

HASH-MINE: A New Framework for Discovery of
Frequent Itemsets

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
tel. +48 61 6652378
fax +48 61 8771525

Marek.Wojciechowski@cs.put.poznan.pl
Maciej.Zakrzewicz@cs.put.poznan.pl

Abstract. Discovery of frequently occurring subsets of items, called itemsets, is
the core of many data mining methods. Most of the previous studies adopt
Apriori-like algorithms, which iteratively generate candidate itemsets and check
their occurrence frequencies in the database. These approaches suffer from
serious costs of repeated passes over the analyzed database. To address this
problem, we propose a novel method, called HASH-MINE, for reducing
database activity of frequent itemset discovery algorithms. The idea of
HASH_MINE consists in using hash tables for pruning candidate itemsets. The
proposed method requires fewer scans over the source database: the first scan
creates hash tables, while the subsequent ones verify discovered itemsets. Its
performance improvements have been shown in a series of our experiments.

1 Introduction

Discovery of frequent itemsets is the core of many data mining methods. It has been
well studied in the context of association rules introduced in [1]. The problem of
mining association rules is usually decomposed into two phases: discovery of frequent
itemsets and generation of rules from the discovered frequent itemsets. Since the
second step is straightforward, researchers dealing with association rules usually
concentrate on efficient algorithms for discovery of frequent itemsets. It has to be
noted that frequent itemsets have more applications than only for discovery of
association rules. It has been shown that they can be used in discovery of sequential
patterns [4] or clustering [7].

Most of the previous studies on frequent itemsets adopt Apriori-like algorithms,
which iteratively generate candidate itemsets and check their occurrence frequencies
in the database. It has been shown that Apriori in its original form [3] suffers from
serious costs of repeated passes over the analyzed database and from the number of

candidates that have to be checked, especially when the frequent itemsets to be
discovered are long.

In this paper, we propose a novel method, called Hash-Mine, for reducing database
activity of frequent itemset discovery algorithms. Hash-Mine generates hash tables
derived from the original database and uses them for pruning candidate itemsets in
some of the iterations. The proposed method requires smaller number of scans over
the source database than Apriori. Experiments show that our method leads to a
significant performance improvement over the classic Apriori algorithm. The minimal
number of database scans in our approach is two: the first scan creates hash tables,
while the second one performs final pruning, however, the best results can be
obtained, if we use hash-based pruning starting from the third iteration of the
algorithm.

1.1 Background

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets,
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T.
We say that an itemset T supports an itemset X⊆L if T supports every item in the set
X. Each itemset has an associated measure of its statistical significance, called
support. The support of the itemset T in the set D is:

{ }

D

XTDT
DXsupport

 supports |
),(

∈
=

In other words, the itemset X holds in the set D with support s if s is the fraction of
itemsets in D supporting X. A frequent itemset is an itemset, whose support is above a
user-defined threshold.

Example. For the database D = {{A,B,C,D}, {A,C,D}, {E,F,G}, {A,C,D,H}}, and the
support threshold value of 0.5 we have the following frequent itemsets: {A}, {C}, {D},
{A,C}, {A,D}, {C,D}, and {A,C,D}.

Introduction to Apriori. The algorithm called Apriori iteratively finds all possible
itemsets that have support greater or equal to a given minimum support value
(minsup). The first pass of the algorithm counts item occurrences to determine the
frequent 1-itemsets (each 1-itemset contains exactly one item). In each of the next
passes, the frequent itemsets Lk-1 found in the (k-1)th pass are used to generate the
candidate itemsets Ck, using apriori-gen function described below. Then, the database
is scanned and the support of candidates in Ck is counted. The output of the first phase
of the Apriori algorithm consists of a set of k-itemsets (k=1, 2, ...), that have support
greater or equal to a given minimum support value. Figure 1 presents a formal
description of the algorithm. We assume that items in each database itemset are kept
sorted in their lexicographic order.

scan D to find L1;
for (k = 2; Lk-1 ≠ 0; k++) do begin
 Ck = apriori_gen (Lk-1);
 forall transactions t ∈ D do begin
 Ct = subset (Ck , t);
 forall candidates c ∈ Ct do
 c.count ++;
 end
 Lk = { c ∈ Ck | c.count ≥ minsup};
end
Answer = ∪k Lk;

Fig. 1. Apriori algorithm

In the algorithm Apriori, candidate itemsets Ck are generated from previously found
frequent itemsets Lk-1, using the apriori-gen function. The apriori-gen function works
in two steps: 1. join step and 2. prune step. First, in the join step, large itemsets from
Lk-1 are joined with other large itemsets from Lk-1 in the following SQL-like manner:

insert into Ck
select p.item1, p.item2, ..., p.itemk-1, q.itemk-1
from Lk-1 p, Lk-1 q
where p.item1 = q.item1
 and p.item2 = q.item2
 ...
 and p.itemk-2 = q.itemk-2
 and p.itemk-1 < q.itemk-1;

Next, in the prune step, each itemset c∈Ck such that some (k-1)-subset of c is not in
Lk-1 is deleted:

forall itemsets c∈Ck do
 forall (k-1)-subsets s of c do
 if (s ∉ Lk-1) then delete c from Ck;

The set of candidate k-itemsets Ck is then returned as a result of the function apriori-
gen.

A serious problem of practical applications of Apriori is its long processing time. The
repeated database scanning is its most important drawback.

1.2 Related work

Many variants of Apriori have been proposed recently to reduce the number of
required database scans or the number of candidates to verify. In [9] an algorithm
called Partition that needs only two scans over the database was proposed. Partition
divides the database into parts that can be kept in main memory, discovers itemsets in
those parts and verifies the results in the final database pass. The DIC algorithm [6]
begins checking an itemset shortly after all its subsets have been determined frequent,

thus potentially reducing the overall number of iterations. The algorithm DHP [8]
enhances Apriori with a hashing scheme that is used in each iteration to prune some
candidates before the database pass (the overall number of database scans is the same
as in the case of Apriori). In [5] an algorithm called Max-Miner, significantly
different from the previous ones was introduced to reduce the number of processed
candidates when patterns (itemsets) to be found are long (the number of candidates
checked by Apriori grows exponentially with the size of the longest pattern).

2 HASH-MINE Algorithm

Apriori-like algorithms use full database scans for pruning candidate itemsets, which
are below the support threshold. Hash-Mine prunes candidates by using dynamically
generated hash tables, thus reducing the number of database blocks read.

A hash table used by Hash-Mine is a set of hash signatures generated for each
database itemset. The hash signature of a set X is an N-bit binary number created, by
means of bit-wise OR operation, from the hash keys of all data items contained in X.
The hash key of the item x∈X is an N-bit binary number defined as follows:

hash_key(X) = 2(X mod n)

For example, for the database D = {{0,7,12,13},{2,4},{10,15,17}} and N=5, we
generate the following hash table H={01101,10100,00001}.

The hash signatures have the following property. For any two sets X and Y, we
have X⊆Y if:

hash_signature(X) AND hash_signature(Y) = hash_signature(X)

where AND is a bit-wise AND operator. This property is not reversible in general
(when we find that the above formula evaluates to TRUE we still have to verify the
result traditionally).

In order to plan the length N of a hash signature for a given average set size,
consider the following analysis. Assuming uniform distribution of items, the
probability that representation of the set X sets k bits to '1' in an N-bit hash signature
is:

∑
−

=






−==








=
1

1
||,

||
||,||,0||

||,

 ,0 where,
q

i
Xi

X
XqXX

Xk

f
i

q
qff

N

f
k

N

P

Example probabilistic expected value of number of bits set to '1' for a 16-bit hash
signatures and various set sizes is illustrated in Figure 2. We can observe that e.g. for
a set of 10 items, N should be greater than 8 (otherwise we have all bits set to 1 and
the signature is unusable since it is always matched).

�

�

�

�

�

��

��

��

� � � �	 �
 �� ��

��� ����

�
�
��
�

Fig. 2. Number of bitmap signature bits set to '1' for various set sizes (N=16)

The probability that a bitmap signature of the length N having k 1's matches another
bitmap signature of the length N having m 1's is:













k

N

k

m
/

It means that the smaller k, the better pruning is performed during matching bitmap
signatures of item sets, in order to check their containment (so we have to verify less
item sets).

The Hash-Mine algorithm for frequent itemset discovery is presented in Figure 3.
A user gives a minimum support value (minsup), and an array (use_hash), which
specifies, in what iterations to use a hash-based candidate pruning – use_hash[i]=1
means to use a hash table in the iteration i, instead of a database scan.

scan D to generate hash signatures S and to find L1;
for (k = 2; Lk-1 ≠ 0; k++) do begin
 Ck = apriori_gen (Lk-1);
 if use_hash[k]=1 then begin
 forall signatures t ∈ S do
 forall candidates c ∈ Ck do
 if c AND t=c then c.count ++;
 end;
 else begin
 forall transactions t ∈ D do begin
 Ct = subset (Ck, t);
 forall candidates c ∈ Ct do c.count ++;
 end;
 end;
 Lk = { c ∈ Ck | c.count ≥ minsup};
end;

Answer = ∪k Lk;
scan D to verify Answer;

Fig. 3. Hash-Mine Algorithm

3 Experimental Results

We performed several experiments on synthetic data to evaluate the performance and
scalability of the Hash-Mine algorithm and the efficiency of hash-based candidate
pruning. The data sets were generated by means of the GEN generator from the Quest
project [2]. The average item set size was 25 items out of 50. The experiments were
conducted in a client-server architecture. The database was implemented in Oracle 8i
DBMS running on a PC with Pentium II 300 MHz processor and 128 MB of main
memory. The client was a PC with the same hardware configuration, communicating
with the server via Ethernet local area network.

Figure 4 shows execution times of two instances of the Hash-Mine algorithm:
using three and four database passes (counting the final verification path). The
execution times of Hash-Mine are compared to Apriori, which for our test data set
needed 7 database scans. The experiments show that our method is c.a. 2 times faster
than Apriori and scales linearly with the size of the database (same as Apriori).

In Figure 5 numbers of candidates that were not pruned out in subsequent iterations
are shown for Apriori and Hash-Mine switching to hash-based pruning in the fourth
iteration. The database used in the test consisted of 1000 itemsets and the required
minimum support was 20%. Since hash-based pruning leaves some itemsets that are
not frequent, Hash-Mine may require more iterations than Apriori (as shown in our
example). Despite this, Hash-Mine still outperforms Apriori because additional
iterations are performed in main memory.

We also experimented with the version of Hash-Mine using only two database
scans: the initial one and the verification one, but in that case the number of
candidates that had to be analyzed due to inaccurate pruning was too large and led to
longer execution times than in case of Apriori.

�

���

���

���

���

����

����

���� ���� ���� ���� ���� ����

�������� ��	�
���������

�
�
�
�
�
��
�
�
��

�
��

������� �� 	
��	

��	������ �� 	
��	

��	������ �� 	
��	

Fig. 4. Execution times comparison

�

��

���

���

���

���

���

� � � � � � � � 	

��������	 ����
� �� ��

��
��
�

���������

�
�
�
�
�
�
�
	
	�
�

�
�
�
�
��
�
�

�
�

Fig. 5. Numbers of candidates not pruned out

4 Conclusions

In this paper we have shown that dynamically created hash tables can replace costly
database scans. Hash tables are extremely small, as compared to the source database,
therefore they fit into memory even for very large databases. The Hash-Mine method
can be used to improve performance of Apriori-like data mining algorithms,
especially when a number of their iterations is large. Our experimental results show
50% performance increase over the traditional algorithms.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases, Proc. 1993 ACM SIGMOD International Conference on Management of
Data, pp. 207-216, Washington DC, USA (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System, Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining, Portland, Oregon (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules, Proc. 20th Int’l
Conf. Very Large Data Bases, pp. 478-499, Santiago, Chile (1994)

4. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’l Conference on
Data Engineering (1995)

5. Bayardo R. J.: Efficiently Mining Long Patterns from Databases. Proc. of the 1998 ACM
SIGMOD International Conference on Management of Data (1998)

6. Brin S., Motwani R., Ullman J., Tsur S.: Dynamic Itemset Counting and Implication Rules
for Market Basket Data, Proc. of the 1997 ACM SIGMOD International Conference on
Management of Data (1997)

7. Han E., Karypis G., Kumar V., Mobasher B.: Hypergraph Based Clustering in High-
Dimensional Data Sets: A summary of Results. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, Vol.21 No. 1 (1998)

8. Park J.S., Chen M.-S., Yu P. S.: An Effective Hash-Based Algorithm for Mining
Association Rules, Proc. 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, CA, USA (1995)

9. Savasere A., Omiecinski E., Navathe S.: An Efficient Algorithm for Mining Association
Rules in Large Databases, Proc. 21th Int’l Conf. Very Large Data Bases, pp. 432-444,
Zurich, Switzerland (1995)

