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Abstract. In this paper we consider concurrent execution of multiple data 
mining queries in the context of discovery of frequent itemsets. If such data 
mining queries operate on similar parts of the database, then their overall I/O 
cost can be reduced by transforming the set of data mining queries into another 
set of non-overlapping queries, whose results can be used to efficiently answer 
the original queries. We discuss the problem of multiple data mining query 
optimization and experimentally evaluate the Mine Merge algorithm to 
efficiently execute sets of data mining queries. 

1   Introduction 

Data mining is a database research field which aims at the discovery of trends, 
patterns and regularities in very large databases. We are currently witnessing the 
evolution of data mining environments towards their full integration with DBMS 
functionality. In this context, data mining is considered to be an advanced form of 
database querying, where users formulate declarative data mining queries, which are 
then optimized and executed by one of data mining algorithms built into the DBMS. 
One of the most significant issues in data mining query processing are their long 
execution times, ranging from minutes to hours. 

One of the most popular pattern types discovered by data mining queries are 
frequent itemsets. Frequent itemsets describe co-occurrences of individual items in 
item sets stored in the database. An example of a frequent itemset can be a collection 
of products that customers typically purchase together during their visits to a 
supermarket. Such frequent itemsets can be discovered in the database of customer 
shopping baskets. Frequent itemsets are usually discovered using level-wise 
algorithms, which divide the problem into multiple iterations of database scanning 
and counting occurrences of candidate itemsets of equal size. 

Due to long execution times, data mining queries are often performed in a batch 
mode, where users submit sets of data mining queries to be executed during low 
database activity time (e.g., night time). It is likely that the batches contain data 
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mining queries that operate on similar parts of the database. If such queries are 
executed independently, the same parts of the database are retrieved multiple times.  

In [16] we introduced the problem of multiple data mining query optimization, 
aimed at reducing the overall I/O activity of the batch of data mining queries. We 
proposed two multi-query processing algorithms for discovery of frequent itemsets: 
Common Counting and Mine Merge, providing theoretical cost analysis for each of 
the methods. The Common Counting algorithm executes all the data mining queries 
concurrently, performing a common database pass to count candidate itemsets 
belonging to all the queries. Common Counting requires that all candidate itemsets for 
multiple data mining queries fit in memory together. Mine Merge transforms a batch 
of possibly overlapping queries into a set of queries operating on disjoint partitions of 
the database, and then merges the results to generate answers to the original queries. 

In [17] we discussed implementation details regarding the Common Counting 
method and we presented experimental results proving its efficiency. In this paper we 
analyze properties of the Mine Merge algorithm and experimentally evaluate its 
performance. 

1.1   Related Work 

The problem of mining association rules was first introduced in [1] and an algorithm 
called AIS was proposed. In [3], two new algorithms were presented, called Apriori 
and AprioriTid that are fundamentally different from the previous ones. The 
algorithms achieved significant improvements over AIS and became the core of many 
new algorithms for mining association rules. Apriori and its variants first generate all 
frequent itemsets (sets of items appearing together in a number of database records 
meeting the user-specified support threshold) and then use them to generate rules. 
Apriori and its variants rely on the property that an itemset can only be frequent if all 
of its subsets are frequent, leading to a level-wise procedure. 

Savasere, Omiecinski and Navathe have proposed an algorithm called Partition 
[11], which discovers all frequent itemsets using at most two database passes. 
Partition divides the database into logical, non-overlapping parts, and then it 
discovers frequent itemsets inside each part. In the last step, the discovered frequent 
itemsets are merged and their final supports are counted. 

In [5], an algorithm called FUP (Fast Update Algorithm) was proposed for finding 
the frequent itemsets in the expanded database using the old frequent itemsets. The 
major idea of FUP algorithm is to reuse the information of the old frequent itemsets 
and to integrate the support information of the new frequent itemsets in order to 
reduce the pool of candidate itemsets to be re-examined. Another approach to 
incremental mining of frequent itemsets was presented in [13]. The algorithm 
introduced there required only one database pass and was applicable not only for 
expanded but also for reduced database. Along with the itemsets, a negative border 
[14] was maintained. 

The notion of data mining queries (or KDD queries) was introduced in [7]. The 
need for Knowledge and Data Management Systems (KDDMS) as second generation 
data mining tools was expressed. The ideas of application programming interfaces 



and data mining query optimizers were also mentioned. Several data mining query 
languages that are extensions of SQL were proposed [4][6][8][9][10]. 

Multi-query optimization has been extensively studied in the context of database 
systems (e.g., [12]). A general idea was to exploit the fact that several queries to be 
answered may share some common data. This general idea remains the same for data 
mining query processing. However, specialized multi-query processing methods are 
needed for data mining queries due to their different nature. 

2   Basic Definitions and Problem Formulation 

Definition 1 (Frequent itemsets). Let L={l1, l2, ..., lm} be a set of literals, called 
items. Let a non-empty set of items T be called an itemset. Let D be a set of variable 
length itemsets, where each itemset T⊆L. We say that an itemset T supports an item 
x∈L if x is in T. We say that an itemset T supports an itemset X⊆L if T supports every 
item in the set X. The support of the itemset X is the percentage of T in D that support 
X. The problem of mining frequent itemsets in D consists in discovering all itemsets 
whose support is above a user-defined support threshold.  
 

C1 = {all 1-itemsets from D} 
for (k=1; Ck ≠ ∅; k++) 
          count(Ck, D); 
 Lk = {c ∈ Ck | c.count ≥ minsup}; 
 Ck+1 = generate_candidates(Lk); 
Answer = UkLk; 
 

L1 = {frequent 1-itemsets} 
for (k = 2; Lk-1 ≠ ∅; k++) 
 Ck = generate_candidates(Lk-1); 
 forall tuples t ∈ D 
      Ct=Ck ∩ subset(t, k); 
      forall candidates c ∈ Ct 
         c.count++; 
   Lk = {c ∈ Ck | c.count ≥ minsup} 
Answer = UkLk; 

Fig. 1. A general level-wise algorithm for association discovery (left)  
and its Apriori implementation (right) 

Definition 2 (Apriori algorithm). Apriori is an example of a level-wise algorithm for 
frequent itemset discovery. It makes multiple passes over the input data to determine 
all frequent itemsets. Let Lk denote the set of frequent itemsets of size k and let Ck 
denote the set of candidate itemsets of size k. Before making the k-th pass, Apriori 
generates Ck using Lk-1. Its candidate generation procedure ensures that all subsets of 
size k-1 of Ck are all members of the set Lk-1. This method of pruning the Ck set using 
Lk-1 significantly reduces the number of candidates that have to be counted. In the k-th 
pass, the algorithm counts the supports of all the itemsets in Ck. To facilitate efficient 
counting procedure, candidates are store in a hash-tree data structure. At the end of 
the pass all itemsets in Ck with a support greater than or equal to the minimum support 
form the set of frequent itemsets Lk. Figure 1 provides the pseudocode for the general 
level-wise algorithm, and its Apriori implementation. The subset(t, k) function gives 
all the subsets of size k in the set t.  
 



Definition 3 (Data mining query). A data mining query is a tuple (R, a, Σ, Φ, β), 
where R is a database relation, a is an attribute of R, Σ is a selection predicate on R, Φ 
is a selection predicate on frequent itemsets, β is the minimum support for the 
frequent itemsets. 
 
Example. Given is the database relation R1(attr1, attr2). The data mining query dmq1 
= (R1, "attr2", "attr1 >5", "|itemset|<4", 3) describes the problem of discovering 
frequent itemsets in the set-valued attribute attr2 of the relation R1. The frequent 
itemsets with support above 3 and length less than 4 are discovered in records having 
attr1>5. 
 
Definition 4 (Multiple data mining query optimization). Given is a set of data 

mining queries DMQ={dmq1, dmq2, ..., dmqn}, where dmqi=(R, a, Σi, Φi, βi), Σi is of 
the form “(li1min<a<li1max) ∨  (li2min<a<li2max) ∨..∨ (likmin<a<likmax)”, and there are at 
least two data mining queries dmqi=(R, a, Σi, Φi, βi) and dmqj=(R, a, Σj, Φj, βj) such 
that σΣiR∩σΣjR ≠∅. The problem of multiple data mining query optimization is to 
generate an algorithm to execute DMQ with the minimal I/O cost. 
 
Definition 5 (Data sharing graph). Let S={s1, s2 ,..., sk} be a set of elementary data 
selection predicates for DMQ, i.e. selection predicates over the attribute a or the 
relation R such that for all i,j we have σsiR∩σsjR =∅ and for each i there exist 
integers a, b, ..., m such that σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2). A graph 
DSG=(V,E) is called a data sharing graph for the set of data mining queries DMQ iff 
V=DMQ∪S, E={(dmqi,sj)| dmqj∈DMQ, sj∈S, σΣiR∩σsjR≠∅}. 
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Fig. 2. Example set of data mining queries and their elementary data selection predicates 



Example. Given is the relation R1=(attr1, attr2) and three data mining queries: 
dmq1=(R1, "attr2", "5 <attr1< 20", ∅, 3), dmq2=(R1, "attr2", "0<attr1 <15", ∅, 5), 
dmq3=(R1, "attr2", "5< attr1<15 or 30<attr1<40", ∅, 4). The set of elementary data 
selection predicates is then S={s1=”0<attr1<5”, s2=”5<attr1<15”, 
s3=”15<attr1<20”, s4=”30<attr1<40”}. The data sharing graph for {dmq1, dmq2, 
dmq3} is shown in Fig. 3. 
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Fig. 3. Example data sharing graph 

3   Mine Merge Algorithm 

One of the ways to perform multiple data mining query optimization is the Mine 
Merge algorithm. The algorithm employs the property that for a database divided into 
a set of disjoint partitions, an itemset which is frequent in a whole database, must also 
be frequent in at least one partition of it [11].  

Mine Merge first generates a set of intermediate data mining queries, in which 
each data mining query is based on a single elementary selection predicate only. The 
intermediate data mining queries are derived from those original data mining queries 
that are sharing a given elementary selection predicate. Next, the intermediate data 
mining queries are executed sequentially and then their results are merged to form 
global candidates for the original data mining queries. Finally, a database scan is 
performed to count the global candidate supports and to answer the original data 
mining queries. It is important that not all global candidate itemsets must be counted 
in that step: if a global candidate itemset belongs to the results of all the appropriate 
intermediate data mining queries, then its support value can be derived by summing 
support values it received from the queries. The pseudocode of the Mine Merge 
algorithm is shown in Fig. 4. 

 



Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...} 
IDMQ ←∅ 
for each sj∈S do begin       
   Q ← {dmqi∈DMQ | (dmqi,sj)∈E} 
   intermediate_β ← min{βi |  dmqi=(R, a, si, Φi, βi)∈Q} 
   ntermediate_Φ ←Φ1∨ Φ2 ∨ ... ∨ Φ|Q|, ∀i=1..|Q|,  dmqi=(R, a, si, Φi, βi)∈Q 
   IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β) 

       end 
 
Execute intermediate data mining queries 
   for each idmqi ∈ IDMQ do  

  IFi ← execute(idmqi) 
 
Generate results for original data mining queries DMQ = {dmq1, dmq2, ...} 
 for each dmqi∈ DMQ do 
    Ci ← {c∈ Uk IFk , (dmqi,sk)∈E, c.count ≥ βi} 

for each sj∈S do begin       
      CC ← UCl: (dmql,sj)∈E; /* select the candidates to count now */ 
      if CC≠∅ then count(CC, σsjR); 
   end 
for (i=1; i<=n; i++) do 
   Answeri ← {c ∈ Ci | c.count ≥ βi}   /* generate responses */ 
 

Fig. 4. Mine Merge algorithm 

Let us consider an example of Mine Merge algorithm execution, based on our 
previous set of data mining queries from Fig. 3. Let cost(s) be the I/O cost of 
retrieving database records that satisfy the data selection predicate s. Let 
treesize(dmq,k) be the k-item candidate hash tree size for the data mining query dmq. 
Sample costs and tree sizes are given in the table below. For the sake of simplicity 
assume it takes 5 Apriori iterations to discover frequent itemsets for each intermediate 
data mining query. Also, assume that each intermediate data mining query discovers 
100KB of frequent itemsets, whose I/O cost is 100.  

 
si cost(si) 

0<attr1<5 2,000 

5<attr1<15 40,000 

15<attr1<20 3,000 

30<attr1<40 6,000  

Ci treesize(*,i) 

C1 2M 

C2 20M 

C3 10M 

C4 4M 

C5 1M 
 

 
The intermediate data mining queries generated by Mine Merge (Fig. 5) are the 
following: idmq1=(R1, "attr2", "0<attr1<5", ∅, 5), idmq2=(R1, "attr2", "5<attr1<15", 
∅, 3), idmq3=(R1, "attr2", "15<attr1<20", ∅, 3), idmq4=(R1, "attr2",  "30<attr1<40", 
∅, 4).  
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Fig. 5. Intermediate data mining queries 

 
Below we give the I/O and CPU costs for both independent execution and Mine 
Merge execution of the example data mining queries. 

 
   Independent execution 

operation I/O cost 
execute dmq1 (40,000 + 3,000) x 5 
execute dmq2 (40,000 + 2,000) x 5 
execute dmq3 (40,000 + 6,000) x 5 
total 655,000 

 
   Mine Merge execution 

operation I/O cost 
execute idmq1 2,000 x 5 + 100 
execute idmq2 40,000 x 5 + 100 
execute idmq3 3,000 x 5 + 100 
execute idmq4 6,000 x 5 + 100 
count global candidates 2,000 + 40,000 + 3,000 + 6,000 + 4 x 100 
total 306,800 
 
 

It can be easily noticed that the Mine Merge execution can reduce the I/O cost more 
than twice compared to the independent execution of the three sample data mining 
queries. At the same time, the CPU cost has been increased since the Mine Merge 
algorithm processes about 50% more itemsets in memory. Therefore, a batch of data 
mining queries can significantly benefit from Mine Merge in disk-bound systems.  

The assumption of the equal number of Apriori iterations for all the data mining 
queries in our example may not hold in practice. Notice that the intermediate data 
mining queries are likely to discover longer frequent itemsets compared to the final 
results of the original data mining queries. Such behavior may result from a non-
uniform data distribution in database partitions defined by the elementary data 
selection predicates. Therefore, the real I/O cost of executing the intermediate data 
mining queries can be higher than we assumed in our example. 



4   Experimental Evaluation 

In order to evaluate performance of the Mine Merge method in the context of frequent 
itemset mining we performed several experiments on synthetic data, generated by 
means of the GEN generator from the Quest project [2]. We experimented with 
overlapping queries operating on portions of the dataset containing 100000 
transactions, generated using the following parameter values: number of different 
items = 1000, average number of items in a transaction = 8, number of patterns = 500, 
average pattern length = 4. The experiments were conducted on a PC with AMD 
Duron 1200 MHz processor and 256 MB of main memory. The dataset used in all 
experiments resided in a flat file on a local disk. To simulate a realistic environment, 
where datasets analyzed are significantly larger than the amount of available main 
memory and therefore do not persist in the system’s cache between database scans, 
we explicitly disabled the operating system’s disk cache.  
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2 DMQs, overlapped dataset = 71%
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2 DMQs, overlapped dataset = 62%
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Fig. 6. Performance of Mine Merge for various support thresholds 

In the first series of experiments we tested the impact of the minimum support 
threshold on the performance of Mine Merge. We considered pairs of queries with 
different level of overlapping. We express the overlapping as the ratio of data 
“covered” by the set of queries to the sum of queries’ sizes (relative size of the 
overlapped dataset). The advantage of the proposed measure of overlapping is that it 
works for any number of queries. Figure 6 shows the results for three levels of 
overlapping and support threshold varying from 1% to 2% (the same threshold for 
both queries). The execution time of Mine Merge (MM) is compared to the execution 



time of sequential processing of the queries (SEQ). The experiments show that the 
impact of minimum support is not deterministic. The reason for this is that changes in 
the support threshold can change the balance between I/O cost (reduced by Mine 
Merge) and computation cost (reduced or increased by Mine Merge, depending on a 
particular data distribution). 

We also analyzed cases when support thresholds for overlapping queries were 
different (e.g., thresholds of 1.25% and 1.75% instead of 1.5% for both queries). We 
observed that using different thresholds for the queries degrades the relative 
performance of Mine Merge compared to using the average of the two thresholds for 
both queries. The actual results depended very strongly on data distribution and 
support thresholds but still in all cases that we have tested, Mine Merge outperformed 
sequential execution. Different support thresholds for overlapping queries degrade the 
performance because they lead to lower average support threshold in the dataset 
partitions. 
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Fig. 7. Performance of Mine Merge for various levels of overlapping (the case of 2 queries) 

In the next series of experiments we focused on the impact of query overlapping on 
the efficiency of the Mine Merge method. We tested query sets containing two (Fig. 
7) and three (Fig. 8) queries, varying the relative size of the overlapped dataset from 
90% to 60%. The minimum support threshold for all queries in all cases was set to 
1.5%. For the case of the two queries we compared Mine Merge not only to sequential 
execution but also to the Common Counting (CC) method from [17]. (Common 
Counting reduces the I/O costs compared to sequential processing but has no 
influence on memory computations and therefore is not sensitive to support thresholds 
and number of queries in the query set.) 

The experiments show that if queries’ datasets only slightly overlap, Mine Merge 
can even be slower than sequential execution. However, if the queries overlap 
significantly, Mine Merge outperforms both sequential execution and Common 
Counting. As for the impact of the number of queries on Mine Merge, greater number 
of queries leads to more partitions for each query (many overlapping configurations 
possible) and smaller partitions (more sensitive to changes in data distribution within 



the dataset). As a result, the more queries the more significant their overlapping has to 
be for Mine Merge to work efficiently. 
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Fig. 8. Performance of Mine Merge for various levels of overlapping (the case of 3 queries) 

5   Concluding Remarks 

We addressed the problem of multiple data mining query optimization, which consists 
in sharing some of the execution tasks of multiple data mining queries so that the 
overall I/O cost is minimized. In this paper we discussed the Mine Merge method, 
which transforms a batch of possibly overlapping queries into a set of queries 
operating on disjoint partitions of the database, and then merges the results to 
generate answers to the original queries. We have experimentally evaluated the Mine 
Merge algorithm performance and compared it with the Common Counting method 
previously proposed in the literature. 

The experiments show that Mine Merge is particularly effective if queries overlap 
significantly. The advantage of Common Counting is that it theoretically guarantees 
performance gains over sequential processing, which is not the case for Mine Merge. 
However, Common Counting requires more memory as it executes several Apriori 
instances concurrently. Mine Merge mines dataset partitions one by one, which makes 
it an attractive solution in practical applications when memory is limited. 
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