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Abstract 
 
Data mining research has developed many pattern 

discovery algorithms dedicated to specific data and 
pattern characteristics. We argue that a user should not 
be responsible for choosing the most efficient algorithm to 
solve a particular data mining problem. Instead, a data 
mining query optimizer should follow the cost-based 
optimization techniques to select an appropriate 
algorithm to solve the user's problem. In this paper we 
discuss the process of data mining query optimization and 
we extend the list of choices the optimizer can make. 

1. Introduction 

Data mining is a relatively new database research field, 
which focuses on algorithms and methods for discovering 
interesting patterns in large databases [6]. An interesting 
pattern is typically a description of strong correlation 
between attributes of a data object. Many data mining 
methods developed in the area have proved to be useful in 
decision support applications: association discovery, 
sequential pattern discovery, classifier discovery, 
clustering, etc.  

Data mining research community has proposed many 
algorithms for discovering various types of patterns. 
Unfortunately, the algorithms exhibit significant 
computational complexity, resulting in long processing 
times. The computational cost of data mining algorithms 
is usually influenced by a need to perform multiple passes 
over the source data and to perform a significant amount 
of in-memory operations. Moreover, the algorithms' 
performance is also dependent on source data 
characteristics - for example, some algorithms perform 
better for long patterns, some algorithms are dedicated to 
low cardinality attributes, some algorithms benefit from 
uniform data distribution, etc. 

From a user’s point of view, data mining can be seen 
as an interactive and iterative process of advanced 
querying: a user specifies a request to discover a specific 
class of patterns, and then a data mining system returns 
discovered patterns to the user.  A user interacting with a 
data mining system has to specify several constraints on 

patterns to be discovered. However, usually it is not 
trivial to find a set of constraints leading to the satisfying 
set of patterns. Thus, users are very likely to execute a 
series of similar data mining queries before they find what 
they need.  

In the context of our data mining research we follow a 
promising idea of integrating data mining into database 
management systems (DBMSs). We argue that DBMS 
functionality should be extended to completely support 
data mining applications. This involves the following 
aspects: (1) query language extension to allow users to 
formulate their specific data mining problems, (2) logical 
and physical structure extensions to allow users to 
permanently store discovered patterns, and (3) query 
compiler/optimizer extension to generate alternative 
query execution plans and to choose the best one. In this 
paper we discuss the required DBMS query optimizer 
modifications needed to provide for data mining query 
optimization. Our research results are presented in the 
context of association discovery. 

1.1 Preliminaries 

Let L be a set of items. An itemset I is a subset of L. A 
database D is a set of itemsets. Consider two itemsets I1 
and I2. We say that I1 supports I2 if I1⊆I2. A frequent 
itemset X is an itemset which is supported by more than a 
user-defined number of itemsets in D. Given a user-
defined support threshold minsup, the problem of 
association discovery is to find all frequent itemsets in D. 
Typically, the result of association discovery consists of 
the frequent itemsets and their support measures sup(X,D) 
(percentages of supporting itemsets in D). 

 
Example. Consider the following database D: 

 
Itemset 
{1, 5, 8, 10} 
{2, 8, 10, 12} 
{1, 10, 11} 
{3, 5, 10} 
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Suppose the user-defined support threshold is 30%, what 
means that we want to find all itemsets that are supported 
by at least 30% of all the database itemsets (by at least 2 
itemsets). The result of the association discovery will be: 
{1} (support=50%), {5} (support=50%), {8} 
(support=50%), {10} (support=100%), {1, 10} 
(support=50%), {5, 10} (support=50%), {8, 10} 
(support=50%). 

1.2 Related Work 

The problem of association rule mining was introduced 
in [1] and the algorithm called AIS was presented. In [2], 
a more effective algorithm, called Apriori was presented. 
Since that time, a number of association rule mining 
algorithms have been proposed [e.g. 5,7].   

In [3] incremental refinement of association rule 
queries was addressed. The queries were expressed using 
the MINE RULE operator based on a complex constraint 
model. The equivalence, inclusion, and dominance 
relationships between queries were introduced, and 
syntactic differences resulting in these relationships were 
discussed. For the assumed constraint model, algorithms 
for answering an association rule query using the 
applicable results of a previous query were presented.  

In [8] the concept of materialized data mining views 
was introduced. Materialized data mining views allow 
users to materialize results of data mining queries, with an 
option of periodic refreshing of their contents in order to 
reflect the possible changes in the source data set. In the 
paper, general ideas of application of materialized data 
mining views to optimization of the processing of the 
incoming queries were also presented. 

Cost-based query optimization is widely used in 
database management systems [4]. The cost-based 
optimizer chooses the query execution plan with the 
lowest estimated cost. The cost of a given execution 
strategy is estimated using known cost functions for the 
algorithms being used and certain statistics maintained for 
the database. 

2 Data Mining Query Processing 

We assume the following model of user interaction 
with a DBMS extended with data mining functions. A 
user defines his/her data mining problem in the form of a 
data mining query. The data mining query describes:  
(1) a data source on which to perform data mining,  
(2) a support threshold to determine frequent itemsets,  
(3) filtering predicates to narrow source data set, and  
(4) filtering predicates to narrow the set of discovered 
frequent itemsets. For example, a data mining query can 
state that a user is interested in "processing last month's 

sale transactions from the SALES table to find all 
frequent itemsets having support at least 2% and 
containing more than three items". A data mining query 
can be expressed by means of a declarative language. 
Using the SQL language extension we introduced in [8], 
the presented example data mining query takes the 
following form. 

 
mine itemset 
from (select set(product) 
      from sales 
      where date between '1-06-01' 
        and '30-06-01' 
      group by trans_id) 
where support(itemset)>=0.02 
  and length(itemset)>3 
 

Next, the data mining query is sent to the DBMS. The 
DBMS has to compile the query into a microprogram and 
then to execute the microprogram, delivering the results 
to the user or to the user's application. We will show that 
a data mining query can be compiled into a number of 
alternative microprograms and that a query optimizer is 
needed to efficiently choose the best one. First we discuss 
available access paths for data mining and then we 
explain the steps of the optimization process. 

3 Access paths for data mining 

A data mining query can be executed in many different 
ways. We classify them into three groups: 
1. A traditional data mining algorithm can be used to 

discover interesting patterns directly from the 
original database. We will refer to this method as to 
Full Table Scan. 

2. A materialized view of the original database can be 
used by a data mining algorithm instead of the 
original database itself. A materialized view can 
introduce some form of data reduction (lossless or 
lossy), thus reducing I/O activity of a data mining 
algorithm. We will refer to this method as to 
Materialized View Scan. 

3. Existing data mining results can be used to execute a 
new data mining query. Data mining results can be 
stored in a form of a data mining view, therefore we 
will refer to this method as to Materialized Data 
Mining View Scan. 

3.1 Full Table Scan 

The Full Table Scan method involves regular data mining 
algorithms like Apriori to discover all interesting patterns 
by counting their occurrences in the original database. 
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Due to the large size of the original database, the 
performance of the algorithms is relatively bad. 
Moreover, many algorithms perform good only in certain 
conditions related to: data values distribution, support 
threshold value, available memory, etc. In a typical 
scenario, the user is responsible for selecting an 
appropriate (in terms of performance) data mining 
algorithm. 

3.2 Materialized View Scan 

Weak performance of many of the regular data mining 
algorithms is caused by the need to make multiple passes 
over the original database. If we could reduce or compress 
the original database, the passes would be less costly 
since they would use less I/O operations. Database 
technology already offers a data structure that can be 
efficiently used to reduce the original database: 
materialized views. A materialized view (MV) is a 
database view, having its contents permanently stored in a 
database. Materialized views are normally created by 
users to support data-intensive operations. We propose to 
use materialized views to support data mining algorithms. 

Since not every materialized view guarantees a correct 
data mining result (according to a full table scan 
performed on the original database), we define the 
following types of materialized views. 

 
Definition (Strong pattern preserving view). Given the 
original database D, the minsup threshold and the view V, 
we say the V is a strong pattern preserving view if for 
each pattern p having sup(p,D)>minsup, we have 
sup(p,V)=sup(p,D). 
 
Definition (Weak pattern preserving view). Given the 
original database D, the minsup threshold and the view V, 
we say the V is a strong pattern preserving view if for 
each pattern p having sup(p,D)>minsup, we have 
sup(p,V)>=sup(p,D). 

 
According to the above definitions, if we are given a 
materialized view which is strong pattern preserving, we 
can use it as an alternative data source for a data mining 
algorithm. If we are given a materialized view which is a 
weak pattern preserving, we can use it to discover 
potentially frequent patterns, but then we have to use the 
original database to make the final verification of their 
support values. Consider the following illustrative 
examples of materialized views. 

 
Example 1. Given is the database table ISETS and the 
materialized view ISETS_MV1 created by means of the 
following SQL statement. 

 
 

create materialized view isets_mv1 
 as 
select set, count(*) 
from isets 
group by set 
 
 

ISETS: 
 
sid  set 
---  ------------- 
  1  {5, 11, 18} 
  2  {1, 5, 14, 18} 
  3  {5, 11, 18} 

 

ISETS_MV1: 
 
set             count(*) 
--------------  -------- 
{5, 11, 18}      2 
{1, 5, 14, 18}   1 

 
For the materialized view ISETS_MV1, we can 
intuitively define the support measure as the weighted 
function of the number of supporting itemsets multiplied 
by their corresponding count(*) values. 

According to our definitions, the view ISETS_MV1 is 
a strong pattern preserving view (notice that e.g. sup({5, 
18}, V) = 3 and sup({5, 18}, D) = 3). It can be used by a 
data mining algorithm instead of the original table ISETS, 
possibly reducing the number of required I/O operations. 

 
Example 2. Given is the database table ISETS and the 
materialized view ISETS_MV2 created by means of the 
following SQL statement. 

 
create materialized view isets_mv2 
 as 
select signature(set,10) 
from isets; 
 

where the user-defined function signature() computes the 
following binary signature for an itemset: 
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where AND is a bit-wise and operator. 

 
ISETS 
 
sid  set 
---  -------------- 
  1  {5, 7, 11, 22} 
  2  {4, 5, 6, 17} 
  3  {7, 22} 
 

ISETS_MV2 
 
sid  signature(set,10) 
---  --------------------- 

1 0110010100 
2 0000111100 
3 0010000100 

 
For the materialized view ISETS_MV2, we can 
intuitively define the support measure as the percentage of 
signatures that have their bits set to '1' on at least the same 
positions as the signature for the analyzed itemset. 

According to our definitions, the view ISETS_MV2 is 
a weak pattern preserving view (notice that e.g. 
sup({5,17}, V) = 2 while sup({5,17}, D) = 1). It can be 
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used by a data mining algorithm to find a superset of the 
actual result, but the original table ISETS must be also 
used to perform the final verification.  

 
 

Materialized views can be created explicitly by users, or 
implicitly by a DBMS during the first step of a data 
mining algorithm execution. The implicit generation 
introduces some additional cost, but for large data mining 
queries this cost can be negligible.  

3.3 Materialized Data Mining View Scan 

Since data mining users execute series of similar 
queries before they get satisfying results, it can be helpful 
to exploit materialized results of previous queries when 
answering a new one. We use the term materialized data 
mining view to refer to intentionally gathered and 
permanently stored results of a data mining query. 

Since not every materialized data mining view 
guarantees a correct data mining result (according to a full 
table scan performed on the original database), we define, 
according to [3], the following relations between data 
mining queries. the following relations between data 
mining queries and materialized data mining views. 

 
1.   A materialized data mining view MDMV1 includes a 

data mining query DMQ1, if for all data sets, each 
frequent itemset in the result of DMQ2 is also 
contained in MDMQ1 with the same support value. 
According to our previous definitions, in this case 
MDMV1 is a strong pattern preserving view. 

2. A materialized data mining view MDMV1 dominates a 
data mining query DMQ1, if for all data sets, each 
frequent itemset in the result of DMQ1 is also 
contained in  MDMQ1, and for a frequent itemset 
returned by both DMQ1 and MDMV1, its support value 
evaluated by MDMV1 is not less than in case of 
DMQ1. According to our previous definitions, in this 
case MDMV1 is a weak pattern preserving view. 
 

Equivalence is a particular case of inclusion, and 
inclusion is a particular case of dominance. Equivalence, 
inclusion, and dominance meet the transitivity property. 

If for a given data mining query, results of a data 
mining query equivalent to it, including it, or dominating 
it are available, the data mining query can be answered 
without running a costly mining algorithm. In case of 
equivalence no processing is necessary, since the queries 
have the same results. In case of inclusion, one scan of the 
materialized data mining query result is necessary to filter 
out frequent itemsets that do not satisfy constraints of the 
included query. In case of dominance, one verifying scan 
of the source data set is necessary to evaluate the support 
values of materialized frequent itemsets (filtering out the 

frequent itemsets that do not satisfy constraints of the 
dominated query is also required). Consider the following 
illustrative examples of materialized data mining views. 

 
Example 1. Given the ISETS2 table, a user has issued a 
data mining query to discover all frequent patterns having 
their support values equal to at least 30%. The results of 
the data mining query have been permanently stored in 
the database in the form of the materialized data mining 
view ISETS_DMV1, created by means of the following 
statement. 

 
create materialized view isets_dmv1 
 as 
mine itemset 
from isets2 
where support(set)>=0.3 
 

ISETS2 
 
sid  set 
---  ------------ 
  1  5, 6, 7, 22 
  2  5, 6, 17 
  3  7, 22 
  4  2, 5, 6 
 

ISETS_DMV1 
 
itemset (support) 
----------------- 
{5}(0.75) 
{6}(0.75) 
{7}(0.5) 
{22}(0.5) 
{5,6}(0.75) 
{7,22}(0.5) 

 
Using the above results we can answer an included data 
mining query simply by filtering the frequent patterns. 
Assume a user issued the following data mining query. 

 
mine itemset 
from isets2 
where support(set)>=0.6 
 

Using the materialized data mining view ISETS_DMV1, 
the above data mining query can be automatically 
rewritten to the form of: 

 
 
select itemset 
from isets_dmv1 
where support(itemset)>=0.6 
 

Finally, the result of the user query is shown below.  
 

ISETS_DMV1 
 
 
itemset (support) 
----------------- 
{5}(0.75) 
{6}(0.75) 
{7}(0.5) 
{22}(0.5) 
{5,6}(0.75) 
{7,22}(0.5) 

Result of the new data  
mining query: 
 
itemset (support) 
----------------- 
{5}(0.75) 
{6}(0.75) 
{7}(0.5) 
{22}(0.5) 
{5,6}(0.75) 
{7,22}(0.5) 
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Example 2. Given the ISETS3 table, a user has issued a 
data mining query to analyze only the rows 1,2,3,4 to 
discover all frequent patterns having their support values 
equal to at least 30%. The results of the data mining query 
have been permanently stored in the database in the form 
of the materialized data mining view ISETS_DMV2, 
created by means of the following statement. 

 
create materialized view isets_dmv2  
 as 
mine itemset 
from (select set 
      from isets2 
      where sid in (1,2,3,4)) 
where support(set)>=0.3 
 
 

ISETS3 
 
sid  set 
---  ------------ 
  1  5, 6, 7, 22 
  2  5, 6, 17 

3  7, 22 
4  2, 5, 6 
5  2, 6, 22 
6  6, 22 

ISETS_DMV2 
 
itemset (support) 
----------------- 
{5}(0.75) 
{6}(0.75) 
{7}(0.5) 
{22}(0.5) 
{5,6}(0.75) 
{7,22}(0.5) 

 
Using the above results we can answer a data mining 
query over the whole database table ISETS3. Assume a 
user issued the following data mining query. 

 
mine itemset 
from (select set 
      from isets2 
      where sid in (1,2,3,4,5,6)) 
where support(set)>=0.3 
 

Notice that the above data mining query is dominated by 
the union of the following two data mining queries (every 
itemset which is frequent in the whole table must also be 
frequent in at least one portion of it): 

 
mine itemset 
from (select set 
      from isets2 
      where sid in (1,2,3,4)) 
where support(set)>=0.3 
union 
mine itemset 
from (select set 
      from isets2 
      where sid in (5,6)) 
where support(set)>=0.3 
 

We can rewrite the first part of the above union to use the 
materialized data mining view ISETS_DMV2. The 

second part of the union must be evaluated using the full 
table scan method or the materialized view scan method 
(lack of a suitable materialized data mining view). 
However, since the result of the union is a superset of the 
actual result of the user's query, we still need to perform 
additional support evaluation and final filtering. 

We use a traditional data mining algorithm to discover 
frequent itemsets in the remaining part of the original 
database: 

 
sid  set 
---  --------- 

5  2, 6, 22 
6  6, 22 

Frequent patterns minsup=0.30 
----------------------------- 
{6}(1.00) 
{22}(1.00) 
{6,22}(1.00) 

 
Next, we merge the two sets of frequent itemsets and 
count their actual support by performing another scan 
over the database table ISETS3. The itemsets which do 
not appear to be frequent are then removed from the result 
(not the case here). 

 
ISETS3 
 
sid  set 
---  ------------
  1  5, 6, 7, 22 
  2  5, 6, 17 
  3  7, 22 
  4  2, 5, 6 
  5  2, 6, 22 
  6  6, 22 

Frequent patterns minsup=0.30
-----------------------------
{5}(0.5) 
{6}(0.83) 
{7}(0.33) 
{22}(0.67) 
{5,6}(0.5) 
{6,22}(0.5) 
{7,22}(0.33) 
  

 
 
Generally, materialized data mining views are created 
explicitly by users. However, there are applications where 
implicit view generation can significantly improve system 
performance. Assume batch environment, where a 
number of data mining queries are submitted by users for 
asynchronous execution. If some of these queries are 
similar, it can be helpful to organize the queries in a way 
that materialized results of one query are used to execute 
another one more efficiently. We refer to such process as 
to multiple data mining query optimization. 

3.4 Architecture of the Data Mining Query 
Optimizer 

We have described various methods to execute a data 
mining query. However, we do not expect users to make 
decisions which method to use for a particular query. 
Instead, following the idea of RDBMS query optimizers, 
we emphasize the need to develop the concept of a data 
mining query optimizer. A data mining query optimizer is 
a software component which chooses the fastest method 
to execute every data mining query submitted by users. 
Meaning of “the fastest” can be application dependent – 
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typically the optimization goal is to maximize throughput 
or to minimize response time.  

In order to chose the appropriate method, a data 
mining query optimizer must be able to estimate 
execution costs for potential methods. In order to 
calculate the disk and cpu costs, database statistical model 
is needed. The model contains such coefficients as: 
number of disk blocks of a database and pattern 
histograms. 

 
The statistical model of a database can be generated in 
three ways: 
1. Users can explicitly and regularly run a statistics 

gatherer over the database. 
2. At the beginning of a data mining query execution, a 

database sample can be used to dynamically gather the 
required statistical information. 

3. Each data mining query being executed can 
automatically gather statistical information for the 
future use. 
 

Since evaluating the complexity of many data mining 
algorithms requires detailed actual information on data 
characteristics, sampling can be the most promising 
method to build a precise statistical model. Although this 
additional sampling introduces some overhead to the 
query execution time, it allows us to make a decision 
which can spare hours of processing time. 

5 Conclusions 

We have showed the directions of extending a regular 
DBMS query optimizer to provide for data mining query 
optimization. Apart from using a traditional data mining 
algorithm, frequent itemsets can be discovered with help 
of materialized views and materialized data mining views. 
The choice of the most efficient method should be done 
by the data mining query optimizer, using a model of a 
data mining method as well as a statistical model of the 
database table. The statistical model of the database table 
(or a part of it) can be gathered using a preliminary step of 
sampling. 

For the future work we plan to develop efficient 
statistics gathering algorithms, which will not introduce 
significant overhead to the optimization process. 
Performance models for popular data mining algorithms 
must also be created to allow the optimizer to consider 
them during optimization. 
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