ASP.NET

dr hab. inz. Marek Wojciechowski

ASP.NET

e Technology (also referred to as a web framework)
for building modern web applications and services
on the .NET platform

— successor of Active Server Pages (ASP)
— works on CLR, and thus uses compiled .NET programming
languages for application logic

e Supports multiple programming models

e Applications run on application servers, mainly:

— IIS (Internet Information Services): only for Windows, classic
application server from Microsoft, integral part of server versions
of Windows

— Kestrel: multi-platform, lighter than IIS, supports a single
application only

ASP.NET programming models (1/2)

Web Forms MVC Web Pages Web API Razor Pages

ASP.NET

e Web Forms (outdated, legacy)
— Component-based UI ("UI controls")

— Visual and event-driven programming
— Classic ASP.NET syntax (<% %>)

o ASP.NET MVC

— Implementation of the MVC architectural pattern

— Classic ASP.NET (at first) or (later) Razor syntax for views
e Web Pages

— Simple old-style web applications as in pure PHP or old ASP
— Razor syntax

ASP.NET programming models (2/2)

Web Forms MVC Web Pages Web API Razor Pages

ASP.NET

o Web API

— API for the HTTP protocol

— REST-style services but not only

— JSON as the default data exchange format, support for XML
e Razor Pages

— Page-centric application model

— Abstraction (simplification) over ASP.NET MVC

— Concept similar to the Model-View-ViewModel (MVVM) pattern
e Each page has its own Page Model and bindings to it

ASP.NET Web Forms

Framework to bulid web application in a way resembling
building desktop applications

— "heart and soul of ASP.NET"

— "stateful framework over a stateless medium”

Lost popularity in favor of ASP.NET MVC

Not available in .NET Core
— Razor Pages positioned as a successor of Web Forms

Web Forms pages consist of 2 components:
— visual page (*.aspx file)

— "code behind" file (partial class)
Characteristic terms:

— postback

— viewstate

— server controls

1 Strengths of Web Forms

Separation of HTML from application logic (code behind)

Rich set of server controls
— Including controls responsible for HTML generation

Less coding
— e.g., thanks to functional data access controls

Event-driven programming familiar to desktop application
developers
— In particular Visual Basic for Windows

Access to Ajax functionality without coding in JavaScript

ASP.NET Web Forms: Example (1/2)

Hello.aspx

<% @ Page Language="C#" AutoEventWireup="true"
CodeFile="Hello.aspx.cs" Inherits="Hello" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd" >
<html xmins="http://www.w3.0rg/1999/xhtml|">
<head runat="server"> <title> </title> </head >
<body>
<form id="form1" runat="server" >
<div>
<asp:TextBox ID="NameTextBox" runat="server"></asp:TextBox>
<asp:Button ID="SubmitButton" runat="server" Text="Greet"
onclick="SubmitButton_Click" />

<asp:Label ID="HelloLabel" runat="server" Text=""></asp:Label>
</div>
</form>
</body>
</html> Marek Greet

Hello Marek!

ASP.NET Web Forms: Example (2/2)

Hello.aspx.cs

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

public partial class Hello : System.Web.UI.Page

{
protected void Page_Load(object sender, EventArgs e) {}

protected void SubmitButton_Click(object sender, EventArgs e)

{

HelloLabel. Text = "Hello " + NameTextBox.Text + "!";

}

}

Data access controls in ASP.NET

e Data source controls, e.g., SglDataSource

— But also ObjectDataSource, and later LastName | Salary
LingDataSource and EntityDataSource, Smith 3450
facilitating separation of Data Access Layer (DAL) Bfﬁwn 4500

.]) White 2700
e Visual data controls cooperating with Johnson 1 3560
data source controls, e.g., GridView Thomas | 2700

<asp:GridView ID="GridView1" DataSourceID="ds" runat="server"/>
<asp:SqlDataSource ID="ds" runat="server"
SelectCommand="SELECT [LastName], [Salary]
FROM [Employees]"
ConnectionString="<%$ ConnectionStrings:Emps %>" />

Web.config

<connectionStrings>
<add name="Emps" connectionString="Server=(local);Integrated Security=True;
Initial Catalog=tempdb" providerName="System.Data.SqIClient" />
</connectionStrings>

Disadvantages of Web Forms
1 (from today’s perspective)

e Abstraction from HTML and HTTP is no longer
an advantage

e Costly mechanisms: view state, postbacks, controls, page
life cycle

e Makes it easier for programmers to get started quickly, but
it is difficult to "properly"” implement large systems with it

e Problematic page-centric approach

— the close relationship between the page file name and the URL
— difficult and inefficient testing of applications

— Page Controller "pattern”

— but... the concept has come back to life in the new Razor Pages
framework!

ASP.NET Web Pages

e The simplest programming model of ASP.NET

— Framework for creating dynamic websites in the style of PHP
and classic ASP
— Uses Razor syntax and engine (ASP.NET Web Pages 2)

— Open source
— Created in Visual Studio or the free WebMatrix environment

— Based on Razor view engine

e supported programming languages: C# and Visual Basic
(.cshtml and .vbhtml page file extensions)

Razor view engine

o SP.NET MVC from the beginning supported the concept
of view engines - modules implementing different page
templates syntax

— Spark and NHaml as examples of template engines for use in
ASP.NET MVC instead of the traditional, known from Web Forms,
ASP.NET engine

— Razor developed for MVC3, used in later MVC versions, but also in
ASP.NET Web Pages 2
e Razor’s major features
— transparent code based on C # and VB languages
— compact and transparent syntax: @ {...}, @expression

— intelligent parser enables natural HTML interleaving with
programming language

— supports IntelliSense, unit tests, layouts

— helpers for generating HTML forms

ASP.NET Web Pages: Example (1/2)

Test.cshtml

@{
var title = Request.QueryString["title"];
if (String.IsNullOrEmpty(title)) { title = "Razor Web Page"; }
var count = Request["count"].AsInt(1);
)
<html>
<head> <title> @title</title></head>
<body>
<form method="post">
First name: @Html.TextBox("name", @Request["name"])
of greetings: @Html.TextBox("count"”, @count)
<input type="submit" value="Submit" />
</form>
@{
if(IsPost) {
for(inti = 0; i < count; i++) {
<p>Hello @Request.Form["name"]!</p> } }

¥
</body></html>

ASP.NET Web Pages: Example (2/2)

e ,,,' i http://localhost:52020,/Test.cshtml?title=MyTitle ,'D v @ O | MyTitle

First na.me:||".'13rek # of greetings: |2 || Submit |

Hello Marek!

Hello Marek!

ASP.NET MVC

e Microsoft’s framework for ASP.NET

— based on the Model-View-Controller (MVC) pattern -

— inspired by the Ruby on Rails framework -

— first production version: March 2009 view)« (coneroter
— presented as an alternative to Web Forms, o’ \—

not a successor
— open source (MS-PL license), free, fully supported by Microsoft

— in MVC3 the Razor view engine was introduced, at first as an
alternative to classic syntax, finally replacing it

Advantages of ASP.NET MVC

Full control over generated HTML
— ,Embrace HTTP and HTML - don't hide it”
— no view state and server-side form representations

Possible integration with Ajax, jQuery

Intuitive URL addresses
— RESTful and friendly for search engines

Separation of concerns within an application

Testability
— support for Test-Driven Development (TDD)

Manages navigation between pages
— Front Controller pattern, routing

Separation of concerns
in ASP.NET MVC

e Models
— components responsible for maintaining the state
— the state typically persisted in the database

e Views

— components responsible for displaying the user interface of
the application

— the view can be generated from a model using
a wizard (CRUD scaffolding)

e Controllers

— components responsible for handling user interaction,
manipulating the model, and selecting the view to display

e Separate templates for .NET Framework and .NET Core

Project wizard
(Visual Studio 2019)

Create a new
project

Recent project templates

ASP.NET Web
Application (.NET
Framework)

C#

ASP.NET
Web
Application
(NET
Framework)

Visual Basic

ASP.NET Core Web

C#
Application

Search for templates (Alt+5)

C# v All platforms v All project types

::\ Console App ((NET Core)

A project for creating a command-line application that can run on .NET Core on
Windows, Linux and MacQS.

Cc# Linux macOSs Windows Console

ASP.NET Core Web Application

Project templates for creating ASP.NET Core web apps and web APls for Windows,
Linux and macQS using .NET Core or .NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

5

Cc# Linux macOSs Windows Cloud Service Web

Blazor App

Project templates for creating Blazor apps that run on the server in an ASP.NET Core
app or in the browser on WebAssembly. These templates can be used to build web
apps with rich dynamic user interfaces (Uls).

C# Linux macOSs Windows Cloud Web

Clear all

Back

MNext

ASP.NET application wizard

Create a new ASP.NET Core web application

.NET Core ~ ASP.NET Core 3.1 v
1 Empty Authentication
N
An empty project template for creating an ASP.NET Core application. This template does not have any content in it. No Authentication
Change
)+
A project template for creating an ASP.NET Core application with an example Controller for a RESTful HTTP service.
This template can also be used for ASP.NET Core MVC Views and Controllers.
Advanced
@I | Web Application Configure for HTTPS
A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content. I:l Enable Docker Support

(Requires Docker Desktop)

Web Application (Model-View-Controller)

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
Controllers. This template can also be used for RESTful HTTP services.

) Anguler

A project template for creating an ASP.NET Core application with Angular

D Enable Razor runtime compilation

Author: Microsoft
React.js ¥ Source: .NET Core 3.1.4

Get additional project templates

User authentication in ASP.NET

e No Authentication

e Individual User Accounts

— Registration via apllication
— Profiles in a local SQL Server database (in-app) or in the cloud

e Work or School Accounts
— Active Directory / MS Azure AD / Office 365

e \Windows Authentication

— For intranet
applications

Change Authentication

: Store user accounts in-app ¥ Learn more

O No Authentication Select this option to create a project that includes a local user accounts store.
(® Individual User Accounts

() Work or School Accounts

(O Windows Authentication

Learn more about third-party open source authentication options (@] | |

* ASP.NET MVC Core project structure

e Newly created project includes
the start application, which can
then be adapted and developed

— controllers and views for
the welcome page

page template (layout page)
authentication pages and code
(if selected in the project wizard)

Startup.cs — application initialization

(e.qg., default routing rule)

appsettings.json — application
configuration (e.g., database

connection strings)

Solution Explorer

Qe o-59F [uW- F

Search Solution Explorer (Ctrl+;) P~

%1 Solution 'MVCAuth’ (1 of 1 project)
4 MVCAuth

P
b
4

A Y YV VY v

b
b
b

&P Connected Services
1 Dependencies
p Properties
@ wwwroot
p css
3 js
p lib
favicon.ico
Areas
Controllers
Data
Models
Views
p Home
b Shared
_Viewlmports.cshtml
_ViewStart.cshtml
9) appsettings.json
C* Program.cs
C* Startup.cs

Solution Explorer | Team Explorer

ASP.NET MVC starter application

MVCAuth Home Privacy Register Login

Home

MVCAuth

Privacy

Welcome

Learn about building Web apps with ASP.NET Core.

Register

Login

MVCAuth Home Privacy Register Login

Register

Create a new account.

Email
Password

Confirm password

Use another service to register.

There are no external authentication services configured. See this article for details
on setting up this ASP.NET application to support logging in via external services.

Privacy Policy

Use this page to detail your site's privacy policy.

© 2020 - MVCAuth - Privacy

MVCAuth Home Privacy Register Login

Log in

Use a local account to log in.

Email

marek@microsoft.com

Password

ssss

Remember me?

Forgot your password?

Register as a new user

Use another service to log in.

There are no external authentication services configured. See this article for details

MVC Routing

Startup.cs

public class Startup

{

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{

app.UseRouting();

app.UseEndpoints(endpoints =>
{
endpoints.MapControllerRoute(
name: "default",
pattern: "{controller=Home}/{action=Index}/{id?}");

1)
}
}

MVC Controller

HomeController.cs

public class HomeController : Controller

{

public TActionResult Index()
{

return View();

}

public TActionResult About()
{

ViewBag.Message = "Your application description page.";

return View();

}

View

About.cshtml

@{
ViewBag.Title = "About";
}

<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<p>Use this area to provide additional information.</p>

Page layout

| _Layout.cshtml

<html>

<head>
<title>@ViewData["Title"] - MvcNews< /title>
<link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
<link rel="stylesheet" href="~/css/site.css" />

</head>

<body>

<a asp-area=
<a asp-area=

asp-controller="Home" asp-action="Index">Home
asp-controller="Home" asp-action ="Privacy">Privacy

<div class="container">
<main role="main">
@RenderBody()
</main>
</div>

</body>
</html>

Sharing code between views

e ViewStart files
— In the Views folder
— In subfolders for views associated with controllers

e Executed and the beginning of view rendering

_ViewStart.cshtml

@{
Layout = "_Layout";
by

Passing data from the controller
to the view

e ViewData, ViewBag (from MVC 3)

— Data available during a single request
and not surviving the redirect operation

— ViewData["key"], ViewBag.key
— ViewBag is an abstraction over ViewData
(not available in Razor Pages!)

e TempData
— Data surviving redirection

— TempData["key"]
— Internally uses HTTP session
e View models and strongly typed views
— Model objects passed to views
— Preferred solution

1 ASP.NET MVC View Model Patterns

¢ Domain model as a view model
— e.g., Entity Framework entity

e Dedicated view model containg a domain model object
(or objects) (+ data needed for presentation)

e Dedicated view model containing data from the data model
(+ data needed for presentation)
— requires translation between domain models and view models

* Domain object: Example (EF)
|

namespace MvcNews.Models

{
public class Newsltem
{
[Key]
public int Id { get; set; }
public DateTime TimeStamp { get; set; }
public string Text { get; set; }
¥
¥

Scaffolding in ASP.NET MVC

e The technique of generating CRUD functionality
for a domain object (controller + views)

e Visual Studio wizards for ASP.NET MVC:

— complete scaffolding from EF entity to a controller with CRUD
actions and corresponding views

— scaffolding from EF entity to a controller with CRUD actions
(without views)

— Views created individually for controller actions with
a possibility of selecting a data model class

Complete CRUD scaffolding

in ASP.NET MVC (1/2)

Add New Scaffolded Item

4 |nstalled

P Common

Controller

(=]
‘o

Controller...
New Item... Ctrl+Shift+A
Existing Item... Shift+Alt+A

New Scaffolded Item...

‘g MVC Controller - Empty

‘: MVC Controller with read/write actions

MVC Controller with views, using Entity
Framework
‘: API Controller - Empty

‘g API Controller with read/write actions
API Controller with actions, using Entity

Framework

Click here to go online and find more scaffolding
extensions.

&1 View in Browser (Google Chrome)

Browse With...
Add

Scope to This

New Solution Explorer View

Exclude From Project

MVC Controller with views, using Entity

Framework
by Microsoft
v1.0.0.0

An MVC controller with actions and Razor
views to create, read, update, delete, and list

entities from an Entity Framework data

context.

Id: MvcControllerWithContextScaffolder

Add

| | Cancel

¥

B WWWIootT
() (o

Ctrl+Shift+W

tro

oni

LCS

Complete CRUD scaffolding

* in ASP.NET MVC (2/2)
I

Add MVC Controller with views, using Entity Framework

Model class: Newsltem (MvcNews.Models)
Data context class: NewsDbContext (MvcNews.Data) - +
Views:

¥'| Generate views

¥'| Reference script libraries

Y| Use a layout page:

(Leave empty if it is set in a Razor _viewstart file)

Controller name: NewsController

Add Cancel

* Selective creation of strongly-typed views
|

o LR R T L S

20 }

Add View...
21
22 // GET: News Go To View Ctrl+M, Ctrl+G
23 - public async Task<IActionResult> Index() - Quick Actions and Refactorings... Ctrl+.
24 { 1 Rename... Ctrl+R, Ctrl+R
25 return View(await _context.News.TolListAsync() femrorn e Seril e Ctrl+R, Ctrl+G
264 } ~
27 ‘® Paak Nefinitinn Alt+F12
Add MVC View X
_ Create
View name: Index
Delete
Template: List |- | 3
Details
Model class: Newsltem (MvcNews.Models) -
Edit
Data context class: NewsDbContext (MvcNews.Data) -
Options: Empty (without model)
D Create as a partial view List

Reference script libraries
Use a layout page:

(Leave empty if it is set in a Razor _viewstart file)

Add Cancel

Asynchronous controller actions

e ASP.NET supports the creation of asynchronously called
controller action methods (async/await syntax)

e Asynchronous calls are recommended for actions requiring
access to external resources
— If access to resources can be performed asynchronously

e Asynchronous controller actions increase application
scalability

— A server thread waiting for a response from an external service is
not blocked by waiting, but returns to the service thread pool and
can be assigned to handle another request

— It should be remembered that asynchronous processing involves
a certain overhead

e The MVC scaffolding Wizard in VS 2019 generates
asynchronous actions by default when they work with EF
— Using asynchronous Entity Framework operations

Asychronous MVC Controller: Example

NewsController.cs

public class NewsController : Controller

{

// GET: News
public async Task<IActionResult> Index()

{

return View(await _context.News.ToListAsync());

}

// POST: News/Delete/5
[HttpPost, ActionName("Delete")]
[ValidateAntiForgeryToken]
public async Task<IActionResult> DeleteConfirmed(int id)
{
var newsltem = await _context.News.FindAsync(id);
_context.News.Remove(newslItem);
await _context.SaveChangesAsync();
return RedirectToAction(nameof(Index));

Protection against CSRF attacks

e Cross Site Request Forgery (CSRF, XSRF)

— an attack using the site's trust in the user's browser (request from
the logged-in user's browser, "tossed" from another website)

e CSRF protection in ASP.NET MVC based on
Anti-Forgery Tokens

— randomly generated information attached to the form in the hidden
field and set as a cookie at the same time

— after receiving the form data from the browser, the tokens received
from the hidden field and from the cookie are compared
e Implicit and explicit token generation

— automatically for using the POST method with no ACTION
(or ACTION="")

— explicitly using a helper within the form:
@Html.AntiForgeryToken()

AntiForgeryToken in ASP.NET MVC

View with a form

<form action="..." method="post">
@Html.AntiForgeryToken()
</form>

Controller processing form data

[ValidateAntiForgeryToken]
public IActionResult Action(...)

{
)

Server Error in '/ Application.

A required anti-forgery token was not supplied or was invalid.

