
ASP.NET

dr hab. inż. Marek Wojciechowski

ASP.NET

• Technology (also referred to as a web framework)
for building modern web applications and services
on the .NET platform
– successor of Active Server Pages (ASP)

– works on CLR, and thus uses compiled .NET programming
languages for application logic

• Supports multiple programming models

• Applications run on application servers, mainly:
– IIS (Internet Information Services): only for Windows, classic

application server from Microsoft, integral part of server versions
of Windows

– Kestrel: multi-platform, lighter than IIS, supports a single
application only

ASP.NET programming models (1/2)

• Web Forms (outdated, legacy)
– Component-based UI ("UI controls")

– Visual and event-driven programming

– Classic ASP.NET syntax (<% %>)

• ASP.NET MVC
– Implementation of the MVC architectural pattern

– Classic ASP.NET (at first) or (later) Razor syntax for views

• Web Pages
– Simple old-style web applications as in pure PHP or old ASP

– Razor syntax

ASP.NET

Web Forms MVC Web Pages Web API Razor Pages

ASP.NET programming models (2/2)

• Web API
– API for the HTTP protocol

– REST-style services but not only

– JSON as the default data exchange format, support for XML

• Razor Pages
– Page-centric application model

– Abstraction (simplification) over ASP.NET MVC

– Concept similar to the Model-View-ViewModel (MVVM) pattern
• Each page has its own Page Model and bindings to it

ASP.NET

Web Forms MVC Web Pages Web API Razor Pages

ASP.NET Web Forms

• Framework to bulid web application in a way resembling
building desktop applications
– "heart and soul of ASP.NET"

– "stateful framework over a stateless medium"

• Lost popularity in favor of ASP.NET MVC

• Not available in .NET Core
– Razor Pages positioned as a successor of Web Forms

• Web Forms pages consist of 2 components:
– visual page (*.aspx file)

– "code behind" file (partial class)

• Characteristic terms:
– postback

– viewstate

– server controls

Strengths of Web Forms

• Separation of HTML from application logic (code behind)

• Rich set of server controls
– Including controls responsible for HTML generation

• Less coding
– e.g., thanks to functional data access controls

• Event-driven programming familiar to desktop application
developers
– In particular Visual Basic for Windows

• Access to Ajax functionality without coding in JavaScript

ASP.NET Web Forms: Example (1/2)

<%@ Page Language="C#" AutoEventWireup="true"
 CodeFile="Hello.aspx.cs" Inherits="Hello" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server"><title></title></head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:TextBox ID="NameTextBox" runat="server"></asp:TextBox>
 <asp:Button ID="SubmitButton" runat="server" Text="Greet"
 onclick="SubmitButton_Click" />

 <asp:Label ID="HelloLabel" runat="server" Text=""></asp:Label>
 </div>
 </form>
</body>
</html>

Hello.aspx

ASP.NET Web Forms: Example (2/2)

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class Hello : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e) {}

 protected void SubmitButton_Click(object sender, EventArgs e)
 {
 HelloLabel.Text = "Hello " + NameTextBox.Text + "!";
 }
}

Hello.aspx.cs

Data access controls in ASP.NET

• Data source controls, e.g., SqlDataSource

– But also ObjectDataSource, and later
LinqDataSource and EntityDataSource,
facilitating separation of Data Access Layer (DAL)

• Visual data controls cooperating with
data source controls, e.g., GridView

<connectionStrings>
 <add name="Emps" connectionString="Server=(local);Integrated Security=True;
 Initial Catalog=tempdb" providerName="System.Data.SqlClient" />
</connectionStrings>

<asp:GridView ID="GridView1" DataSourceID="ds" runat="server"/>
<asp:SqlDataSource ID="ds" runat="server"
 SelectCommand="SELECT [LastName], [Salary]
 FROM [Employees]"
 ConnectionString="<%$ ConnectionStrings:Emps %>" />

Web.config

Disadvantages of Web Forms
(from today’s perspective)

• Abstraction from HTML and HTTP is no longer
an advantage

• Costly mechanisms: view state, postbacks, controls, page
life cycle

• Makes it easier for programmers to get started quickly, but
it is difficult to "properly" implement large systems with it

• Problematic page-centric approach
– the close relationship between the page file name and the URL

– difficult and inefficient testing of applications

– Page Controller "pattern"

– but... the concept has come back to life in the new Razor Pages
framework!

ASP.NET Web Pages

• The simplest programming model of ASP.NET
– Framework for creating dynamic websites in the style of PHP

and classic ASP

– Uses Razor syntax and engine (ASP.NET Web Pages 2)

– Open source

– Created in Visual Studio or the free WebMatrix environment

– Based on Razor view engine
• supported programming languages: C# and Visual Basic

(.cshtml and .vbhtml page file extensions)

Razor view engine

• SP.NET MVC from the beginning supported the concept
of view engines - modules implementing different page
templates syntax
– Spark and NHaml as examples of template engines for use in

ASP.NET MVC instead of the traditional, known from Web Forms,
ASP.NET engine

– Razor developed for MVC3, used in later MVC versions, but also in
ASP.NET Web Pages 2

• Razor’s major features
– transparent code based on C # and VB languages

– compact and transparent syntax: @ {...}, @expression

– intelligent parser enables natural HTML interleaving with
programming language

– supports IntelliSense, unit tests, layouts

– helpers for generating HTML forms

ASP.NET Web Pages: Example (1/2)

@{
 var title = Request.QueryString["title"];
 if (String.IsNullOrEmpty(title)) { title = "Razor Web Page"; }
 var count = Request["count"].AsInt(1);
}
<html>
 <head><title>@title</title></head>
 <body>
 <form method="post">
 First name: @Html.TextBox("name", @Request["name"])
 # of greetings: @Html.TextBox("count", @count)
 <input type="submit" value="Submit" />
 </form>
 @{
 if(IsPost) {
 for(int i = 0; i < count; i++) {
 <p>Hello @Request.Form["name"]!</p> } }
 }
 </body></html>

Test.cshtml

ASP.NET Web Pages: Example (2/2)

ASP.NET MVC

• Microsoft’s framework for ASP.NET
– based on the Model-View-Controller (MVC) pattern

– inspired by the Ruby on Rails framework

– first production version: March 2009

– presented as an alternative to Web Forms,
not a successor

– open source (MS-PL license), free, fully supported by Microsoft

– in MVC3 the Razor view engine was introduced, at first as an
alternative to classic syntax, finally replacing it

Advantages of ASP.NET MVC

• Full control over generated HTML
– „Embrace HTTP and HTML - don't hide it”

– no view state and server-side form representations

• Possible integration with Ajax, jQuery

• Intuitive URL addresses
– RESTful and friendly for search engines

• Separation of concerns within an application

• Testability
– support for Test-Driven Development (TDD)

• Manages navigation between pages
– Front Controller pattern, routing

Separation of concerns
in ASP.NET MVC

• Models
– components responsible for maintaining the state

– the state typically persisted in the database

• Views
– components responsible for displaying the user interface of

the application

– the view can be generated from a model using
a wizard (CRUD scaffolding)

• Controllers
– components responsible for handling user interaction,

manipulating the model, and selecting the view to display

Project wizard
(Visual Studio 2019)

• Separate templates for .NET Framework and .NET Core

ASP.NET application wizard

User authentication in ASP.NET

• No Authentication

• Individual User Accounts
– Registration via apllication

– Profiles in a local SQL Server database (in-app) or in the cloud

• Work or School Accounts
– Active Directory / MS Azure AD / Office 365

• Windows Authentication
– For intranet

applications

ASP.NET MVC Core project structure

• Newly created project includes
the start application, which can
then be adapted and developed
– controllers and views for

the welcome page

– page template (layout page)

– authentication pages and code
(if selected in the project wizard)

– Startup.cs – application initialization
(e.g., default routing rule)

– appsettings.json – application
configuration (e.g., database
connection strings)

ASP.NET MVC starter application

MVC Routing

public class Startup
{
 …
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 ...
 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });
 }
}

Startup.cs

MVC Controller

public class HomeController : Controller
{
 …
 public IActionResult Index()
 {
 return View();
 }

 public IActionResult About()
 {
 ViewBag.Message = "Your application description page.";

 return View();
 }
 …
}

HomeController.cs

View

@{
 ViewBag.Title = "About";
}
<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<p>Use this area to provide additional information.</p>

About.cshtml

Page layout

<html>
<head>
 <title>@ViewData["Title"] - MvcNews</title>
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <link rel="stylesheet" href="~/css/site.css" />
</head>
<body>
…

 <a asp-area="" asp-controller="Home" asp-action="Index">Home
 <a asp-area="" asp-controller="Home" asp-action ="Privacy">Privacy

…
 <div class="container">
 <main role="main">
 @RenderBody()
 </main>
 </div>
…
</body>
</html>

_Layout.cshtml

Sharing code between views

• _ViewStart files
– In the Views folder

– In subfolders for views associated with controllers

• Executed and the beginning of view rendering

@{
 Layout = "_Layout";
}

_ViewStart.cshtml

Passing data from the controller
to the view

• ViewData, ViewBag (from MVC 3)
– Data available during a single request

and not surviving the redirect operation

– ViewData["key"], ViewBag.key

– ViewBag is an abstraction over ViewData
(not available in Razor Pages!)

• TempData
– Data surviving redirection

– TempData["key"]

– Internally uses HTTP session

• View models and strongly typed views
– Model objects passed to views

– Preferred solution

ASP.NET MVC View Model Patterns

• Domain model as a view model
– e.g., Entity Framework entity

• Dedicated view model containg a domain model object
(or objects) (+ data needed for presentation)

• Dedicated view model containing data from the data model
(+ data needed for presentation)
– requires translation between domain models and view models

Domain object: Example (EF)

namespace MvcNews.Models
{
 public class NewsItem
 {
 [Key]
 public int Id { get; set; }
 public DateTime TimeStamp { get; set; }
 public string Text { get; set; }
 }
}

Scaffolding in ASP.NET MVC

• The technique of generating CRUD functionality
for a domain object (controller + views)

• Visual Studio wizards for ASP.NET MVC:
– complete scaffolding from EF entity to a controller with CRUD

actions and corresponding views

– scaffolding from EF entity to a controller with CRUD actions
(without views)

– Views created individually for controller actions with
a possibility of selecting a data model class

Complete CRUD scaffolding
in ASP.NET MVC (1/2)

Complete CRUD scaffolding
in ASP.NET MVC (2/2)

Selective creation of strongly-typed views

Asynchronous controller actions

• ASP.NET supports the creation of asynchronously called
controller action methods (async/await syntax)

• Asynchronous calls are recommended for actions requiring
access to external resources
– If access to resources can be performed asynchronously

• Asynchronous controller actions increase application
scalability
– A server thread waiting for a response from an external service is

not blocked by waiting, but returns to the service thread pool and
can be assigned to handle another request

– It should be remembered that asynchronous processing involves
a certain overhead

• The MVC scaffolding Wizard in VS 2019 generates
asynchronous actions by default when they work with EF
– Using asynchronous Entity Framework operations

Asychronous MVC Controller: Example

public class NewsController : Controller
{
 …
 // GET: News
 public async Task<IActionResult> Index()
 {
 return View(await _context.News.ToListAsync());
 }

 // POST: News/Delete/5
 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> DeleteConfirmed(int id)
 {
 var newsItem = await _context.News.FindAsync(id);
 _context.News.Remove(newsItem);
 await _context.SaveChangesAsync();
 return RedirectToAction(nameof(Index));
 }
 …
}

NewsController.cs

Protection against CSRF attacks

• Cross Site Request Forgery (CSRF, XSRF)
– an attack using the site's trust in the user's browser (request from

the logged-in user's browser, "tossed" from another website)

• CSRF protection in ASP.NET MVC based on
Anti-Forgery Tokens
– randomly generated information attached to the form in the hidden

field and set as a cookie at the same time

– after receiving the form data from the browser, the tokens received
from the hidden field and from the cookie are compared

• Implicit and explicit token generation
– automatically for using the POST method with no ACTION

(or ACTION="")

– explicitly using a helper within the form:
@Html.AntiForgeryToken()

AntiForgeryToken in ASP.NET MVC

<form action="..." method="post">
 @Html.AntiForgeryToken()
</form>

View with a form

 [ValidateAntiForgeryToken]
 public IActionResult Action(…)
{
 ...
}

Controller processing form data

