
Optimizing Pattern Queries for Web Access

Logs ?

Tadeusz Morzy, Marek Wojciechowski, and Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Tadeusz.Morzy@put.poznan.pl

Marek.Wojciechowski@cs.put.poznan.pl

Maciej.Zakrzewicz@cs.put.poznan.pl

Abstract. Web access logs, usually stored in relational databases, are
commonly used for various data mining and data analysis tasks. The
tasks typically consist in searching the web access logs for event sequences
that support a given sequential pattern. For large data volumes, this
type of searching is extremely time consuming and is not well optimized
by traditional indexing techniques. In this paper we present a new index
structure to optimize pattern search queries on web access logs. We focus
on its physical structure, maintenance and performance issues.

1 Introduction

Web access logs represent the history (the sequences) of users' visits to a web
server [11]. Log entries are collected automatically and can be used by admin-
istrators for web usage analysis [4][6][7][16][17][18][20]. Usually, after some fre-
quently occurring sequential patterns are discovered [1], the logs are searched
for access sequences that contain (support) the discovered sequential patterns.
We will refer to this type of searching as to pattern queries.

Example web access log is shown in Fig.1. For each client's request we store
the client's IP address, the timestamp, and the URL address of the requested
object. In general, several requests from the same client may have identical times-
tamps since they can represent components of a single web page (e.g. attached
images). In most cases, web access logs are stored in relational, SQL-accessed
databases. Let us consider the following example of using the relational approach
to pattern queries. Assume that the relation R(IP,TS,URL) stores web access se-
quences. Each tuple contains the sequence identi�er (IP), the timestamp (TS),
and the item (URL). Our example relation R describes three web access se-
quences: fA;Bg ! fCg ! fDg, fAg ! fE;Cg ! fFg, and fB;C;Dg ! fAg.
Let the searched sequential pattern (subsequence) be: fAg ! fEg ! fFg. We
are looking for all the web access sequences that contain the given sequential

? This work was partially supported by the grant no. KBN 43-1309 from the State
Committee for Scienti�c Research (KBN), Poland.

pattern. Fig.2 gives the relation R and the SQL query, which implements the
pattern query.

115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT // HHTTTTPP//11..11"" 220000 11667733
115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //aappaacchhee__ppbb..ggiiff HHTTTTPP//11..11"" 220000 22332266
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //ddeemmoo..hhttmmll HHTTTTPP//11..11"" 220000 552200
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4444::4455 ++00220000]] ""GGEETT //bbooookkss..hhttmmll HHTTTTPP//11..11"" 220000 33440022
116600..8811..7777..2200 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT // HHTTTTPP//11..11"" 220000 11667733
115544..1111..223311..1177 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //ccaarr..hhttmmll HHTTTTPP//11..11"" 220000 22558800
119922..116688..11..2255 -- -- [[1133//JJuull//22000000::2200::4499::5500 ++00220000]] ""GGEETT //ccddiisskk..hhttmmll HHTTTTPP//11..11"" 220000 33885566
1100..111111..6622..110011 -- -- [[1133//JJuull//22000000::2200::4422::2255 ++00220000]] ""GGEETT //nneeww//ddeemmoo..hhttmmll HHTTTTPP//11..11"" 220000 997711

192.168.1.25: /demo.html -> /books.html -> cdisk.html

Fig. 1. Web access log example and a web access sequence

IP TS URL
1 1 A
1 1 B
1 2 C
1 3 D
2 1 A
2 2 E
2 2 C
2 3 F
3 1 B
3 1 C
3 1 D
3 2 A

SELECT IP

FROM R R1, R R2, R R3

WHERE R1.IP=R2.IP

AND R2.IP=R3.IP

AND R1.TS<R2.TS

AND R2.TS<R3.TS

AND R1.URL='A'

AND R2.URL='E'

AND R3.URL='F';

Fig. 2. The relation of web access sequences and the pattern query

Since web access logs tend to be very large, there is a problem of appropriate
optimizing the database access while performing pattern queries, e.g. by means
of the above SQL query. Database research has developed many indexing tech-
niques, like B+-trees [5], bitmapped indexes [15], k-d-trees [3], R-trees [10], which
are used to optimize queries based on exact matches of single tuples. However,
these techniques do not signi�cantly improve pattern queries, which deal with
partial matches of multi-tuple sequences. There are also proposals for set-based
indexing [8][14], which is used to improve subset searching (e.g. �nd all papers
containing "data mining" and "data warehousing" in a keyword list). However,
these methods work for retrieval of unordered sets of items only.

In order to realize the shortcomings of the existing indexing methods, let
us consider applying B+-tree and set-based indexes to execute the query from
Fig.2:

1. Using a B+-tree index, tuples containing all items of each web access se-
quence are joined �rst (by IP attribute), and then the veri�cation is done
whether they contain the given items in the given order. This approach can
be fairly ine�ective since a web access sequence may span across many disk
block, what results in multiple scanning of each block of the relation.

2. Using a set-based index, the sequence identi�ers (IP attribute) of all se-
quences, which contain the searched items in any order, are found, and then
the sequences are read from the relation (perhaps with help of a B+-tree) to
verify the ordering of their items. This approach gives much better results,
as compared to a B+-tree index, however, the signi�cant overhead comes
from reading and verifying the sequences having incorrect ordering.

In this paper we consider pattern queries on web access log databases. Such
databases are characterized by relatively small number of items (URLs), which
occur frequently in various order, and therefore a set-based index is not eÆ-
cient. We present a new bitmap-oriented indexing method, which optimizes the
problem of pattern queries. The basic idea behind our method, as compared to
set-based indexes, is that the index structure includes not only the items of a
sequence, but also the ordering of the items. In this way, we reduce the num-
ber of web access sequences needlessly read from the database, what results in
shorter query execution time. We performed several experiments, which showed
the signi�cant improvement over existing indexing methods.

The structure of the paper is as follows. Section 2 describes the sequential
index structure and algorithms to create and to use the index. In Sect.3 we
present the results of our performance experiments. Section 4 contains �nal
conclusions.

1.1 Basic De�nitions and Problem Formulation

Let L = l1; l2; :::; lk be a set of literals called items (URLs). Web access sequence
S =< X1X2:::Xn > is an ordered list of sets of items such that each set of items
Xi � L. Xi is called a sequence element. All items in a sequence element are
unordered. For short, we will also refer to a web access sequence as to a sequence.

We say that a web access sequence < X1X2:::Xn > is contained in another
web access sequence < Y1Y2:::Ym > if there exist integers i1 < i2 < ::: < in such
that X1 � Yi1 ; X2 � Yi2 ; :::; Xn � Yin .

Problem formulation. Let D be a database of variable length web access
sequences. Let S be a web access sequence. The problem of pattern queries
consists in �nding in D all web access sequences, which contain the web access
sequence S.

1.2 Related Work

Database indexes provided today by most database systems are B+-tree indexes
to retrieve tuples of a relation with speci�ed values involving one or more at-
tributes [5]. Each non-leaf node contains entries of the form (v, p) where v is
the separator value which is derived from the keys of the tuples and is used to
tell which sub-tree holds the searched key, and p is the pointer to its child node.
Each leaf node contains entries of the form (k, p), where p is the pointer to the
tuple corresponding to the key k.

A set-based bitmap indexing, which is used to enable faster subset search
in relational databases was presented in [14] (a special case of superimposed
coding). The key idea of the set-based bitmap index is to build binary keys,
called group bitmap keys, associated with each item set. The group bitmap key
represents contents of the item set by setting bits to '1' on positions determined
from item values (by means of modulo function). An example set-based bitmap
index for three item sets: f0, 7, 12, 13g, f2, 4g, and f10, 15, 17g is given in Fig.3.
When a subset search query seeking for item sets containing e.g. items 15 and 17
is issued, the group bitmap key for the searched subset is computed (see Fig.4).
Then, by means of a bit-wise AND, the index is scanned for keys containing
1's on the same positions. As the result of the �rst step of the subset search
procedure, the item sets identi�ed by set=1 and set=3 are returned. Then, in
the veri�cation step (ambiguity of modulo function), these item sets are tested
for the containment of the items 15 and 17. Finally, the item set identi�ed by
set=3 is the result of the subset search. Notice that this indexing method does
not consider items ordering.

set item

1 0

1 7

1 12

1 13

2 2

2 4

3 10

3 15

3 17

hash keysrelation

00001

00100

00100

01000

00100

10000

00001

00001

00100

group bitmap
keys

01101

10100

00101

set-based
bitmap index

setbitmap key

101101

210100

300001

Fig. 3. Set-based bitmap index

searched
subset of items

15

17

00001

00100

hash keys
group bitmap

key

00101

set-based
bitmap index

setbitmap key

101101

210100

300101

AND

setbitmap key

101101

verify item sets: 1,3

300101

Fig. 4. Set retrieval using set-based bitmap index

In [8], a conceptual clustering method, using entropic criterion for conceptual
clustering EC3 is used to de�ne indexing schemes on sets of binary features.
Similar data item sets are stored in the same cluster, and similarity measure
based on entropy is used during retrieval to �nd a cluster containing the searched
subset. The method does not consider items ordering.

2 Sequential Index Structure

In this section we present our indexing method, called sequential indexing, for
optimizing pattern queries. The sequential index structure consists of sequences
of bitmaps generated for web access sequences. Each bitmap encodes all items
(similarly to a set-based bitmap index) of a portion of a web access sequence as
well as ordering relations between each two of the items.

We start with the preliminaries, then we present the index construction algo-
rithm and explain how to use the sequential index structure. Finally, we discuss
index storage and maintenance problems.

2.1 Preliminaries

Web access sequences contain categorical items in the form of URLs. For sake
of convenience, we convert these items to integer values by means of an item
mapping function.

De�nition 1. An item mapping function fi(x), where x is a literal, is a func-
tion which transforms a literal into an integer value.

Example 1. Given a set of literals L = fA;B;C;D;E; Fg, an item mapping
function can take the following values: fi(A)=1, fi(B)=2, fi(C)=3, fi(D)=4,
fi(E)=5, fi(F)=6.

Similarly, we use an order mapping function to express web access sequence
ordering relations by means of integer values. Thus, we will be able to represent
web access sequence items as well as web access sequence ordering uniformly.

De�nition 2. An order mapping function fo(x; y), where x and y are literals
and fo(x; y) 6= fo(y; x), is a function which transforms a web access sequence
< fxgfyg > into an integer value.

Example 2. For the set of literals used in the previous example, an order mapping
function can be expressed as: fo(x; y) = 6 � fi(x) + fi(y), e.g. fo(C;F) = 24.

Using the above de�nitions, we will be able to transform web access sequences
into item sets, which are easier to manage, search and index. An item set repre-
senting a web access sequence is called an equivalent set.

De�nition 3. An equivalent set E for a web access sequence S =< X1X2:::
Xn > is de�ned as:

E =

 [
x2X1[X2[:::[Xn

ffi(x)g

!
[

0
BB@ [
x;y2X1[X2[:::[Xn:

x precedes y

ffo(x; y)g

1
CCA (1)

where: fi() is an item mapping function and fo() is an order mapping function.

Example 3. For the web access sequence S =< fA;BgfCgfDg > and the pre-
sented item mapping function and order mapping function, the equivalent set E
is evaluated as follows:

E =
�S

x2fA;B;C;Dgffi(x)g
�
[

 S
x;y2f<fAgfCg>;<fBgfCg>;

<fAgfDg>;<fBgfDg>;<fCgfDg>g

ffo(x; y)g

!
=

= ffi(A)g[ffi(B)g[ffi(C)g[ffi(D)g[ffo(A;C)g[ffo(B;C)g[ffo(A;D)g[
[ffo(B;D)g [ffo(C;D)g = f1; 2; 3; 4; 9; 15; 10; 16; 22g

Observation. For any two web access sequences S1 and S2, we have: S2 contains
S1 if E1 � E2, where E1 is the equivalent set for S1, and E2 is the equivalent
set for S2. In general, this property is not reversible.

The size of the equivalent set depends on the number of items in the web access
sequence and on the number of ordering relations between the items. For a
given number of items in the web access sequence, the equivalent set will be the
smallest if there are no ordering relations at all (i.e. S =< X >, then jEj = jX j,
since E = X), and will be the largest if S is a sequence of one-item sets (i.e.
S =< X1X2:::Xn >, for all i we have jXij = 1, then jEj = n+

�
n
2

�
).

Since the size of an equivalent set quickly increases while increasing the num-
ber of the original sequence elements, we split web access sequences into parti-
tions, which are small enough to process and encode.

De�nition 4. We say that a web access sequence S =< X1X2:::Xn > is parti-
tioned into web access sequences S1 =< X1:::Xa1 >, S2 =< Xa1+1:::Xa2 > , ...,
Sk =< Xaj+1:::Xn > with level � if for each web access sequence Si the size of
its equivalent set jEij < � and for all x; y 2 X1 [X2 [:::[Xn, where x precedes
y, we have: either < fxgfyg > is contained in Si or fxg is contained in Si, and
fyg is contained in Sj , where i < j (� should be greater than maximal item set
size).

Example 4. Partitioning the web access sequence S =< fA;BgfCgfDgfA;Fg
fBgfEg > with level 10 results in two web access sequences: S1 =< fA;BgfCg
fDg > and S2 =< fA;FgfBgfEg >, since the sizes of the equivalent sets are
respectively: jE1j = 9 (E1 = f1; 2; 3; 4; 9; 15; 10; 16; 22g), and jE2j = 9 (E2 =
f1; 6; 2; 5; 8; 38; 11; 41; 17g).

Observation. For a web access sequence S partitioned into S1, S2, ..., Sk, and
a web access sequence Q, we have: S contains Q if there exists a partitioning of
Q into Q1, Q2, ..., Qm, such that Q1 is contained in Si1 , Q2 is contained in Si2 ,
..., Qm is contained in Sim , and i1 < i2 < ::: < im.

Our sequential index structure will consist of equivalent sets stored for all web
access sequences, optionally partitioned to reduce the complexity. To reduce
storage requirements, equivalent sets will be stored in database in the form of
bitmap signatures.

De�nition 5. The bitmap signature of a set X is an N-bit binary number
created, by means of bit-wise OR operation, from the hash keys of all data items
contained in X. The hash key of the item x 2 X is an N-bit binary number
de�ned as follows: hash key(X) = 2(X mod n).

Example 5. For the set X = f0; 7; 12; 13g, N = 5, the hash keys of the set items
are the following:

hash key(0) = 2(0 mod 5) = 1 = 00001,
hash key(7) = 2(7 mod 5) = 4 = 00100,
hash key(12) = 2(12 mod 5) = 4 = 00100,
hash key(13) = 2(13 mod 5) = 8 = 01000.

The bitmap signature of the set X is the bit-wise OR of all items' hash keys:
bitmap signature(X) = 00001 OR 00100 OR 00100 OR 01000 = 01101.

Observation. For any two sets X and Y , if X � Y then:
bitmap signature(X) AND bitmap signature(Y) = bitmapsignature(X),

where AND is a bit-wise AND operator. This property is not reversible in gen-
eral (when we �nd that the above formula evaluates to TRUE we still have to
verify the result traditionally).

In order to plan the length N of a bitmap signature for a given average set
size, consider the following analysis. Assuming uniform items distribution, the
probability that representation of the set X sets k bits to '1' in an N -bit bitmap
signature is:

P =

�
N
k

�
fk;jXj

N jXj
, where f0;jXj = 0; fq;jXj = qjXj �

q�1X
i=1

�
q

i

�
fi;jXj (2)

Example probabilistic expected value of number of bits set to '1' for a 16-bit
bitmap signatures and various set sizes is illustrated in Fig.5. We can observe
that e.g. for a set of 10 items, N should be greater than 8 (else we have all bits
set to 1 and the signature is unusable since it is always matched).

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25

set size

#b
its

Fig. 5. Number of bitmap signature bits set to '1' for various set sizes (N=16)

The probability that a bitmap signature of the length N having k 1's matches
another bitmap signature of the length N having m 1's is

�
m
k

�
=
�
N
k

�
. It means

that the smaller k, the better pruning is performed during matching bitmap
signatures of item sets, in order to check their containment (so we have to verify
less item sets).

2.2 Sequential Index Construction Algorithm

The sequential index construction algorithm iteratively processes all web access
sequences in the database. First, the web access sequences are partitioned with
the given level �. Then, for each partition of each web access sequence, the equiv-
alent set is evaluated. In the next step, for each equivalent set, its N -bit bitmap
signature is generated and stored in the database. The formal description of the
algorithm is given below.

Input: database D of web access sequences, partitioning level �, bitmap length N

Output: sequential index for D

Method:

for each web access sequence S 2 D do begin

partition S into partitions S1, S2, ..., Sk with level �;

for each partition Si do begin

evaluate equivalent set Ei for Si;

bitmapi = bitmap signature(Ei);

store bitmapi in the database;

end;

end.

Consider the following example of sequential index construction. Assume that
�=10, N=16, and the database D contains three web access sequences: S1 =
< fA;BgfCgfDgfA;FgfBgfEg >, S2 =< fAgfC;EgfFgfBgfEgfA;Dg >,
S3 =< fB;C;Dg; fAg >.

First, we partition the web access sequences with �=10. Notice that S3 is,
in fact, not partitioned since its equivalent set is small enough. The symbol Si;j
denotes j-th partition of the i-th web access sequence.

S1;1 =< fA;BgfCgfDg > (ordering relations are: A! C, B ! C, A! D, B ! D, C ! D)

S1;2 =< fA;FgfBgfEg > (ordering relations are: A! B, F ! B, A! E, F ! E, B ! E)

S2;1 =< fAgfC;EgfFg > (ordering relations are: A! E, A! C, E ! F , C ! F)

S2;2 =< fBgfEgfA;Dg > (ordering relations are: B ! E, B ! A, B ! D, E ! A, E ! D)

S3;1 =< fB;C;DgfAg > (ordering relations are: B ! A, C ! A, D ! A)

Then we evaluate the equivalent sets for the partitioned web access sequences.
We use the example item mapping function and order mapping function taken
from the De�nitions 1 and 2. The symbol Ei;j denotes the equivalent set for Si;j .

E1;1 = f1; 2; 3; 4; 9; 15; 10; 16; 22g

E1;2 = f1; 6; 2; 5; 8; 38; 11; 41; 17g

E2;1 = f1; 3; 5; 6; 11; 9; 36; 24g

E2;2 = f2; 5; 1; 4; 17; 13; 16; 31; 36g

E3;1 = f2; 3; 4; 1; 13; 19; 25g

In the next step, we generate 16-bit bitmap signatures for all equivalent sets.

bitmap signature(E1;1) = 1000011001011111

bitmap signature(E1;2) = 0000101101100110

bitmap signature(E2;1) = 0000101101111010

bitmap signature(E2;2) = 1010000000110111

bitmap signature(E3;1) = 0010001000011110

Finally, the sequential index is stored in the database in the following form:

SID bitmap signature
1 1000011001011111, 0000101101100110
2 0000101101111010, 1010000000110111
3 0010001000011110

2.3 Using Sequential Index for Pattern Queries

During pattern query execution, the bitmap signatures for all web access se-
quences are scanned. For each web access sequence, the test of a searched sub-
sequence mapping is performed. If the searched subsequence can be successfully
mapped to the web access sequence partitions, then the web access sequence is
read from the database. Due to the ambiguity of bitmap signature representa-
tion, additional veri�cation of the retrieved web access sequence is required. The
veri�cation can be performed using the traditional B+-tree method, since it con-
sists in reading the web access sequence from the database and checking whether
it contains the searched subsequence. The formal description of the algorithm is
given below. We use a simpli�ed notation of Q[i start::i end] to denote a par-
tition < Xi startXi start+1:::Xi end > of a sequence Q =< X1X2:::Xn >, where
1 � i start � i end � n. The symbol & denotes bit-wise AND operation.

Input: sequential index, searched subsequence Q

Output: identi�ers of web access sequences to be veri�ed

Method:

for each sequence identi�er sid do begin

j = 1;

i end = 1;

repeat

i start = i end;

evaluate equivalence set EQ for Q[i start::i end];

mask = bitmap signature(EQ);

while mask & bitmap signature(Esid;i) <> mask

and j � number of partitions for sid do j++;

if j � number of partitions for sid then repeat

i end++;

generate equivalence set EQ for Q[i start::i end];

mask = bitmap signature(EQ);

until mask & bitmap signature(Esid;i) <> mask

or i end = size of Q;

until i start = i end or j > number of partitions for sid;

if j � number of partitions then return(sid);

end.

Consider the following example of using sequential index to perform pattern
queries. Assume that we look for all web access sequences, which contain the
subsequence < fFgfBgfDg >. We begin with sid=1. We �nd that < fFg >
(0000001000000000) matches the �rst partition (1111101001100001). So, we
check whether < fFg; fBg > (0010001000000000) also matches this partition.
Accidentally it does, but when we try < fFg; fBg; fDg > (1010101010000000),
we �nd that it does not match the �rst partition. Then we move to the second
partition to check whether < fDg > (00001000000000000) matches the parti-
tion (0110011011010000). This test fails and since we have no more partitions, we
reject sid=1 (this web access sequence does not contain the given subsequence).

In the next step, we check sid=2. We �nd that < fFg > (0000001000000000)
matches the �rst partition (0101111011010000). So, we check whether < fFg;
fBg > (0010001000000000) also matches this partition. It does not, so we move
to the second partition and �nd that < fBg > (0010000000000000) matches
the partition (1110110000000101). Then we must check whether < fBg; fDg >
(1010100000000000) also matches the partition. This time the check is positive
and since we have matched the whole subsequence, we return sid=2 as a part of
the result. The web access sequence will be veri�ed later.

Finally, we check sid=3. We �nd that < fFg > (0000001000000000) does
not match the �rst partition (0111100001000100). Since we have no more par-
titions, we reject sid=3 (this web access sequence does not contain the given
subsequence).

So far, the result of our index scanning is the web access sequence identi�ed
by sid=2. We still need to read and verify, whether the sequence really contains
the searched subset. In our example it does, so the result is returned to the user.

2.4 Physical Storage

Since a sequential index is fully scanned each time a pattern query is per-
formed, it is critical to store it eÆciently. We store index entries in the form
of < p; n; bitmap1; bitmap2; :::; bitmapn >, where p is a pointer to a web ac-
cess sequence described by the index entry, n is the number of bitmap signa-
tures, and bitmapi is a single bitmap signature for the web access sequence.
The pointer p should address the translation table, which contains pointers to
physical tuples of the relation holding the web access sequences (the structure
is < n; p1; p2; ::; pn >). Since we usually have a B+-tree index on a sequence
identi�er attribute (to optimize joins), we can use its leaves can as a translation
table instead of consuming database space by redundant structures. Example
storage implementation for the sequential index from Sect.2.2 is given in Fig.6.

1000011001011111 0000101101100110 0000101101111010

1010000000110111 0010001000011110

2

...

SID TS L
1 1 A
1 1 B
1 2 C
1 3 D
1 4 A
1 4 F
1 5 B
1 6 E
2 1 A
2 2 C
2 2 E
2 3 F
2 4 B
2 5 E
2 6 A
2 6 D
3 1 B
3 1 C
3 1 D
3 2 A
...

2

1

8

8

4 ...

Sequential Index

Translation Table

Database Relation

Fig. 6. Example physical storage structure for sequential index

2.5 Update Operations

Maintenance of a sequential index is quite expensive, since bitmap signatures are
not reversible, and updates may in
uence partitioning of web access sequences.
For example, when we insert a new tuple into the database, thus extending
a web access sequence, we cannot determine what partition should the tuple
belong to. Similarly, when we delete a tuple, then both we cannot determine the
corresponding partition, and, even if we could do it, we do not know, whether
the item being deleted was the only item mapped to a given bit of the bitmap
signature (so we could reset the bit).

In order to have a consistent state of a sequential index, we must perform the
complete index creation procedure (partitioning, evaluating equivalent sets, gen-
erating bitmap signatures) for the web access sequence being modi�ed. However,
since this solution might reduce DBMS performance for transaction-intensive
databases, we propose the following algorithm of o�ine maintenance for se-
quential indexes:

1. Whenever a new item is added to an existing web access sequence, we set to
'1' all bits in the �rst bitmap signature for the web access sequence. It means
that any subsequence will match the �rst bitmap signature, and therefore we
will not miss the right one. Any false hits will be eliminated during actual
veri�cation of subsequence containment.

2. Whenever an item is removed from an existing web access sequence, we do
not perform any modi�cations on the bitmap signatures of the web access
sequence. We may get false hits, but they will be eliminated during �nal
veri�cation.

Notice that using the above algorithm, the overall index performance may de-
crease temporarily, but we will not get incorrect query results. Over a period of
time, the index should be rebuild either completely, or for updated web access
sequences only, e.g. according to a transaction log.

3 Experimental Results

We have performed several experiments on synthetic data sets to evaluate our
sequential indexing method. The database of web access sequences was generated
randomly, with uniform item distribution, and stored by Oracle8 DBMS. We
used dense data sets, i.e. the number of available items was relatively small,
and therefore each item occurred in a large number of web access sequences.
The web access sequences contained 1-item sets only (pessimistic approach -
maximal number of ordering relations).

Figure 7a shows the number of disk blocks (including index scanning and
relation access), which were read in order to retrieve web access sequences con-
taining subsequences of various lengths. The data set contained 50000 web access
sequences, having 20 items of 50 in average. The compared database accessing
methods were: traditional SQL query using B+-tree index on IP attribute (B+-
tree), 24-bit set-based bitmap index (24S), 32-bit sequential index with � = 28
built on top of 24-bit set-based bitmap index (24S32Q28), and 48-bit sequential
index with � = 55 built on top of 24-bit set-based bitmap index (24S48Q55).
Our sequential index achieved a signi�cant improvement for the searched subse-
quences of length greater than 4, e.g. for the subsequence length of 5 we were over
20 times faster than the B+-tree method and 8 times faster than the set-based
bitmap index.

We also analyzed the in
uence of the partitioning level � value on the se-
quential index performance. Figure 7b illustrates the �ltering factor (percentage
of web access sequences matched) for three sequential indexes built on bitmap
signatures of total size of 48 bits, but with di�erent partitioning. We noticed
that partitioning web access sequences into a large number of partitions (small
�) results in performance increase for long subsequences, but worsens the per-
formance for short subsequences. Using a small number of web access sequence
partitions (high �) results in more "stable" performance, but the performance
is worse for long subsequences.

a)

0

100000

200000

300000
400000

500000

600000

700000

800000

2 3 4 5 6 7 8 9 10 11 12 13

subsequence size

bl
oc

ks
re

ad B+ tree

24S

24S32Q28

24S48Q55

b)

0

20

40

60

80

100

2 3 4 5 6 7 8 9 10

subsequence size

se
qu

en
ce

s
ac

ce
pt

ed

210
55
15

48 bits/sequence
items: 50
avg. length: 20

Fig. 7. Experimental results

4 Final Conclusions

Pattern queries on web access logs are speci�c in the sense that they require
complicated SQL queries and database access methods (multiple joins, ineÆ-
cient optimization). In this paper we have presented the new indexing method,
called sequential indexing, which can replace a B+-tree indexing and set-based
indexing. During experiments, we have found that the most eÆcient solution is
to combine a set-based index (which checks items of a web access sequence) with
a sequential index (which checks the items ordering), what results in dramatic
outperforming B+-tree access methods.

References

1. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf.
(1995)

2. Bayardo R.J.: EÆciently Mining Long Patterns from Databases. Proc. of the ACM
SIGMOD International Conf. on Management of Data (1998)

3. Bentley J.L.: Multidimensional binary search trees used for associative searching.
Comm. of the ACM 18 (1975)

4. Catledge L.D., Pitkow J.E.: Characterizing Browsing Strategies in the World Wide
Web. Proc. of the 3rd Int'l WWW Conference (1995)

5. Comer D.: The Ubiquitous B-tree. Comput. Surv. 11 (1979)
6. Cooley R., Mobasher B., Srivastava J.: Data preparation for mining World Wide

Web browsing patterns. Journal of Knowledge and Information Systems 1 (1999)
7. Cooley R., Mobasher B., Srivastava J.: Grouping Web Page References into Trans-

actions for Mining World Wide Web Browsing Patterns. Proc. of the 1997 IEEE
Knowledge and Data Engineering Exchange Workshop (1997)

8. Diamantini C., Panti M.: A Conceptual Indexing Method for Content-Based Re-
trieval. Proc. of the 15th IEEE Int'l Conf. on Data Engineering (1999)

9. Guralnik V., Wijesekera D., Srivastava J.: Pattern Directed Mining of Sequence
Data. Proc. of the 4th KDD Conference (1998)

10. Guttman A.: R-trees: A dynamic index structure for spatial searching. Proc. of
ACM SIGMOD International Conf. on Management of Data (1984)

11. Luotonen A.: The common log �le format. http://www.w3.org/pub/WWW/
(1995)

12. Mannila H., Toivonen H.: Discovering generalized episodes using minimal occur-
rences. Proc. of the 2nd KDD Conference (1996)

13. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences.
Proc. of the 1st KDD Conference (1995)

14. Morzy T., Zakrzewicz M.: Group Bitmap Index: A Structure for Association Rules
Retrieval. Proc. of the 4th KDD Conference (1998)

15. O'Neil P.: Model 204 Architecture and Performance. Proc. of the 2nd International
Workshop on High Performance Transactions Systems (1987)

16. Perkowitz M., Etzioni O.: Adaptive Web Sites: an AI challenge. Proc. of the 15th
Int. Joint Conf. AI (1997)

17. Pirolli P., Pitkow J., Rao R.: Silk From a Sow's Ear: Extracting Usable Structure
from theWorldWideWeb. Proc. of Conf. on Human Factors in Computing Systems
(1996)

18. Pitkow J.: In search of reliable usage data on the www. Proc. of the 6th Int'l
WWW Conference (1997)

19. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. Proc. of the 5th EDBT Conference (1996)

20. Yan T.W., Jacobsen M., Garcia-Molina H., Dayal U.: From User Access Patterns
to Dynamic Hypertext Linking. Proc. of the 5th Int'l WWW Conference (1996)

