex predicates, as none of the above:

σ(CPX, C) = 1, if condition C is satisfied

Definition. External selection formula E is a logical combination of external selection predicates,
involving the connectives: ∧, ∨ , (,)

Example. For the following WHERE clause of the MINE statement:

WHERE support(rule) > 0.8
 AND confidence(rule) > 0.5
 AND 'product=''bread''' in body(rule)
 AND 'product=''butter''' in body(rule)

the external selection formula is the following:

E = σ(SG, 0.8) ∧ σ(CG, 0.5) ∧ σ(IB, "product='bread'") ∧

σ(IB, "product='butter'")

Definition. Internal selection predicate γ(class, subclass, value) is a binary function that evaluates to
1 if the condition described by subclass is satisfied by a value. The value is a constant of integer,
real, character or set type. The class determines the verification point in the data mining algorithm.

We consider the following internal selection predicate types:
• dataset filtering predicates (DF), for filtering input item groups that contain unnecessary items:

γ(DF, FI, A) = 1, for all groups that contain all items of A,
γ(DF, PI, A) = 1, for all groups that contain at least one item of A,
γ(DF, L, α) = 1, for all groups that contain more than α items,

• itemset preaccepting predicates (IP), for pruning the candidate itemsets:
γ(IP, ILS, α) = 1, for all itemsets that have less than α items,
γ(IP, SG, α) = 1, for all itemsets that have support greater or equal to α

• itemset accepting predicates (IF), for pruning the itemsets pre-accepted in the previous iteration
of the algorithm:

γ(IA, SL, α) = 1, for all itemsets that have support less than α,
γ(IA, FI, A) = 1, for all itemsets that contains all items of A,
γ(IA, PI, A) = 1, for all itemsets that contain at least one item of A,
γ(IA, ILL, α) = 1, for all itemsets that have more than α items,

• rules accepting predicates (RP), for pruning the rules during rules generation step:
γ(RA, HLS, α) = 1, for all rules whose head has less than α items,
γ(RA, BLL, α) = 1, for all rules whose body has more than α items,
γ(RA, CG, α) = 1, for all rules that have confidence greater or equal to α,
γ(RA, FIB, A) = 1, for all rules whose body contains all items of A,
γ(RA, PIB, A) = 1, for all rules whose body contains at least one item of A,
γ(RA, NFI, A) = 1, for all rules whose head does not contain all items of A,
γ(RA, NPIH, A) = 1, for all rules whose head does not contain any item of A,

• rules filtering predicates (RF), for the final pruning of the rules:
γ(RF, CPX, C) = 1, if condition C is satisfied

Data Mining Within DBMS Functionality

In the above definitions, by filtering we mean ‘not taking into account’ and by pruning - ‘removing
from memory’.

Definition. Internal selection formula I is a disjunctive normal form of combination of internal
selection predicates (disjunction of conjunctions), involving the connectives: ∧, ∨.

Example. As we will explain it later, the internal representation of the external selection formula E
from the previous example:

E = σ(SG, 0.8) ∧ σ(CG, 0.5) ∧ σ(IB, "product='bread'") ∧
σ(IB, "product='butter'")

is the following:

I = γ(IP, SG, 0.8, itemset) ∧ γ(RA, CG, 0.5, rule) ∧
γ(DF, FI, 'bread', itemset) ∧ γ(RA, FIB, 'bread', rule) ∧
γ(IA, FI, 'bread', itemset) ∧ γ(RP, FI, 'bread', itemset) ∧
γ(DF, FI, 'butter', itemset) ∧ γ(RP, FI, 'butter', itemset) ∧
γ(RF, CPX, 'body(rule) contains 'butter'', rule)

As it was mentioned before, an external selection formula E is transformed into an internal
selection formula I. The transformation is done according to the transformation table T, given in
Figure 4. The structure of the transformation table T is the following. Each row k corresponds to an
external selection predicate and each column l corresponds to as internal selection predicate. The
sign ‘+’ on a crossing (k, l) means that the external selection predicate k is replaced with the internal
selection predicate l. If more than one internal selection predicate corresponds to an external
selection predicate, then the external selection predicate is replaced with a conjunction of those
internal selection predicates.

internal

external D

F
,F

I

D
F

,P
I

D
F

,I
L

IP
, I

L
S

IP
,S

G

IP
,F

I

IA
, I

L
L

IA
, S

L

IA
, F

I

R
P

,F
I

R
P

,P
I

R
P

,R
L

R
P

,R
S

R
A

, P
I

R
A

, H
S

R
A

, B
L

R
A

, C
G

R
A

, F
IB

R
A

, P
IB

R
A

, N
F

IH

R
A

, N
P

IH

R
A

, H
I

R
F

, C
P

X

SG +
SL +

 CG +
CL +
IH + + +
IB + + + +
IR + + +
EB + + + + +
EH + + +
BI + + + +
HI + + +
NIH + +
NIB +
NIR +
NEH + +
NEB +
HNI + +
BNI +
HS +
BS +
RS + +
HL + + +
BL + + +
RL + +
CPX +

Figure 4. Transformation table

Maciej Zakrzewicz

3.2 ALGORITHM

Constraints-driven algorithm for mining association rules satisfying given selection
constraints is presented below.

Input: A set of database relations r1, r2, ..., rn, containing item sets, data and rule selection
conditions expressed in SQL-like language, minimum confidence value for generated rules -
minconf,
Output: The set of demanded association rules.
Method:

1. Express the given selection constraints in the form of external selection formula E
2. Transform E into internal selection formula I
3. forall conjunctions i of I do
4. result(i) = ∅
5. C1 = {all 1-itemsets from item sets satisfying all DF predicates of i};
6. A1 = {c ∈ C1 | c satisfies all IP predicates of i};
7. for (k = 2; Ak-1 ≠ 0; k++) do begin
8. Ck = apriori_gen (Ak-1);
9. forall candidates c ∈ Ck do
10. forall item sets satisfying all DF predicates of i do
11. if contains (t, c) then c.support ++;
12. Ak = { c ∈ Ck | c satisfies all IP predicates of i};
13. Lk-1 = { a ∈ Ak-1 | a satisfies all IA predicates of i};
14. end
15. Lk = { a ∈ Ak | a satisfies all IA predicates of i};
16. compute
17. for (m = 2; m<= k; m++) do
18. forall itemsets S ∈ Lm do
19. if S satisfies all IA predicates of i then genrule(S, ∅);
20. end

procedure genrule (body, head)
begin
 forall item ∈ body do
 if item > maxitem(head) then
 begin
 newbody = body - item;
 newhead = head + item;
 if (newbody→newhead) satisfies all RF predicates od i then
 return (newbody→newhead);
 if (newbody→newhead) satisfies all RA predicates od i then
 genrule (newbody, newhead);
 end;
end;

The most important points of the algorithm are the following. In the lines (5) and (10) we

filter out those item groups that contain unnecessary items (verifying dataset filtering constraints).
In (6) and (12) the candidate pre-accepting is done - candidates that do not satisfy itemset
preaccepting constraints are pruned. In the lines (13) and (15) we prune the unnecessary itemsets of
the ones accepted in the previous iteration (according to itemset accepting constraints).

The procedure genrule receives an accepted itemset and generates all possible body-head
combinations. The generation always starts with an empty head and then expands the head
recursively with the succeeding body elements. The rules satisfying rule filtering constraints are
returned. The generation process can be stopped (not continued) if a rule that do not satisfy rule
accepting constraints is built.

3.3 EXPERIMENTAL RESULTS

To assess the performance of the implemented algorithm, we performed several experiments
on PC Pentium 150MHz, with 128 MB of main memory, running Windows NT. We used a synthetic

Data Mining Within DBMS Functionality

database, created by GEN generator from QUEST project [13]. Several parameters affect the
distribution of the synthetic data. These parameters are shown in Table 1 (see [13] for details).

parameter value
ntrans number of item sets, 50,000
nitems number of different items, 2000
tlen average items per set, 5
npats number of patterns, 500 and 10000
patlen average length of maximal pattern, 4
corr correlation between patterns, 0.25

Table 1. Synthetic data parameters

label statement
A MINE rule

IN item
FROM data_table
WHERE support(rule)>=0.0033

B MINE rule
IN item
FROM data_table
WHERE support(rule)>=0.0033
AND body(rule) CONTAINS 10

C MINE rule
IN item
FROM data_table
WHERE support(rule)>=0.0033
AND length(rule)>=4

D MINE rule
IN item
FROM data_table
WHERE support(rule)>=0.0033
AND length(rule)<=2

E MINE rule
IN item
FROM data_table
WHERE support(rule)>=0.0033
AND body(rule)='10 & 20'
AND head(rule)='30 & 40'

Table 2. Experimental MineSQL statements

In the scope of our experiment, we compared the performance of different rule queries. The
queries were expressed in MineSQL language (Table 2). Figure 5 illustrates execution times of the
example rule queries.

�

���

���

���

���

����

����

� � � 	 �
 � �

���������

�
�
�
�
�
��
�
�
��

�
��

Figure 5 Execution times of example experimental statements

Maciej Zakrzewicz

The rule query A does not use any advanced features of our constraints-driven algorithm – it

plays the role of a reference here. Its execution time presents the capabilities of the original Apriori
algorithm. The statements B, C, D, E are optimized using additional steps in our algorithm.

4. Conclusions and Future Work

In this paper we have presented the architecture of our prototype DBMS – Data Mining
integration. The new SQL-like language for data mining from relational databases, called MineSQL,
has been presented together with the constraints-driven algorithm used to process its rule queries.

Our future research directions are oriented toward database sequences (ordered sets)
processing. We plan to extend MineSQL in order to allow sequence processing and frequent
subsequence discovery and to develop a similar constraint-driven algorithm for processing new
MineSQL constructs.

References
1. Agrawal, R., Imielinski, T., Swami, A. Mining Association Rules Between Sets of Items in Large Databases.

Proc. ACM SIGMOD, pp. 207-216, Washington DC, USA, May 1993.

2. Agrawal, R., Srikant, R. Fast Algorithms for Mining Association Rules. Proc. 20th Int’l Conf. Very Large Data
Bases, pp. 478-499, Santiago, Chile, 1994.

3. Cheung, D.W., Han, J., Ng, V., Wong, C.Y. Maintenance of Discovered Association Rules in Large Databases:
An Incremental Updating Technique. Proc. Int’l Conf. Dana Eng., New Orleans, USA, February 1996.

4. Han, J., Fu, Y. Discovery of Multiple-Level Association Rules from Large Databases. Proc. 21th Int’l Conf. Very
Large Data Bases, pp. 420-431, Zurich, Switzerland, Sept. 1995.

5. Houtsma, M., Swami, A. Set-Oriented Mining of Association Rules. Research Report RJ 9567, IBM Almaden
Research Center, San Jose, California, USA, October 1993.

6. Manilla, H., Toivonen, H., Inkeri Verkamo A. Efficient Algorithms for Discovering Association Rules. Proc.
AAAI Workshop Knowledge Discovery in Databases, 1994.

7. Morzy, T., Zakrzewicz, M. Constraints-Driven Algorithm for Mining Association Rules On Demand. Technical
Report RA-004/97� ������ ��	
��	�� �� ����������� �����

8. Morzy, T., Zakrzewicz, M. SQL-Like Language For Database Mining. 1st Int'l Conference on Advances in
Databases and Information Systems, pp. 311-317, St. Petersburg, 1997.

9. Srikant, R., Agrawal, R. Mining Generalized Association Rules. Proc. 21th Int’l Conf. Very Large Data Bases,
pp. 407-419, Zurich, Switzerland, Sept. 1995.

10. Srikant, R., Agrawal, R. Mining Quantitative Association Rules in Large Relational Tables. Proc. 1996 ACM
SIGMOD Int’l Conf. Management Data, pp. 1-12, Montreal, Canada, 1996.

11. Savasere, A., Omiecinski, E., Navathe, S. An Efficient Algorithm for Mining Association Rules in Large
Databases. Proc. 21th Int’l Conf.VLDB, Zurich, Switzerland, 1995.

12. Toivonen, H. Sampling Large Databases for Association Rules. Proc. 22nd Int’l Conf. Very Large Data Bases,
Bombay, India, 1996.

13. Agrawal, R., Mehta, M., Shafer, J., Srikant, R., Arning, A., Bollinger, T. The Quest Data Mining System. Proc.
of the 2nd International Conference on Knowledge Discovery in Databases and Data Mining, Portland, Oregon,
1996.

Oracle is a trademark of Oracle Corporation
Windows NT is a trademark of Microsoft Corporation

