
Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

Access Paths for Data Mining Query Optimizer

Marek Wojciechowski, Maciej Zakrzewicz
Poznan University of Technology

Institute of Computing Science
{marekw, mzakrz}@cs.put.poznan.pl

Abstract

Data mining research has developed many pattern

discovery algorithms dedicated to specific data and
pattern characteristics. We argue that a user should not
be responsible for choosing the most efficient algorithm to
solve a particular data mining problem. Instead, a data
mining query optimizer should follow the cost-based
optimization techniques to select an appropriate
algorithm to solve the user's problem. In this paper we
discuss the process of data mining query optimization and
we extend the list of choices the optimizer can make.

1. Introduction

Data mining is a relatively new database research field,
which focuses on algorithms and methods for discovering
interesting patterns in large databases [6]. An interesting
pattern is typically a description of strong correlation
between attributes of a data object. Many data mining
methods developed in the area have proved to be useful in
decision support applications: association discovery,
sequential pattern discovery, classifier discovery,
clustering, etc.

Data mining research community has proposed many
algorithms for discovering various types of patterns.
Unfortunately, the algorithms exhibit significant
computational complexity, resulting in long processing
times. The computational cost of data mining algorithms
is usually influenced by a need to perform multiple passes
over the source data and to perform a significant amount
of in-memory operations. Moreover, the algorithms'
performance is also dependent on source data
characteristics - for example, some algorithms perform
better for long patterns, some algorithms are dedicated to
low cardinality attributes, some algorithms benefit from
uniform data distribution, etc.

From a user’s point of view, data mining can be seen
as an interactive and iterative process of advanced
querying: a user specifies a request to discover a specific
class of patterns, and then a data mining system returns
discovered patterns to the user. A user interacting with a
data mining system has to specify several constraints on

patterns to be discovered. However, usually it is not
trivial to find a set of constraints leading to the satisfying
set of patterns. Thus, users are very likely to execute a
series of similar data mining queries before they find what
they need.

In the context of our data mining research we follow a
promising idea of integrating data mining into database
management systems (DBMSs). We argue that DBMS
functionality should be extended to completely support
data mining applications. This involves the following
aspects: (1) query language extension to allow users to
formulate their specific data mining problems, (2) logical
and physical structure extensions to allow users to
permanently store discovered patterns, and (3) query
compiler/optimizer extension to generate alternative
query execution plans and to choose the best one. In this
paper we discuss the required DBMS query optimizer
modifications needed to provide for data mining query
optimization. Our research results are presented in the
context of association discovery.

1.1 Preliminaries

Let L be a set of items. An itemset I is a subset of L. A
database D is a set of itemsets. Consider two itemsets I1
and I2. We say that I1 supports I2 if I1⊆I2. A frequent
itemset X is an itemset which is supported by more than a
user-defined number of itemsets in D. Given a user-
defined support threshold minsup, the problem of
association discovery is to find all frequent itemsets in D.
Typically, the result of association discovery consists of
the frequent itemsets and their support measures sup(X,D)
(percentages of supporting itemsets in D).

Example. Consider the following database D:

Itemset
{1, 5, 8, 10}
{2, 8, 10, 12}
{1, 10, 11}
{3, 5, 10}

2 BUSINESS INFORMATION SYSTEMS – BIS 2002

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

Suppose the user-defined support threshold is 30%, what
means that we want to find all itemsets that are supported
by at least 30% of all the database itemsets (by at least 2
itemsets). The result of the association discovery will be:
{1} (support=50%), {5} (support=50%), {8}
(support=50%), {10} (support=100%), {1, 10}
(support=50%), {5, 10} (support=50%), {8, 10}
(support=50%).

1.2 Related Work

The problem of association rule mining was introduced
in [1] and the algorithm called AIS was presented. In [2],
a more effective algorithm, called Apriori was presented.
Since that time, a number of association rule mining
algorithms have been proposed [e.g. 5,7].

In [3] incremental refinement of association rule
queries was addressed. The queries were expressed using
the MINE RULE operator based on a complex constraint
model. The equivalence, inclusion, and dominance
relationships between queries were introduced, and
syntactic differences resulting in these relationships were
discussed. For the assumed constraint model, algorithms
for answering an association rule query using the
applicable results of a previous query were presented.

In [8] the concept of materialized data mining views
was introduced. Materialized data mining views allow
users to materialize results of data mining queries, with an
option of periodic refreshing of their contents in order to
reflect the possible changes in the source data set. In the
paper, general ideas of application of materialized data
mining views to optimization of the processing of the
incoming queries were also presented.

Cost-based query optimization is widely used in
database management systems [4]. The cost-based
optimizer chooses the query execution plan with the
lowest estimated cost. The cost of a given execution
strategy is estimated using known cost functions for the
algorithms being used and certain statistics maintained for
the database.

2 Data Mining Query Processing

We assume the following model of user interaction
with a DBMS extended with data mining functions. A
user defines his/her data mining problem in the form of a
data mining query. The data mining query describes:
(1) a data source on which to perform data mining,
(2) a support threshold to determine frequent itemsets,
(3) filtering predicates to narrow source data set, and
(4) filtering predicates to narrow the set of discovered
frequent itemsets. For example, a data mining query can
state that a user is interested in "processing last month's

sale transactions from the SALES table to find all
frequent itemsets having support at least 2% and
containing more than three items". A data mining query
can be expressed by means of a declarative language.
Using the SQL language extension we introduced in [8],
the presented example data mining query takes the
following form.

mine itemset
from (select set(product)
 from sales
 where date between '1-06-01'
 and '30-06-01'
 group by trans_id)
where support(itemset)>=0.02
 and length(itemset)>3

Next, the data mining query is sent to the DBMS. The
DBMS has to compile the query into a microprogram and
then to execute the microprogram, delivering the results
to the user or to the user's application. We will show that
a data mining query can be compiled into a number of
alternative microprograms and that a query optimizer is
needed to efficiently choose the best one. First we discuss
available access paths for data mining and then we
explain the steps of the optimization process.

3 Access paths for data mining

A data mining query can be executed in many different
ways. We classify them into three groups:
1. A traditional data mining algorithm can be used to

discover interesting patterns directly from the
original database. We will refer to this method as to
Full Table Scan.

2. A materialized view of the original database can be
used by a data mining algorithm instead of the
original database itself. A materialized view can
introduce some form of data reduction (lossless or
lossy), thus reducing I/O activity of a data mining
algorithm. We will refer to this method as to
Materialized View Scan.

3. Existing data mining results can be used to execute a
new data mining query. Data mining results can be
stored in a form of a data mining view, therefore we
will refer to this method as to Materialized Data
Mining View Scan.

3.1 Full Table Scan

The Full Table Scan method involves regular data mining
algorithms like Apriori to discover all interesting patterns
by counting their occurrences in the original database.

ACCESS PATHS FOR DATA MINING QUERY OPTIMIZER 3

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

Due to the large size of the original database, the
performance of the algorithms is relatively bad.
Moreover, many algorithms perform good only in certain
conditions related to: data values distribution, support
threshold value, available memory, etc. In a typical
scenario, the user is responsible for selecting an
appropriate (in terms of performance) data mining
algorithm.

3.2 Materialized View Scan

Weak performance of many of the regular data mining
algorithms is caused by the need to make multiple passes
over the original database. If we could reduce or compress
the original database, the passes would be less costly
since they would use less I/O operations. Database
technology already offers a data structure that can be
efficiently used to reduce the original database:
materialized views. A materialized view (MV) is a
database view, having its contents permanently stored in a
database. Materialized views are normally created by
users to support data-intensive operations. We propose to
use materialized views to support data mining algorithms.

Since not every materialized view guarantees a correct
data mining result (according to a full table scan
performed on the original database), we define the
following types of materialized views.

Definition (Strong pattern preserving view). Given the
original database D, the minsup threshold and the view V,
we say the V is a strong pattern preserving view if for
each pattern p having sup(p,D)>minsup, we have
sup(p,V)=sup(p,D).

Definition (Weak pattern preserving view). Given the
original database D, the minsup threshold and the view V,
we say the V is a strong pattern preserving view if for
each pattern p having sup(p,D)>minsup, we have
sup(p,V)>=sup(p,D).

According to the above definitions, if we are given a
materialized view which is strong pattern preserving, we
can use it as an alternative data source for a data mining
algorithm. If we are given a materialized view which is a
weak pattern preserving, we can use it to discover
potentially frequent patterns, but then we have to use the
original database to make the final verification of their
support values. Consider the following illustrative
examples of materialized views.

Example 1. Given is the database table ISETS and the
materialized view ISETS_MV1 created by means of the
following SQL statement.

create materialized view isets_mv1
 as
select set, count(*)
from isets
group by set

ISETS:

sid set
--- -------------
 1 {5, 11, 18}
 2 {1, 5, 14, 18}
 3 {5, 11, 18}

ISETS_MV1:

set count(*)
-------------- --------
{5, 11, 18} 2
{1, 5, 14, 18} 1

For the materialized view ISETS_MV1, we can
intuitively define the support measure as the weighted
function of the number of supporting itemsets multiplied
by their corresponding count(*) values.

According to our definitions, the view ISETS_MV1 is
a strong pattern preserving view (notice that e.g. sup({5,
18}, V) = 3 and sup({5, 18}, D) = 3). It can be used by a
data mining algorithm instead of the original table ISETS,
possibly reducing the number of required I/O operations.

Example 2. Given is the database table ISETS and the
materialized view ISETS_MV2 created by means of the
following SQL statement.

create materialized view isets_mv2
 as
select signature(set,10)
from isets;

where the user-defined function signature() computes the
following binary signature for an itemset:

N mod

N mod xN mod
21

2 ...

...2 2)},,..,,({ 21

kx

x
k

AND

ANDNxxxsignature =

where AND is a bit-wise and operator.

ISETS

sid set
--- --------------
 1 {5, 7, 11, 22}
 2 {4, 5, 6, 17}
 3 {7, 22}

ISETS_MV2

sid signature(set,10)
--- ---------------------

1 0110010100
2 0000111100
3 0010000100

For the materialized view ISETS_MV2, we can
intuitively define the support measure as the percentage of
signatures that have their bits set to '1' on at least the same
positions as the signature for the analyzed itemset.

According to our definitions, the view ISETS_MV2 is
a weak pattern preserving view (notice that e.g.
sup({5,17}, V) = 2 while sup({5,17}, D) = 1). It can be

4 BUSINESS INFORMATION SYSTEMS – BIS 2002

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

used by a data mining algorithm to find a superset of the
actual result, but the original table ISETS must be also
used to perform the final verification.

Materialized views can be created explicitly by users, or
implicitly by a DBMS during the first step of a data
mining algorithm execution. The implicit generation
introduces some additional cost, but for large data mining
queries this cost can be negligible.

3.3 Materialized Data Mining View Scan

Since data mining users execute series of similar
queries before they get satisfying results, it can be helpful
to exploit materialized results of previous queries when
answering a new one. We use the term materialized data
mining view to refer to intentionally gathered and
permanently stored results of a data mining query.

Since not every materialized data mining view
guarantees a correct data mining result (according to a full
table scan performed on the original database), we define,
according to [3], the following relations between data
mining queries. the following relations between data
mining queries and materialized data mining views.

1. A materialized data mining view MDMV1 includes a

data mining query DMQ1, if for all data sets, each
frequent itemset in the result of DMQ2 is also
contained in MDMQ1 with the same support value.
According to our previous definitions, in this case
MDMV1 is a strong pattern preserving view.

2. A materialized data mining view MDMV1 dominates a
data mining query DMQ1, if for all data sets, each
frequent itemset in the result of DMQ1 is also
contained in MDMQ1, and for a frequent itemset
returned by both DMQ1 and MDMV1, its support value
evaluated by MDMV1 is not less than in case of
DMQ1. According to our previous definitions, in this
case MDMV1 is a weak pattern preserving view.

Equivalence is a particular case of inclusion, and
inclusion is a particular case of dominance. Equivalence,
inclusion, and dominance meet the transitivity property.

If for a given data mining query, results of a data
mining query equivalent to it, including it, or dominating
it are available, the data mining query can be answered
without running a costly mining algorithm. In case of
equivalence no processing is necessary, since the queries
have the same results. In case of inclusion, one scan of the
materialized data mining query result is necessary to filter
out frequent itemsets that do not satisfy constraints of the
included query. In case of dominance, one verifying scan
of the source data set is necessary to evaluate the support
values of materialized frequent itemsets (filtering out the

frequent itemsets that do not satisfy constraints of the
dominated query is also required). Consider the following
illustrative examples of materialized data mining views.

Example 1. Given the ISETS2 table, a user has issued a
data mining query to discover all frequent patterns having
their support values equal to at least 30%. The results of
the data mining query have been permanently stored in
the database in the form of the materialized data mining
view ISETS_DMV1, created by means of the following
statement.

create materialized view isets_dmv1
 as
mine itemset
from isets2
where support(set)>=0.3

ISETS2

sid set
--- ------------
 1 5, 6, 7, 22
 2 5, 6, 17
 3 7, 22
 4 2, 5, 6

ISETS_DMV1

itemset (support)

{5}(0.75)
{6}(0.75)
{7}(0.5)
{22}(0.5)
{5,6}(0.75)
{7,22}(0.5)

Using the above results we can answer an included data
mining query simply by filtering the frequent patterns.
Assume a user issued the following data mining query.

mine itemset
from isets2
where support(set)>=0.6

Using the materialized data mining view ISETS_DMV1,
the above data mining query can be automatically
rewritten to the form of:

select itemset
from isets_dmv1
where support(itemset)>=0.6

Finally, the result of the user query is shown below.

ISETS_DMV1

itemset (support)

{5}(0.75)
{6}(0.75)
{7}(0.5)
{22}(0.5)
{5,6}(0.75)
{7,22}(0.5)

Result of the new data
mining query:

itemset (support)

{5}(0.75)
{6}(0.75)
{7}(0.5)
{22}(0.5)
{5,6}(0.75)
{7,22}(0.5)

ACCESS PATHS FOR DATA MINING QUERY OPTIMIZER 5

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

Example 2. Given the ISETS3 table, a user has issued a
data mining query to analyze only the rows 1,2,3,4 to
discover all frequent patterns having their support values
equal to at least 30%. The results of the data mining query
have been permanently stored in the database in the form
of the materialized data mining view ISETS_DMV2,
created by means of the following statement.

create materialized view isets_dmv2
 as
mine itemset
from (select set
 from isets2
 where sid in (1,2,3,4))
where support(set)>=0.3

ISETS3

sid set
--- ------------
 1 5, 6, 7, 22
 2 5, 6, 17

3 7, 22
4 2, 5, 6
5 2, 6, 22
6 6, 22

ISETS_DMV2

itemset (support)

{5}(0.75)
{6}(0.75)
{7}(0.5)
{22}(0.5)
{5,6}(0.75)
{7,22}(0.5)

Using the above results we can answer a data mining
query over the whole database table ISETS3. Assume a
user issued the following data mining query.

mine itemset
from (select set
 from isets2
 where sid in (1,2,3,4,5,6))
where support(set)>=0.3

Notice that the above data mining query is dominated by
the union of the following two data mining queries (every
itemset which is frequent in the whole table must also be
frequent in at least one portion of it):

mine itemset
from (select set
 from isets2
 where sid in (1,2,3,4))
where support(set)>=0.3
union
mine itemset
from (select set
 from isets2
 where sid in (5,6))
where support(set)>=0.3

We can rewrite the first part of the above union to use the
materialized data mining view ISETS_DMV2. The

second part of the union must be evaluated using the full
table scan method or the materialized view scan method
(lack of a suitable materialized data mining view).
However, since the result of the union is a superset of the
actual result of the user's query, we still need to perform
additional support evaluation and final filtering.

We use a traditional data mining algorithm to discover
frequent itemsets in the remaining part of the original
database:

sid set
--- ---------

5 2, 6, 22
6 6, 22

Frequent patterns minsup=0.30

{6}(1.00)
{22}(1.00)
{6,22}(1.00)

Next, we merge the two sets of frequent itemsets and
count their actual support by performing another scan
over the database table ISETS3. The itemsets which do
not appear to be frequent are then removed from the result
(not the case here).

ISETS3

sid set
--- ------------
 1 5, 6, 7, 22
 2 5, 6, 17
 3 7, 22
 4 2, 5, 6
 5 2, 6, 22
 6 6, 22

Frequent patterns minsup=0.30

{5}(0.5)
{6}(0.83)
{7}(0.33)
{22}(0.67)
{5,6}(0.5)
{6,22}(0.5)
{7,22}(0.33)

Generally, materialized data mining views are created
explicitly by users. However, there are applications where
implicit view generation can significantly improve system
performance. Assume batch environment, where a
number of data mining queries are submitted by users for
asynchronous execution. If some of these queries are
similar, it can be helpful to organize the queries in a way
that materialized results of one query are used to execute
another one more efficiently. We refer to such process as
to multiple data mining query optimization.

3.4 Architecture of the Data Mining Query
Optimizer

We have described various methods to execute a data
mining query. However, we do not expect users to make
decisions which method to use for a particular query.
Instead, following the idea of RDBMS query optimizers,
we emphasize the need to develop the concept of a data
mining query optimizer. A data mining query optimizer is
a software component which chooses the fastest method
to execute every data mining query submitted by users.
Meaning of “the fastest” can be application dependent –

6 BUSINESS INFORMATION SYSTEMS – BIS 2002

Witold Abramowicz (ed.), Business Information Systems, Proceedings of BIS 2002, Poznan, Poland

typically the optimization goal is to maximize throughput
or to minimize response time.

In order to chose the appropriate method, a data
mining query optimizer must be able to estimate
execution costs for potential methods. In order to
calculate the disk and cpu costs, database statistical model
is needed. The model contains such coefficients as:
number of disk blocks of a database and pattern
histograms.

The statistical model of a database can be generated in
three ways:
1. Users can explicitly and regularly run a statistics

gatherer over the database.
2. At the beginning of a data mining query execution, a

database sample can be used to dynamically gather the
required statistical information.

3. Each data mining query being executed can
automatically gather statistical information for the
future use.

Since evaluating the complexity of many data mining
algorithms requires detailed actual information on data
characteristics, sampling can be the most promising
method to build a precise statistical model. Although this
additional sampling introduces some overhead to the
query execution time, it allows us to make a decision
which can spare hours of processing time.

5 Conclusions

We have showed the directions of extending a regular
DBMS query optimizer to provide for data mining query
optimization. Apart from using a traditional data mining
algorithm, frequent itemsets can be discovered with help
of materialized views and materialized data mining views.
The choice of the most efficient method should be done
by the data mining query optimizer, using a model of a
data mining method as well as a statistical model of the
database table. The statistical model of the database table
(or a part of it) can be gathered using a preliminary step of
sampling.

For the future work we plan to develop efficient
statistics gathering algorithms, which will not introduce
significant overhead to the optimization process.
Performance models for popular data mining algorithms
must also be created to allow the optimizer to consider
them during optimization.

References

1. Agrawal, R., Imielinski, T. , Swami, A.: Mining Association
Rules Between Sets of Items in Large Databases. Proc. of
1993 ACM-SIGMOD Int. Conf. Management of Data
(1993)

2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining
Association Rules. Proc. 1994 Int. Conf. Very Large
Databases (1994)

3. Baralis E., Psaila G.: Incremental Refinement of Mining
Queries. Proc. of the 1st DaWaK Conference (1999)

4. Elmasri R., Navathe S.B.: Fundamentals of Database
Systems, Second Edition (1994)

5. Houtsma, M., Swami, A.: Set-oriented Mining for
Association Rules in Relational Databases. Proc. of 1995
Int. Conf. Data Engineering (1995)

6. Imielinski T., Mannila H.: A Database Perspective on
Knowledge Discovery. Communications of the ACM, Vol.
39, No. 11 (1996)

7. Mannila, H., Toivonen, H., Verkami, A.I.: Efficient
Algorithms for Discovering Association Rules. Proc.
AAAI'94 Workshop on Knowledge Discovery in Databases
(KDD'94) (1994)

8. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized
Data Mining Views. Proc. of the 4th PKDD Conference
(2000)

9. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge
Cache for Interactive Discovery of Association Rules. Proc.
of the 5th KDD Conference (1999)

