
Pattern-Oriented Hierarchical Clustering*

Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Tadeusz.Morzy@put.poznan.pl

Marek.Wojciechowski@cs.put.poznan.pl
Maciej.Zakrzewicz@cs.put.poznan.pl

Abstract. Clustering is a data mining method, which consists in discovering
interesting data distributions in very large databases. The applications of
clustering cover customer segmentation, catalog design, store layout, stock
market segmentation, etc. In this paper, we consider the problem of discovering
similarity-based clusters in a large database of event sequences. We introduce a
hierarchical algorithm that uses sequential patterns found in the database to
efficiently generate both the clustering model and data clusters. The algorithm
iteratively merges smaller, similar clusters into bigger ones until the requested
number of clusters is reached. In the absence of a well-defined metric space, we
propose the similarity measure, which is used in cluster merging. The
advantage of the proposed measure is that no additional access to the source
database is needed to evaluate the inter-cluster similarities.

1 Introduction

Clustering is one of the most popular data mining methods [2] [3] [4] [5] [6] [7] [8]
[9] [11]. It consists in discovering interesting data distributions and patterns in very
large databases. Given k data points in a d-dimensional metric space, the problem of
clustering is to partition the data points into n clusters such that the data points within
a cluster are closer (more similar) to each other than data points in different clusters.
Clustering is often used for market segmentation, in which the customers are divided
into groups based on the similarity of their characteristics.

Clustering algorithms typically determine n partitions that optimize some criterion
function. The most commonly used criterion is the square-error criterion defined as
follows:

∑∑
= ∈

−=
n

i cp
i

i

mpE
1

2
 (1)

* This work was partially supported by the grant no. KBN 43-1309 from the

State Committee for Scientific Research (KBN), Poland.

where mi is the mean of cluster ci, p is a data point, and E is the square error. Many
clustering algorithms employ the idea of hierarchical clustering, which consists in
merging pairs of similar clusters to form new larger clusters.

Traditional clustering approaches deal with points in d-dimensional space.
However, not all types of information can be represented in this form. In many
applications, users operate on databases of event sequences, such as customer
purchase history given in Figure 1, where an ordered set of purchased products is
stored for each customer. Let us consider the general problem of the similarity of
sequences. It seems that e.g. the sequences a → b → c and b → c → d are similar
since the both contain the same subsequence b → c. But what can we say about the
similarity of the sequences e.g. a → b and c → d? We claim that these two sequences
also can be considered similar, if there are many other sequences in the database, that
contain them both, e.g. a → b → c → d, a → c → b → d, etc. Therefore, we assume
that two sequences are similar if either they contain the identical subsequences, or
their subsequences have the tendency to co-occur together in some other sequences.
For example, the customer 103 is more similar to the customer 104 than to the
customer 105 since the pair 103-104 has a common subsequence (tv_set → vcr →
cassette) while the pair 103-105 has no common subsequences. We are interested in
clustering sequences based on such intuitive similarity measure. We notice that this
problem cannot be solved using traditional clustering methods because: 1. the
sequences are variable-length, 2. the sequences cannot be represented in a d-
dimensional metric space, and 3. no natural distance function is available.

In this paper we address and solve the problem of partial clustering of sequential
data. We are interested in discovering an arbitrary number of possibly overlapping
clusters that hold the customers, whose behavior is similar to each other. We refer to
our clustering method as to partial clustering, because we allow the customers who
are not similar to any other not to be covered by any cluster, and we allow a customer
to belong to more than one cluster. To perform the partial clustering of sequential
data, we employ the idea of sequential pattern discovery [1] [10]. A sequential pattern
is a frequently occurring subsequence of database sequences. Sequential pattern
discovery consists in finding all sequential patterns, whose frequency is above some
user-defined minimum value. Thus, the discovered sequential patterns represent the
most common subsequences within the database sequences and can be used to
determine their similarity. For example, the sequential patterns that can be discovered
in the database from Figure 1 are: 'tv_set → vcr → cassette' (contained in two
database sequences), 'book → c_disk' (also contained in two), etc. Each of those
sequential patterns says that a number of customers bought one product, later on they
bought some other product, and so on.

The presented algorithm uses sequential patterns discovered in the database to
generate both the clustering model and cluster contents. For example, our algorithm
executed on the database from Fig. 1 with n=2 gives two clusters based on the
following clustering model:
• Cluster 1: described by the patterns: tv_set → vcr → cassette and bicycle →

b_ball; the cluster contains the following customers: 102, 103, 104,
• Cluster 2: described by the patterns: book → c_disk and lamp → pillow; the

cluster contains the following customers: 101, 105.

cust_id sequence
101 lamp → l_bulb → pillow → book → c_disk
102 t_rocket → bicycle → b_ball → s_bindings
103 tv_set → vcr → c_phone → cassette
104 bicycle → tv_set → b_ball → vcr → cassette
105 book → c_disk → dryer → lamp → pillow → d_washer

Fig. 1. Example of customer purchase history database

1.1 Related Work

In recent years, a number of clustering algorithms for large databases has been
proposed. In [8], a clustering method based on randomized search, called CLARANS
has been introduced. CLARANS was dedicated to solve problems of data mining in
spatial databases. The problem of clustering in large spatial databases was also
addressed in [2] and [3]. In [11], the authors presented a clustering method named
BIRCH whose I/O complexity was a little more than one scan of the data. In [5], the
hierarchical clustering algorithm named CURE was presented. The algorithm was
designed for identifying clusters having non-spherical shapes. In [6] and [7], a method
for hypergraph-based clustering of data in a high dimensional space has been
presented. In [9], a clustering method for data without distance functions was
considered, and the proposed algorithm tried to group together records that had
frequently co-occurring items. The implementation of the algorithm used frequent
item sets discovered by the association rule algorithm as hypergraph edges. [4]
described a novel approach for clustering collections of sets, and its application to the
analysis and mining of categorical data. The proposed algorithm facilitated a type of
similarity measure arising from the co-occurrence of values in the dataset.
Unfortunately, none of the works addressed the problem of clustering of sequences of
events.

The problem of frequent pattern discovery in sequential data was introduced in [1]
and three different algorithms were proposed. In [10], the problem was generalized by
adding time constraints and taxonomies.

1.2 Paper Outline

The paper is organized as follows. In Section 2, the basic definitions and the
formulation of the problem are given. Section 3 contains the problem decomposition
and the description of the algorithm for pattern-oriented clustering. The idea behind
our algorithm is illustrated by a detailed example. We conclude with a summary and
directions for future work in Section 4.

2 Problem Formulation

2.1 Definitions

Let L = {l1, l2, ..., lm} be a set of literals called items. A sequence S = <X1 X2 ... Xn> is
an ordered list of sets of items such that each set of items Xi ⊆ L. Let the database D
be a set of sequences.

We say that the sequence S1 = <Y1 Y2 ... Ym> supports the sequence S2 = <X1 X2 ...
Xn> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2 ⊆ Yi2, ..., Xn ⊆ Yin. We
also say that the sequence S2 is a subsequence of the sequence S1 (denoted by S2 ⊂ S1).

A frequent pattern is a sequence that is supported by more than a user-defined
minimum number of sequences in D. Let P be a set of all frequent patterns in D.

A cluster c is an ordered pair <Q,S>, where Q ⊆ P and S ⊆ D, and S is a set of all
database sequences supporting at least one pattern from Q. We call Q a cluster
description, and S a cluster content. We use a dot notation to refer to a cluster
description as to c.Q and to a cluster content as to c.S.

A union cab of the two clusters ca and cb is defined as follows:
cab = union(ca, cb) = < ca.Q ∪ cb.Q , ca.S ∪ ca.S >
Inter-cluster similarity is a co-occurrence function f(c1, c2). In this paper, we use

the following co-occurrence function:

SCSC

SCSC
CCf

..

..
),(

21

21
21 ∪

∩
= . (2)

The above similarity function returns values from the range of <0;1>, where the
value of 1 means that the clusters are identical while the value of 0 means that the
clusters exhibit no similarity at all.

2.2 Problem statement

Given a database D = {s1, s2, ..., sn} of data sequences, and a set P = {p1, p2, ..., pm} of
frequent patterns in D, the problem is to divide P into a set of clusters, such that

∅=∩∀
≠

QCQC ji
jiji

..
,,

, and inter-cluster similarity is minimized.

3 Pattern-Oriented Hierarchical Clustering

In this section, we describe a new clustering algorithm POPC for clustering large
volumes of sequential data. The algorithm implements the general idea of hierarchical
clustering. However, instead of starting with a set of clusters containing one data
sequence each, our algorithm uses previously discovered frequent patterns and starts
with clusters containing data sequences supporting the same frequent pattern. We
assume that a well-known algorithm for frequent pattern discovery is executed before.

3.1 Algorithm POPC

The algorithm for partial clustering based on frequently occurring patterns is
decomposed into the following phases:
• Transformation Phase, which prepares the database for effective similarity

evaluations,
• Merge Phase, which iteratively reduces the number of clusters by merging the

most similar ones,
• an optional Description Pruning Phase, which can be applied to compress the

generated clustering model.

3.1.1 Transformation Phase
In this phase, the database is transformed into a pattern-oriented form, which is more
suitable for evaluating unions and intersections of cluster contents (used in the
subsequent phases). For each frequent pattern we keep an ordered list of data
sequences supporting the pattern. Each data sequence is represented by its identifier,
e.g. in our example of sequences corresponding to lists of products bought by clients
of a supermarket, a sequence could be identified by a unique identifier of a client.
Sequences that do not support any frequent pattern are ignored.

Each pattern, together with the list of sequences supporting it, constitutes a cluster
whose description is a set that contains the pattern as its only element. The cluster's
content is made up of a set of data sequences from the list.

The proposed database representation simplifies evaluation of inter-cluster
similarities. There is no need to refer to the original database in subsequent phases of
the algorithm. Moreover, the size of the transformed database reduces as clusters are
being merged together. When the process is finished, the database contains the result
of clustering (descriptions and contents of the discovered clusters).

3.1.2 Merge Phase
Figure 2 presents the Merge Phase of the clustering algorithm. First, the m patterns
are mapped into m clusters, forming an initial set of clusters C1, where each cluster is
described by exactly one pattern. In the next step, the similarity function values are
evaluated for all possible combinations of clusters. The similarity values are stored in
a form of a matrix M1. Next, the algorithm iteratively merges together pairs of clusters
according to their similarity values and cluster contents' sizes. In each iteration k, the
two most similar clusters ca,cb ∈ Ck are determined, and replaced by a new cluster
cab = union(ca ,cb). If there are several pairs of clusters having maximal similarity
values, then the two clusters having the smallest contents are merged. The actual
merging is done by the function called cluster, described in detail in Section 3.1.2.2.
When the new cluster is created, the matrix containing similarity values has to be re-
evaluated. This operation is performed by means of the function called simeval,
described in Section 3.1.2.1.

The Merge Phase stops when the number of clusters reaches n or when there is no
such pair of clusters ca,cb ∈ Ck whose similarity is greater than 0. The latter condition
implies that the algorithm may discover a larger number of clusters than requested by
a user. In this case, the number of discovered clusters (as well as the fraction of the

original database covered by them) depends on the number and strength of frequent
patterns used for clustering. If the quality of clustering is unsatisfactory, the clustering
should be repeated with a higher number of frequent patterns (a set of patterns
satisfying a lower frequency threshold).

C1 = {ci: ci.Q={pi}, ci.S={sj: sj∈D ∧ sj supports pi}};
M1 = simeval(C1, ∅);
k=1;
while |Ck| > n and exist ca,cb ∈ Ck such that f(ca,cb) > 0 do begin

Ck+1 = cluster(Ck, Mk);
Mk+1 = simeval(Ck+1, Mk);
k++;

end;
Answer =Ck;

Fig. 2. Merge Phase

3.1.2.1 Similarity Matrix Evaluation: simeval
Similarity matrix Ml stores the values of the similarity function for all possible pairs
of clusters in an l-th algorithm iteration. The cell Ml(x,y) represents the similarity
value for the clusters cx and cy from the cluster set Cl (see example in Figure 3). The
function simeval computes the values of the similarity matrix Ml+1, using both the
similarity matrix Ml and the current cluster contents. Notice that in all iterations
except the first one, the similarity matrix need not be completely re-computed. Only
the similarity values concerning the newly created cluster have to be evaluated. Due
to diagonal symmetry of the similarity matrix, for k clusters, only (k2-k)/2 similarity
function values need to be computed before the first iteration, and only (k-1) in the
subsequent ones.

In each iteration, the size of the matrix decreases since two rows and two columns
corresponding to the clusters merged to form a new one are removed and only one
column and one row are added for a newly created cluster.

- f(c2, c1) f(c3, c1) f(c1,c2) = f(c2, c1)
f(c1,c2) - f(c3, c2) f(c1,c3) = f(c3, c1)
f(c1,c3) f(c2, c3) - f(c2, c3) = f(c3, c2)

Fig. 3. Structure of the similarity matrix for three clusters

3.1.2.2 Cluster Merging: cluster
In each iteration, the number of processed clusters decreases by one. The similarity-
based merging is done by the function called cluster. The function cluster scans the
similarity matrix and finds pairs of clusters, such that their similarity is maximal. If
there are many pairs of clusters that reach the maximal similarity values, then the
function cluster selects the one with the smallest size of the union of their contents.
Notice that no access to the original database is required to perform this phase of the

algorithm. The function cluster takes a set of clusters Ck as one of its parameters and
returns a set of clusters Ck+1 such that Ck+1 = (Ck \ {ca, cb}) ∪ {cab}, where ca,cb ∈ Ck

are clusters chosen for merging and cab = union(ca,cb).

3.1.3 Description Pruning Phase (optional)
The Merge Phase returns the complete set of the requested clusters. However, the
clusters may have descriptions that are not minimal. That is, some patterns included in
a description might be redundant in such a way that a set of data sequences supporting
the pattern will always be a subset of data sequences supporting some other pattern
included in the same description. In the optional Description Pruning Phase,
descriptions of all clusters can be tested whether they include a pair of patterns pa, pb

such that pa ⊂ pb. If such a pair is found, pb is removed from the description. Figure 4
presents the Description Pruning Phase of the algorithm.

C = the set of clusters generated in the Merge Phase;
for each ci ∈ C do

 while exist pa,pb ∈ ci.Q such that pa ⊂ pb do
ci.Q = ci.Q \ { pb };

Fig. 4. Description Pruning Phase

Notice that it is also possible to perform pruning of descriptions within the Merge
Phase for each newly created cluster.

3.2 Example

Consider a database of customer transactions shown in Figure 5. For each
transaction, we keep the transaction’s time, items bought in the transaction and a
unique customer identifier. Figure 6 shows an alternative representation of the
database, where an ordered set of purchased items is given for each customer.

Let us assume that a user wants to cluster customers who follow similar frequent
buying patterns into three clusters. Figure 7 shows frequent sequential patterns
discovered in the database from Figure 5 (with a support threshold of 25%). The
clustering algorithm starts with the Transformation Phase, which results in the initial
set of clusters shown in Figure 8.

Customer Id Transaction Time Items Bought
1
1
1
1

October 10 1998
December 10 1998
December 15 1998
February 19 1999

10 60
20 30
40
50

2
2
2
2

November 10 1998
November 21 1998
December 12 1998
January 18 1999

40
50
10
20 30 70

3
3
3
3
3

October 15 1998
November 29 1998
December 14 1998
January 22 1999
February 11 1999

40
50
10
80
20 30

4
4

December 20 1998
February 4 1999

10
20

5 February 12 1999 80
6
6

November 1 1998
November 22 1998

10
30 90

7 February 1 1999 20 30
8
8

October 10 1998
November 22 1998

60
100

9 January 12 1999 100
10 January 21 1999 90 100

Fig. 5. Database sorted by Customer ID and Transaction Time

ID Customer sequence
1 < (10 60) (20 30) (40) (50) >
2 < (40) (50) (10) (20 30 70) >
3 < (40) (50) (10) (80) (20 30) >
4 < (10) (20) >
5 < (80) >
6 < (10) (30 90) >
7 < (20) (30) >
8 < (60) (100) >
9 < (100) >

10 < (90 100) >

Fig. 6. Customer-sequence representation
of the database

Patterns with support > 25%
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

< (10) (20 30) >
< (10) (20) >
< (10) (30) >
< (20 30) >
< (10) >
< (20) >
< (30) >
< (40) (50) >
< (40) >
< (50) >
< (100) >

Fig. 7. Pattern set used for clustering

Cluster Description Sequences
ca

cb

cc

cd

ce

cf

cg

ch

ci

cj

ck

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

1, 2, 3
1, 2, 3, 4
1, 2, 3, 6
1, 2, 3, 7
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 6, 7
1, 2, 3
1, 2, 3
1, 2, 3
8, 9, 10

Fig. 8. Pattern-oriented representation of the database

Before the first iteration of the Merge Phase the similarity matrix has to be build.
The similarity matrix for the initial set of clusters from Figure 8 is shown in Figure 9.

ca cb cc cd ce cf cg ch ci cj ck

ca x 0.75 0.75 0.75 0.6 0.6 0.6 1 1 1 0
cb 0.75 x 0.6 0.6 0.8 0.8 0.5 0.75 0.75 0.75 0
cc 0.75 0.6 x 0.6 0.8 0.5 0.8 0.75 0.75 0.75 0
cd 0.75 0.6 0.6 x 0.5 0.8 0.8 0.75 0.75 0.75 0
ce 0.6 0.8 0.8 0.5 x 0.66 0.66 0.6 0.6 0.6 0
cf 0.6 0.8 0.5 0.8 0.66 x 0.66 0.6 0.6 0.6 0
cg 0.6 0.5 0.8 0.8 0.66 0.66 x 0.6 0.6 0.6 0
ch 1 0.75 0.75 0.75 0.6 0.6 0.6 x 1 1 0
ci 1 0.75 0.75 0.75 0.6 0.6 0.6 1 x 1 0
cj 1 0.75 0.75 0.75 0.6 0.6 0.6 1 1 x 0
ck 0 0 0 0 0 0 0 0 0 0 x

Fig. 9. Initial similarity matrix

In the first iteration there are six pairs of clusters having maximal similarity
(similarity = 1): (ca, ch), (ca, ci), (ca, cj), (ch, ci), (ch, cj) and (ci, cj). Since all the six
pairs have the same sum of cluster contents' sizes, any of them can be chosen for
merging (the actual choice may depend on a particular implementation of the
algorithm). In this example we assume that a pair of clusters first found during a scan
of the similarity matrix (performed row after row, from left to right) is chosen in such
situations. This leads to selecting (ca, ch) as the first pair of clusters to be merged. In
the next two iterations clusters having similarity = 1 are merged to form cahij. The
database and the similarity matrix after the third iteration are shown in Figure 10. In
the fourth iteration, we merge the clusters cb and ce (see Figure 11). In the fifth
iteration, the clusters cbe and cc are merged to form the intermediate result presented in
Figure 12. Then, the merging of the cluster clusters cd and cf in the sixth iteration
leads to the state illustrated by Figure 13.

Fig. 10. Database and similarity matrix after 3 iterations

Fig. 11. Database and similarity matrix after 4 iterations

Fig. 12. Database and similarity matrix after 5 iterations

Fig. 13. Database and similarity matrix after 6 iterations

Cluster Description Sequences
cahij

cb

cc

cd

ce

cf

cg

ck

p1, p8, p9, p10

p2

p3

p4

p5

p6

p7

p11

1, 2, 3
1, 2, 3, 4
1, 2, 3, 6
1, 2, 3, 7
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 6, 7
8, 9, 10

cahij cb cc cd ce cf cg ck

cahij x 0.75 0.75 0.75 0.6 0.6 0.6 0
cb 0.75 x 0.6 0.6 0.8 0.8 0.5 0
cc 0.75 0.6 x 0.6 0.8 0.5 0.8 0
cd 0.75 0.6 0.6 x 0.5 0.8 0.8 0
ce 0.6 0.8 0.8 0.5 x 0.66 0.66 0
cf 0.6 0.8 0.5 0.8 0.66 x 0.66 0
cg 0.6 0.5 0.8 0.8 0.66 0.66 x 0
ck 0 0 0 0 0 0 0 x

Cluster Description Sequences
cahij

cbe

cc

cd

cf

cg

ck

p1, p8, p9, p10

p2, p5

p3

p4

p6

p7

p11

1, 2, 3
1, 2, 3, 4, 6
1, 2, 3, 6
1, 2, 3, 7
1, 2, 3, 4, 7
1, 2, 3, 6, 7
8, 9, 10

cahij cbe cc cd cf cg ck

cahij x 0.6 0.75 0.75 0.6 0.6 0
cbe 0.6 x 0.8 0.5 0.66 0.66 0
cc 0.75 0.8 x 0.6 0.5 0.8 0
cd 0.75 0.5 0.6 x 0.8 0.8 0
cf 0.6 0.66 0.5 0.8 x 0.66 0
cg 0.6 0.66 0.8 0.8 0.66 x 0
ck 0 0 0 0 0 0 x

Cluster Description Sequences
cahij

cbce

cd

cf

cg

ck

p1, p8, p9, p10

p2, p3, p5

p4

p6

p7

p11

1, 2, 3
1, 2, 3, 4, 6
1, 2, 3, 7
1, 2, 3, 4, 7
1, 2, 3, 6, 7
8, 9, 10

cahij cbce cd cf cg ck

cahij x 0.6 0.75 0.6 0.6 0
cbce 0.6 x 0.5 0.66 0.66 0
cd 0.75 0.5 x 0.8 0.8 0
cf 0.6 0.66 0.8 x 0.66 0
cg 0.6 0.66 0.8 0.66 x 0
ck 0 0 0 0 0 x

Cluster Description Sequences
cahij

cbce

cdf

cg

ck

p1, p8, p9, p10

p2, p3, p5

p4, p6

p7

p11

1, 2, 3
1, 2, 3, 4, 6
1, 2, 3, 4, 7
1, 2, 3, 6, 7
8, 9, 10

cahij cbce cdf cg ck

cahij x 0.6 0.6 0.6 0
cbce 0.6 x 0.66 0.66 0
cdf 0.6 0.66 x 0.66 0
cg 0.6 0.66 0.66 x 0
ck 0 0 0 0 x

Fig. 14. Database and similarity matrix after 7 iterations

Fig. 15. Database and similarity matrix after 8 iterations

The intermediate results of the seventh and eighth iterations are presented in
Figures 14 and 15. After the eighth iteration, the requested number of clusters is
reached and the Merge Phase ends. Then, in the optional Description Pruning Phase
descriptions of the discovered clusters are being minimized. The following relations
between patterns are true: p2 ⊂ p1, p3 ⊂ p1, p4 ⊂ p1, p5 ⊂ p1, p6 ⊂ p1, p7 ⊂ p1, p5 ⊂ p2,
p6 ⊂ p2, p5 ⊂ p3, p7 ⊂ p3, p6 ⊂ p4, p7 ⊂ p4, p9 ⊂ p8, and p10 ⊂ p8. This leads to
removing p8 from the description of cluster cahij, and p2, p3, and p4 from the
description of cluster cbcdefg because each of them includes some other pattern from
the same description, for example p9 ⊂ p8 and they are both in the description of
cluster cahij. After completion of the Description Pruning Phase we get the final result
of clustering shown in Figure 16.

Cluster Description Customer Sequences
cahij

cbcdefg

ck

p1 = <(10) (20 30)>, p9 = <(40)>, p10 = <(50)>
p5 = <(10)>, p6 = <(20)>, p7 = <(30)>
p11 = <(100)>

1, 2, 3
1, 2, 3, 4, 6, 7
8, 9, 10

Fig. 16. Discovered clusters

The algorithm found three clusters, two of which overlap (the content of one of
them even includes the content of the other, but their descriptions do not imply that).
Data sequence of the customer 5 is not contained in any cluster because it did not
support any frequent pattern, which is a consequence of the fact that the customer did
not follow any typical buying pattern.

4 Conclusions and Future Work

We considered the problem of clustering sequential data in large databases. Due to the
limitations of the existing clustering methods, we introduced the new algorithm,
which uses frequent patterns to generate both clustering model and cluster contents.
The algorithm iteratively merges smaller, similar clusters into bigger ones until the
requested number of clusters is reached. In the absence of a well-defined metric

Cluster Description Sequences
cahij

cbcdef

cg

ck

p1, p8, p9, p10

p2, p3, p4, p5, p6

p7

p11

1, 2, 3
1, 2, 3, 4, 6, 7
1, 2, 3, 6, 7
8, 9, 10

cahij cbcdef cg ck

cahij x 0.5 0.6 0
cbcdef 0.5 x 0.83 0

cg 0.6 0.83 x 0
ck 0 0 0 x

Cluster Description Sequences
cahij

cbcdefg

ck

p1, p8, p9, p10

p2, p3, p4, p6, p5, p7

p11

1, 2, 3
1, 2, 3, 4, 6, 7
8, 9, 10

cahij cbcdefg ck

cahij x 0.5 0
cbcdefg 0.5 x 0

ck 0 0 x

space, we propose the cooccurrence-based similarity measure to be used in cluster
merging. The advantage of the proposed measure is that no additional access to the
source database is needed to evaluate the inter-cluster similarity.

In the future, we plan to extend this work along the following lines:
• analysis of the methods for disjoint clusters generation, where each source

sequence is allowed to belong to one cluster only,
• classification of sequential data, leading to generation of the classification rules.

References

1. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’l Conference on
Data Engineering (ICDE), Taipei, Taiwan (1995)

2. Ester M., Kriegel H-P., Sander J., Xu X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. Proc. of the 2nd Int’l Conference on
Knowledge Discovery and Data Mining (KDD), Portland, Oregon (1996)

3. Ester M., Kriegel H-P., Xu X.: A Database Interface for Clustering in Large Spatial
Databases. Proc. of the 1st Int’l Conference on Knowledge Discovery and Data Mining
(KDD), Montreal, Canada (1995)

4. Gibson D., Kleinberg J.M., Raghavan P.: Clustering Categorical Data: An Approach Based
on Dynamical Systems. Proc. of the 24th Int’l Conference on Very Large Data Bases
(VLDB), New York City, New York (1998)

5. Guha S., Rastogi R., Shim K.: CURE: An Efficient Clustering Algorithm for Large
Databases. Proc. of the ACM SIGMOD International Conference on Management of Data,
Seattle, Washington, USA (1998)

6. Han E., Karypis G., Kumar V., Mobasher B.: Clustering based on association rules
hypergraphs. Proc. Workshop on Research Issues on Data Mining and Knowledge
Discovery (1997)

7. Han E., Karypis G., Kumar V., Mobasher B.: Hypergraph Based Clustering in High-
Dimensional Data Sets: A summary of Results. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, Vol.21 No. 1 (1998)

8. Ng R.T., Han J.: Efficient and effective clustering methods for spatial data mining. Proc. of
the 20th International Conference on Very Large Data Bases (VLDB) , Santiago de Chile,
Chile (1994)

9. Ramkumar G. D., Swami A.: Clustering Data Without Distance Functions. Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, Vol.21 No. 1 (1998)

10. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. Proc. of the 5th Int’l Conference on Extending Database Technology
(EDBT), Avignon, France (1996)

11. Zhang T., Ramakrishnan R., Livny M.: Birch: An efficient data clustering method for very
large databases. Proc. of the ACM SIGMOD International Conference on Management of
Data, Montreal, Canada (1996)

