
Evaluation of the Mine Merge Method
 for Data Mining Query Processing∗

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{marek,mzakrz}@cs.put.poznan.pl

Abstract. In this paper we consider concurrent execution of multiple data
mining queries in the context of discovery of frequent itemsets. If such data
mining queries operate on similar parts of the database, then their overall I/O
cost can be reduced by transforming the set of data mining queries into another
set of non-overlapping queries, whose results can be used to efficiently answer
the original queries. We discuss the problem of multiple data mining query
optimization and experimentally evaluate the Mine Merge algorithm to
efficiently execute sets of data mining queries.

1 Introduction

Data mining is a database research field which aims at the discovery of trends,
patterns and regularities in very large databases. We are currently witnessing the
evolution of data mining environments towards their full integration with DBMS
functionality. In this context, data mining is considered to be an advanced form of
database querying, where users formulate declarative data mining queries, which are
then optimized and executed by one of data mining algorithms built into the DBMS.
One of the most significant issues in data mining query processing are their long
execution times, ranging from minutes to hours.

One of the most popular pattern types discovered by data mining queries are
frequent itemsets. Frequent itemsets describe co-occurrences of individual items in
item sets stored in the database. An example of a frequent itemset can be a collection
of products that customers typically purchase together during their visits to a
supermarket. Such frequent itemsets can be discovered in the database of customer
shopping baskets. Frequent itemsets are usually discovered using level-wise
algorithms, which divide the problem into multiple iterations of database scanning
and counting occurrences of candidate itemsets of equal size.

Due to long execution times, data mining queries are often performed in a batch
mode, where users submit sets of data mining queries to be executed during low
database activity time (e.g., night time). It is likely that the batches contain data

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for

Scientific Research (KBN), Poland.

mining queries that operate on similar parts of the database. If such queries are
executed independently, the same parts of the database are retrieved multiple times.

In [16] we introduced the problem of multiple data mining query optimization,
aimed at reducing the overall I/O activity of the batch of data mining queries. We
proposed two multi-query processing algorithms for discovery of frequent itemsets:
Common Counting and Mine Merge, providing theoretical cost analysis for each of
the methods. The Common Counting algorithm executes all the data mining queries
concurrently, performing a common database pass to count candidate itemsets
belonging to all the queries. Common Counting requires that all candidate itemsets for
multiple data mining queries fit in memory together. Mine Merge transforms a batch
of possibly overlapping queries into a set of queries operating on disjoint partitions of
the database, and then merges the results to generate answers to the original queries.

In [17] we discussed implementation details regarding the Common Counting
method and we presented experimental results proving its efficiency. In this paper we
analyze properties of the Mine Merge algorithm and experimentally evaluate its
performance.

1.1 Related Work

The problem of mining association rules was first introduced in [1] and an algorithm
called AIS was proposed. In [3], two new algorithms were presented, called Apriori
and AprioriTid that are fundamentally different from the previous ones. The
algorithms achieved significant improvements over AIS and became the core of many
new algorithms for mining association rules. Apriori and its variants first generate all
frequent itemsets (sets of items appearing together in a number of database records
meeting the user-specified support threshold) and then use them to generate rules.
Apriori and its variants rely on the property that an itemset can only be frequent if all
of its subsets are frequent, leading to a level-wise procedure.

Savasere, Omiecinski and Navathe have proposed an algorithm called Partition
[11], which discovers all frequent itemsets using at most two database passes.
Partition divides the database into logical, non-overlapping parts, and then it
discovers frequent itemsets inside each part. In the last step, the discovered frequent
itemsets are merged and their final supports are counted.

In [5], an algorithm called FUP (Fast Update Algorithm) was proposed for finding
the frequent itemsets in the expanded database using the old frequent itemsets. The
major idea of FUP algorithm is to reuse the information of the old frequent itemsets
and to integrate the support information of the new frequent itemsets in order to
reduce the pool of candidate itemsets to be re-examined. Another approach to
incremental mining of frequent itemsets was presented in [13]. The algorithm
introduced there required only one database pass and was applicable not only for
expanded but also for reduced database. Along with the itemsets, a negative border
[14] was maintained.

The notion of data mining queries (or KDD queries) was introduced in [7]. The
need for Knowledge and Data Management Systems (KDDMS) as second generation
data mining tools was expressed. The ideas of application programming interfaces

and data mining query optimizers were also mentioned. Several data mining query
languages that are extensions of SQL were proposed [4][6][8][9][10].

Multi-query optimization has been extensively studied in the context of database
systems (e.g., [12]). A general idea was to exploit the fact that several queries to be
answered may share some common data. This general idea remains the same for data
mining query processing. However, specialized multi-query processing methods are
needed for data mining queries due to their different nature.

2 Basic Definitions and Problem Formulation

Definition 1 (Frequent itemsets). Let L={l1, l2, ..., lm} be a set of literals, called
items. Let a non-empty set of items T be called an itemset. Let D be a set of variable
length itemsets, where each itemset T⊆L. We say that an itemset T supports an item
x∈L if x is in T. We say that an itemset T supports an itemset X⊆L if T supports every
item in the set X. The support of the itemset X is the percentage of T in D that support
X. The problem of mining frequent itemsets in D consists in discovering all itemsets
whose support is above a user-defined support threshold.

C1 = {all 1-itemsets from D}
for (k=1; Ck ≠ ∅; k++)
 count(Ck, D);
 Lk = {c ∈ Ck | c.count ≥ minsup};
 Ck+1 = generate_candidates(Lk);
Answer = UkLk;

L1 = {frequent 1-itemsets}
for (k = 2; Lk-1 ≠ ∅; k++)
 Ck = generate_candidates(Lk-1);
 forall tuples t ∈ D
 Ct=Ck ∩ subset(t, k);
 forall candidates c ∈ Ct
 c.count++;
 Lk = {c ∈ Ck | c.count ≥ minsup}
Answer = UkLk;

Fig. 1. A general level-wise algorithm for association discovery (left)
and its Apriori implementation (right)

Definition 2 (Apriori algorithm). Apriori is an example of a level-wise algorithm for
frequent itemset discovery. It makes multiple passes over the input data to determine
all frequent itemsets. Let Lk denote the set of frequent itemsets of size k and let Ck
denote the set of candidate itemsets of size k. Before making the k-th pass, Apriori
generates Ck using Lk-1. Its candidate generation procedure ensures that all subsets of
size k-1 of Ck are all members of the set Lk-1. This method of pruning the Ck set using
Lk-1 significantly reduces the number of candidates that have to be counted. In the k-th
pass, the algorithm counts the supports of all the itemsets in Ck. To facilitate efficient
counting procedure, candidates are store in a hash-tree data structure. At the end of
the pass all itemsets in Ck with a support greater than or equal to the minimum support
form the set of frequent itemsets Lk. Figure 1 provides the pseudocode for the general
level-wise algorithm, and its Apriori implementation. The subset(t, k) function gives
all the subsets of size k in the set t.

Definition 3 (Data mining query). A data mining query is a tuple (R, a, Σ, Φ, β),
where R is a database relation, a is an attribute of R, Σ is a selection predicate on R, Φ
is a selection predicate on frequent itemsets, β is the minimum support for the
frequent itemsets.

Example. Given is the database relation R1(attr1, attr2). The data mining query dmq1
= (R1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering
frequent itemsets in the set-valued attribute attr2 of the relation R1. The frequent
itemsets with support above 3 and length less than 4 are discovered in records having
attr1>5.

Definition 4 (Multiple data mining query optimization). Given is a set of data

mining queries DMQ={dmq1, dmq2, ..., dmqn}, where dmqi=(R, a, Σi, Φi, βi), Σi is of
the form “(li1min<a<li1max) ∨ (li2min<a<li2max) ∨..∨ (likmin<a<likmax)”, and there are at
least two data mining queries dmqi=(R, a, Σi, Φi, βi) and dmqj=(R, a, Σj, Φj, βj) such
that σΣiR∩σΣjR ≠∅. The problem of multiple data mining query optimization is to
generate an algorithm to execute DMQ with the minimal I/O cost.

Definition 5 (Data sharing graph). Let S={s1, s2 ,..., sk} be a set of elementary data
selection predicates for DMQ, i.e. selection predicates over the attribute a or the
relation R such that for all i,j we have σsiR∩σsjR =∅ and for each i there exist
integers a, b, ..., m such that σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2). A graph
DSG=(V,E) is called a data sharing graph for the set of data mining queries DMQ iff
V=DMQ∪S, E={(dmqi,sj)| dmqj∈DMQ, sj∈S, σΣiR∩σsjR≠∅}.

dmq1

dmq2

l1
1min l1

1max l1
2min l1

2max

l2
1min l21max

R

s1

s2

s3

s4

s5

S

Fig. 2. Example set of data mining queries and their elementary data selection predicates

Example. Given is the relation R1=(attr1, attr2) and three data mining queries:
dmq1=(R1, "attr2", "5 <attr1< 20", ∅, 3), dmq2=(R1, "attr2", "0<attr1 <15", ∅, 5),
dmq3=(R1, "attr2", "5< attr1<15 or 30<attr1<40", ∅, 4). The set of elementary data
selection predicates is then S={s1=”0<attr1<5”, s2=”5<attr1<15”,
s3=”15<attr1<20”, s4=”30<attr1<40”}. The data sharing graph for {dmq1, dmq2,
dmq3} is shown in Fig. 3.

dmq1

dmq2

dmq3

15<attr1<20

0<attr1<5

30<attr1<40

data selection
predicate node

data mining
query node

5<attr1<15

Fig. 3. Example data sharing graph

3 Mine Merge Algorithm

One of the ways to perform multiple data mining query optimization is the Mine
Merge algorithm. The algorithm employs the property that for a database divided into
a set of disjoint partitions, an itemset which is frequent in a whole database, must also
be frequent in at least one partition of it [11].

Mine Merge first generates a set of intermediate data mining queries, in which
each data mining query is based on a single elementary selection predicate only. The
intermediate data mining queries are derived from those original data mining queries
that are sharing a given elementary selection predicate. Next, the intermediate data
mining queries are executed sequentially and then their results are merged to form
global candidates for the original data mining queries. Finally, a database scan is
performed to count the global candidate supports and to answer the original data
mining queries. It is important that not all global candidate itemsets must be counted
in that step: if a global candidate itemset belongs to the results of all the appropriate
intermediate data mining queries, then its support value can be derived by summing
support values it received from the queries. The pseudocode of the Mine Merge
algorithm is shown in Fig. 4.

Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...}
IDMQ ←∅
for each sj∈S do begin
 Q ← {dmqi∈DMQ | (dmqi,sj)∈E}
 intermediate_β ← min{βi | dmqi=(R, a, si, Φi, βi)∈Q}
 ntermediate_Φ ←Φ1∨ Φ2 ∨ ... ∨ Φ|Q|, ∀i=1..|Q|, dmqi=(R, a, si, Φi, βi)∈Q
 IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β)

 end

Execute intermediate data mining queries
 for each idmqi ∈ IDMQ do

 IFi ← execute(idmqi)

Generate results for original data mining queries DMQ = {dmq1, dmq2, ...}
 for each dmqi∈ DMQ do
 Ci ← {c∈ Uk IFk , (dmqi,sk)∈E, c.count ≥ βi}

for each sj∈S do begin
 CC ← UCl: (dmql,sj)∈E; /* select the candidates to count now */
 if CC≠∅ then count(CC, σsjR);
 end
for (i=1; i<=n; i++) do
 Answeri ← {c ∈ Ci | c.count ≥ βi} /* generate responses */

Fig. 4. Mine Merge algorithm

Let us consider an example of Mine Merge algorithm execution, based on our
previous set of data mining queries from Fig. 3. Let cost(s) be the I/O cost of
retrieving database records that satisfy the data selection predicate s. Let
treesize(dmq,k) be the k-item candidate hash tree size for the data mining query dmq.
Sample costs and tree sizes are given in the table below. For the sake of simplicity
assume it takes 5 Apriori iterations to discover frequent itemsets for each intermediate
data mining query. Also, assume that each intermediate data mining query discovers
100KB of frequent itemsets, whose I/O cost is 100.

si cost(si)

0<attr1<5 2,000

5<attr1<15 40,000

15<attr1<20 3,000

30<attr1<40 6,000

Ci treesize(*,i)

C1 2M

C2 20M

C3 10M

C4 4M

C5 1M

The intermediate data mining queries generated by Mine Merge (Fig. 5) are the
following: idmq1=(R1, "attr2", "0<attr1<5", ∅, 5), idmq2=(R1, "attr2", "5<attr1<15",
∅, 3), idmq3=(R1, "attr2", "15<attr1<20", ∅, 3), idmq4=(R1, "attr2", "30<attr1<40",
∅, 4).

idmq1 idmq2 idmq3

0<attr1<5 30<attr1<40 15<attr1<20

data selection
predicate node

data mining
query node

5<attr1<15

idmq4

Fig. 5. Intermediate data mining queries

Below we give the I/O and CPU costs for both independent execution and Mine
Merge execution of the example data mining queries.

 Independent execution

operation I/O cost
execute dmq1 (40,000 + 3,000) x 5
execute dmq2 (40,000 + 2,000) x 5
execute dmq3 (40,000 + 6,000) x 5
total 655,000

 Mine Merge execution

operation I/O cost
execute idmq1 2,000 x 5 + 100
execute idmq2 40,000 x 5 + 100
execute idmq3 3,000 x 5 + 100
execute idmq4 6,000 x 5 + 100
count global candidates 2,000 + 40,000 + 3,000 + 6,000 + 4 x 100
total 306,800

It can be easily noticed that the Mine Merge execution can reduce the I/O cost more
than twice compared to the independent execution of the three sample data mining
queries. At the same time, the CPU cost has been increased since the Mine Merge
algorithm processes about 50% more itemsets in memory. Therefore, a batch of data
mining queries can significantly benefit from Mine Merge in disk-bound systems.

The assumption of the equal number of Apriori iterations for all the data mining
queries in our example may not hold in practice. Notice that the intermediate data
mining queries are likely to discover longer frequent itemsets compared to the final
results of the original data mining queries. Such behavior may result from a non-
uniform data distribution in database partitions defined by the elementary data
selection predicates. Therefore, the real I/O cost of executing the intermediate data
mining queries can be higher than we assumed in our example.

4 Experimental Evaluation

In order to evaluate performance of the Mine Merge method in the context of frequent
itemset mining we performed several experiments on synthetic data, generated by
means of the GEN generator from the Quest project [2]. We experimented with
overlapping queries operating on portions of the dataset containing 100000
transactions, generated using the following parameter values: number of different
items = 1000, average number of items in a transaction = 8, number of patterns = 500,
average pattern length = 4. The experiments were conducted on a PC with AMD
Duron 1200 MHz processor and 256 MB of main memory. The dataset used in all
experiments resided in a flat file on a local disk. To simulate a realistic environment,
where datasets analyzed are significantly larger than the amount of available main
memory and therefore do not persist in the system’s cache between database scans,
we explicitly disabled the operating system’s disk cache.

2 DMQs, overlapped dataset = 83%

0

50

100

150

200

250

300

350

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

minsup

ti
m

e
[s

]

SEQ

MM

2 DMQs, overlapped dataset = 71%

0

50

100

150

200

250

300

350

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

minsup

ti
m

e
 [

s
]

SEQ

MM

2 DMQs, overlapped dataset = 62%

0

50

100

150

200

250

300

350

400

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

minsup

ti
m

e
[s

]

SEQ

MM

Fig. 6. Performance of Mine Merge for various support thresholds

In the first series of experiments we tested the impact of the minimum support
threshold on the performance of Mine Merge. We considered pairs of queries with
different level of overlapping. We express the overlapping as the ratio of data
“covered” by the set of queries to the sum of queries’ sizes (relative size of the
overlapped dataset). The advantage of the proposed measure of overlapping is that it
works for any number of queries. Figure 6 shows the results for three levels of
overlapping and support threshold varying from 1% to 2% (the same threshold for
both queries). The execution time of Mine Merge (MM) is compared to the execution

time of sequential processing of the queries (SEQ). The experiments show that the
impact of minimum support is not deterministic. The reason for this is that changes in
the support threshold can change the balance between I/O cost (reduced by Mine
Merge) and computation cost (reduced or increased by Mine Merge, depending on a
particular data distribution).

We also analyzed cases when support thresholds for overlapping queries were
different (e.g., thresholds of 1.25% and 1.75% instead of 1.5% for both queries). We
observed that using different thresholds for the queries degrades the relative
performance of Mine Merge compared to using the average of the two thresholds for
both queries. The actual results depended very strongly on data distribution and
support thresholds but still in all cases that we have tested, Mine Merge outperformed
sequential execution. Different support thresholds for overlapping queries degrade the
performance because they lead to lower average support threshold in the dataset
partitions.

2 DMQs, minsup=1.5%

0

20

40

60

80

100

120

140

160

180

200

50 55 60 65 70 75 80 85 90 95

overlapped dataset [%]

ti
m

e
[s

]

SEQ

MM

CC

Fig. 7. Performance of Mine Merge for various levels of overlapping (the case of 2 queries)

In the next series of experiments we focused on the impact of query overlapping on
the efficiency of the Mine Merge method. We tested query sets containing two (Fig.
7) and three (Fig. 8) queries, varying the relative size of the overlapped dataset from
90% to 60%. The minimum support threshold for all queries in all cases was set to
1.5%. For the case of the two queries we compared Mine Merge not only to sequential
execution but also to the Common Counting (CC) method from [17]. (Common
Counting reduces the I/O costs compared to sequential processing but has no
influence on memory computations and therefore is not sensitive to support thresholds
and number of queries in the query set.)

The experiments show that if queries’ datasets only slightly overlap, Mine Merge
can even be slower than sequential execution. However, if the queries overlap
significantly, Mine Merge outperforms both sequential execution and Common
Counting. As for the impact of the number of queries on Mine Merge, greater number
of queries leads to more partitions for each query (many overlapping configurations
possible) and smaller partitions (more sensitive to changes in data distribution within

the dataset). As a result, the more queries the more significant their overlapping has to
be for Mine Merge to work efficiently.

3 DMQs, minsup=1.5%

0

50

100

150

200

250

50 55 60 65 70 75 80 85 90 95

overlapped dataset [%]

ti
m

e
[s

]

SEQ

MM

Fig. 8. Performance of Mine Merge for various levels of overlapping (the case of 3 queries)

5 Concluding Remarks

We addressed the problem of multiple data mining query optimization, which consists
in sharing some of the execution tasks of multiple data mining queries so that the
overall I/O cost is minimized. In this paper we discussed the Mine Merge method,
which transforms a batch of possibly overlapping queries into a set of queries
operating on disjoint partitions of the database, and then merges the results to
generate answers to the original queries. We have experimentally evaluated the Mine
Merge algorithm performance and compared it with the Common Counting method
previously proposed in the literature.

The experiments show that Mine Merge is particularly effective if queries overlap
significantly. The advantage of Common Counting is that it theoretically guarantees
performance gains over sequential processing, which is not the case for Mine Merge.
However, Common Counting requires more memory as it executes several Apriori
instances concurrently. Mine Merge mines dataset partitions one by one, which makes
it an attractive solution in practical applications when memory is limited.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining, Portland, Oregon (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996)

5. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

6. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,
Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference (1996)

7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

8. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

9. Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference (2000)

10.Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Symposium
(1997)

11.Savasere A., Omiecinski E., Navathe S.: An Efficient Algorithm for Mining Association
Rules in Large Databases. Proc. 21th Int’l Conf. Very Large Data Bases (1995)

12.Sellis T.K.: Multiple-Query Optimization. ACM Transactions on Database Systems, Vol.
13, No. 1 (1988)

13.Thomas S., Bodagala S., Alsabti K., Ranka S.: An Efficient Algorithm for the Incremental
Updation of Association Rules in Large Databases. Proc. of the 3rd KDD Conference (1997)

14.Toivonen H.: Sampling Large Databases for Association Rules. Proc. of the 22nd Int’l
Conference on Very Large Data Bases (1996)

15.Wojciechowski M., Zakrzewicz M.: Itemset Materializing for Fast Mining of Association
Rules. Proc. of the 2nd ADBIS Conference (1998)

16.Wojciechowski M., Zakrzewicz M.: Methods for Batch Processing of Data Mining Queries.
Proc. of the 5th International Baltic Conference on Databases and Information Systems
(2002)

17.Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

