
Supporting Interactive Sequential
Pattern Discovery in Databases

Marek Wojciechowski

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
marek@cs.put.poznan.pl

Abstract. One of the most important data mining problems is discovery of
sequential patterns. Sequential pattern mining consists in discovering all
frequently occurring subsequences in a collection of data sequences. This paper
discusses several issues concerning possible extensions to traditional database
management systems required to support sequential pattern discovery: a
sequential pattern query language for specifying mining tasks and storing
discovered patterns in the database, techniques of integrating various pattern
constraints that can be specified in mining queries into the mining process in
order to improve performance, and a framework for exploiting cached results of
previous queries to support iterative and interactive data mining. The paper
summarizes the author’s recent research on the above topics.

1 Introduction

Data mining is a research area that aims at extracting previously unknown and
potentially useful knowledge from large collections of data. Discovered knowledge is
represented in the form of patterns, rules, or models depending on a chosen data
mining method. The family of data mining problems that particularly attracted the
database community is discovery of frequent patterns. It has been observed that
frequent pattern mining resembles traditional database querying: a user specifies the
source dataset, the class of patterns, and pattern constraints, and then a data mining
system chooses the appropriate algorithm and returns the resulting patterns to the user
[7]. The above statement initiated the research on data mining query languages,
constraint-based pattern mining, and integrating data mining techniques into database
management systems.

The most prominent classes of patterns are frequent sets (used to derive association
rules) [1] and sequential patterns [2]. Similar techniques are used for both frequent
sets and sequential patterns. However, the presence of time dependencies and time
constraints makes sequential pattern mining a more challenging and interesting
problem. Typically, novel solutions for frequent pattern mining are introduced in the
context of frequent sets and then generalized or extended to handle sequential
patterns.

Informally, sequential patterns are the most frequently occurring subsequences in
sequences of sets of items. The frequency threshold, called support, is provided by a
user. Additionally a user may specify time constraints that influence the sequence
containment relationship. For discovery of sequential patterns with time constraints
[17] proposed the GSP algorithm.

It is rather obvious that in order to simplify discovery of patterns that are really
interesting to the user, data mining systems should allow users to specify additional
constraints on patterns, e.g., referring to their size or contents. Such constraints, for
the sake of efficiency, should be then exploited by the system to reduce the overall
processing time to the level acceptable for interactive mining. Finally, since the user
may need to execute a series of queries, adjusting various constraints, before he or she
gets satisfying results, the system should be able to reuse the results of previous
queries when possible. The last issue is particularly important in situations where
several users execute similar mining queries on the same data.

In this paper we present our solutions supporting interactive discovery of
sequential patterns in databases which could be applied to extend the functionality of
traditional database management systems. In Section 2 we present basic definitions
regarding sequential patterns. Section 3 describes the MineSQL data mining query
language that can be used to declaratively specify sequential pattern discovery tasks
in the form of mining queries. Section 4 discusses the dataset filtering technique to
efficiently handle pattern constraints that can be specified in MineSQL. In Section 5
we present our framework for reusing results of previous mining queries. Section 6
presents related work. We conclude with a summary and directions for future work in
Section 7.

2 Basic Definitions

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of
items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>, where
Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. Let D be a set of
variable length sequences (called data-sequences), where for each sequence S = <X1
X2 ... Xn>, a timestamp is associated with each Xi.

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained in
a sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1,
X2 ⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1, Yi2, ..., Yin > an occurrence of X in Y. We consider
the following user-specified time constraints while looking for occurrences of a given
sequence: minimal and maximal gap allowed between consecutive elements of an
occurrence of the sequence (called min-gap and max-gap), and window-size, which
represents the maximal time window for several itemsets to form one element of the
occurrence.

The support for the sequence X = <X1 X2 ... Xn> in the set of data-sequences D is
the percentage of data-sequences in D that contain X. A sequential pattern is a
sequence whose support in D is above the user-specified threshold.

3 MineSQL Data Mining Query Language

Data mining systems to be effective have to support constraint-based mining, in
which a user provides a set of constraints to guide the discovery process. One possible
solution is to base the user interface on some ad hoc data mining query language,
analogous to SQL for database systems, possibly designed as SQL extension.

In [10] we proposed a query language called MineSQL for discovery of various
classes of frequent patterns in databases (a preliminary version of MineSQL was
presented in [12]). MineSQL supports sequential pattern discovery and storage by
providing data types and grouping functions to represent sets, sequences, and patterns,
and the MINE PATTERN statement to specify sequential pattern mining tasks. The
syntax of the MINE PATTERN statement is presented below:

MINE PATTERN
[MAXGAP maxgap] [MINGAP mingap] [TOLERANCE window-size]
FOR column
FROM table|(query)
[WHERE pattern_predicate [AND pattern_predicate…]];

In the above syntax, maxgap, mingap, and window-size represent values of the
corresponding time constraints (defined as in [17]), column is the name of the table
column or query column of the SEQUENCE data type containing data-sequences,
table is the name of the table containing data-sequences, query represents the SQL
subquery, returning the collection of data-sequences, and pattern_predicate
represents pattern constraints in the form of a conjunction of basic Boolean pattern
predicates concerning pattern structure or support. MineSQL defines the set of
allowable basic Boolean pattern predicate types (and corresponding language
constructs) to specify the support threshold, constraints on the pattern size (number of
items in a pattern) and length (number of elements in a pattern), and to specify the
requirement that a certain subsequence is or is not present in the pattern. Also
constraints on a given pattern element are allowed (referring to its size or the presence
of a certain subset).

The discovered patterns can be immediately stored in the database for further
analyses by nesting a MINE PATTERN statement as a subquery in an INSERT
statement or by creating a materialized view using a MINE PATTERN statement as a
subquery in a CREATE MATERIALIZE VIEW statement.

Example. The following MINE PATTERN statement discovers sequential patterns
from the SHOPPING_HIST table (we assume that the source data-sequences are
stored as SEQUENCE OF CHAR INDEX BY DATE values in the HIST column). The
returned set of patterns should consist of all sequential patterns having support greater
than 10%, size less than 5, containing the subsequence “<(A)(B)>”.

MINE PATTERN
FOR HIST
FROM SHOPPING_HIST
WHERE SUPPORT(PATTERN)>0.1
AND SIZE(PATTERN)<5
AND PATTERN CONTAINS TO_CHAR_PATTERN(‘<(A)(B)>’);

4 Constraint-Based Sequential Pattern Mining Using Dataset
Filtering Technique

While it is a user’s task to specify the class of patterns of interest, the data mining
system should be able to take the constraints specified in the query into account, in
order to improve the efficiency of mining. As a consequence, there is a need for data
mining algorithms and techniques exploiting user-specified constraints to optimize the
discovery process. In [11] we considered our framework for handling pattern
constraints, called dataset filtering, in the context of sequential pattern discovery.

We assume that sequential pattern discovery tasks are specified by means of the
MineSQL data mining query language. Thus, pattern constraints have the form of a
conjunction of basic Boolean pattern predicates concerning patterns or pattern
elements. The dataset filtering technique consists in discarding data-sequences that
cannot support any pattern satisfying pattern constraints specified by a user. In other
words, dataset filtering optimizes pattern mining queries by pushing pattern
constraints down into dataset selection queries.

Firstly, we identified basic Boolean predicates concerning patterns or pattern
elements whose presence in pattern constraints of a sequential pattern query leads to
the possibility of dataset filtering. Secondly, for each of the applicable basic Boolean
pattern predicates, we provided the corresponding predicate concerning data-
sequences. The matching pairs of predicates are presented in Table 1 (formal
theorems and proofs regarding the mappings can be found in [11]). The meaning of
the predicates is explained below the table.

Table 1. Basic Boolean predicates on patterns or pattern elements and corresponding data-
sequence predicates

Basic Boolean predicate on a
pattern or n-th element of a pattern

Basic Boolean predicate on a data-sequence

π(SG, α, pattern) σ(SG, α, sequence)
π(LG, α, pattern) σ(CL, α+1, sequence, max, min, win)
π(C, β, pattern) σ(C, β, sequence, +∞, min, win)

ρ(SG, α, patternn) σ(CS, α+1, sequence, win)
ρ(C, γ, patternn) σ(C, <γ>, sequence, max, min, win)

• π(SG, α, pattern) – true if the size of the pattern is greater than α;
• π(LG, α, pattern) – true if the length of the pattern is greater than α;
• π(C, β, pattern) – true if the β is a subsequence of the pattern;
• ρ(SG, α, set) – true if the size of the set is greater than α;
• σ(CL, α, sequence, maxgap, mingap, window) - true if there exists a sequence

of length α that is contained in the sequence with respect to the max-gap, min-
gap, and window-size constraints.

• ρ(C, γ, set) – true if γ is a subset of the set;
• σ(SG, α, sequence) – true if the size of the data-sequence is greater than α;
• σ(C, β, sequence, maxgap, mingap, window) – true if the data-sequence contains

the pattern β using given time constraints;

• σ(CS, α, sequence, window) - true if there exists a 1-element sequence of size α
that is contained in the sequence with respect to the window-size constraint.

Example. Consider the following sequential pattern query expressed in MineSQL:

MINE PATTERN
MAXGAP 100 MINGAP 7
FOR HIST
FROM SHOPPING_HIST
WHERE SUPPORT(PATTERN)>0.01
AND SIZE(PATTERN)>3
AND PATTERN CONTAINS TO_CHAR_PATTERN(‘<(A)(B)>’);

The above query returns sequential patterns having support greater than 1%, having
more than three items, containing the sequence <(A)(B)>. The specified values of
max-gap and min-gap constraints are 100 and 7 respectively. The time window
constraint is not specified explicitly, therefore the default value of 0 is going to be
used. There are two basic Boolean pattern predicates supporting dataset filtering in
the WHERE clause of the above query: π(SG, 3, pattern) and π(C, <(A)(B)>, pattern).
Thus, according to Table 1, the following dataset filtering predicate has to be satisfied
by a data-sequence containing a pattern satisfying given pattern constraints: σ(SG, 3,
sequence) ∧ σ(C, <(A)(B)>, sequence, +∞, 7, 0). The dataset filtering predicate says
that only data-sequences having more than three items and containing the sequence
<(A)(B)> with max-gap of +∞, min-gap of 7, and window-size of 0, have to be
considered in the discovery process.

Dataset filtering can be applied to any sequential pattern discovery algorithm since it
conceptually leads to an equivalent data mining task on a possibly smaller dataset.
However, instead of explicit transformation of the mining task, we proposed
integrating dataset filtering within mining algorithms. So far, we focused on
implementation details concerning integration of dataset filtering with the GSP
algorithm. Experiments show that dataset filtering can result in significant
performance improvements, especially in case of pattern constrains concerning
pattern contents (e.g. the presence of a certain subsequence), which we believe are the
most useful. The actual performance gains depend on the selectivity of the derived
dataset filtering predicate.

5 Efficient Sequential Pattern Query Processing in the Presence of
Materialized Results of Previous Queries

A user interacting with a data mining system has to specify several constraints on
patterns to be discovered. However, usually it is not trivial to find a set of constraints
leading to the satisfying set of patterns. Thus, users are very likely to execute a series
of similar data mining queries before they find what they need. To facilitate such
interactive and iterative mining, data mining query optimizers have to be able to
significantly reduce processing times in case of queries similar to the queries whose

results have been previously discovered. To make such optimizations possible, data
mining systems have to support materialization (or caching) of query results.

In [18] we analyzed differences between sequential pattern queries that allow the
system to efficiently answer a query using cached (materialized) results of another
query. We based our work on [3] where three relationships between mining queries
(equivalence, inclusion, and dominance), representing cases when one query can be
answered using the results of another query with at most one scan of the source
dataset, were identified. In [3] only association rule queries were considered. In [18]
we proved which kinds of syntactic differences between sequential pattern queries
that can be expressed in MineSQL lead to the inclusion and dominance relationships.

Firstly, we formally defined the relationships of extending pattern constraints and
extending time constraints within the constraint model on which MineSQL is based. In
the next step, we proved that for two sequential pattern queries DMQ1 and DMQ2,
operating on the same dataset:

1. if DMQ1 and DMQ2 have the same time constraints and DMQ2 extends
pattern constraints of DMQ1, then DMQ1 includes DMQ2.

2. if DMQ1 and DMQ2 have the same pattern constraints and DMQ2 extends
time constraints of DMQ1, then DMQ1 dominates DMQ2.

3. if DMQ2 extends pattern constraints of DMQ1 and DMQ2 extends time
constraints of DMQ1, then DMQ1 dominates DMQ2.

In [18] we also provided sequential pattern query processing algorithms for the above
three cases. The general idea is the following: In case of inclusion (1), only filtering
of materialized query results is required. In case of dominance (2 or 3), one scan of
the source dataset is necessary to reevaluate the supports of patterns (for the third case
this scan is preceded by filtering of the patterns). The experiments proved that the
proposed solutions typically reduce processing time by several orders of magnitude
when materialized results of previous queries are available. In [9] we analyzed
situations when more than one of previously materialized queries can be used to
answer the current query. We provided cost models for our sequential pattern query
processing schemes that can be used to chose the optimal strategy.

Example. Let us consider the following example: we are given materialized results of
query MDMQ and a new query DMQ issued by a user.

DMQ:
MINE PATTERN
MAXGAP 10
 FOR HIST
 FROM SHOPPING_HIST
 WHERE SUPPORT(PATTERN)>0.2
AND SIZE(PATTERN)<5;

MDMQ:
MINE PATTERN
MAXGAP 10
 FOR HIST
 FROM SHOPPING_HIST
 WHERE SUPPORT(PATTERN)>0.1;

DMQ and the defining query of MDMQ operate on the same dataset, have the same
time constraints, and DMQ extends pattern constraints of MDMQ (DMQ has more
restrictive support threshold and adds one predicate regarding the size of patterns).
Thus, MDMQ includes DMQ, and therefore DMQ can be answered by filtering the
results of MDMQ using pattern constraints of DMQ.

6 Related Work

Many declarative data mining query languages have been proposed so far. In [6] a
multi-purpose, SQL-like data mining query language, called DMQL was introduced.
DMQL can be used for various mining tasks such as rule discovery, classification,
clustering, etc. On the other hand, several single-purpose languages intended only for
association rule discovery problem have been proposed, e.g., MINE RULE operator
[4], and M-SQL language [8]. Functionality of our language – MineSQL covers only
discovering frequent patterns, the family of techniques that really can be regarded as
advanced database querying. We do not provide constructs for techniques like
clustering or classification, where the results may depend on a chosen data mining
algorithm. Nevertheless, MineSQL is still a universal language as it considers several
classes of patterns.

Constraint-based mining was extensively studied in the context of association rules
(e.g., [13]). Only a few works considered constraint-based sequential pattern mining.
Some interesting research results were presented in [5], where a family of algorithms,
called SPIRIT, discovering patterns with regular expression constraints was
introduced. SPIRIT algorithms can be regarded as extensions of the classic GSP
algorithm using advance techniques to prune the pattern search space. Recently, a
pattern-growth family of algorithms, fundamentally different from GSP has been
proposed (e.g., PrefixSpan [15]) for discovery of sequential patterns. In [16] handling
time, regular expression, and various pattern constraints within the pattern-growth
framework was discussed. The positive aspects of our dataset filtering method,
compared to other solutions, are: intuitive and simple constraint model, possibility of
integration with other constraint handling methods, independence of a particular
mining scheme, and the ease of use by a query optimizer (query rewriting).

To facilitate interactive and iterative pattern discovery, [14] proposed to
materialize patterns discovered with the least restrictive selection criteria, and answer
incoming queries by filtering the materialized pattern collection. This approach might
lead to collections of frequent patterns even larger than the original database.
Moreover, restricting time constraints not only makes some patterns infrequent but
also changes the support of patterns that remain frequent. Much more reasonable and
flexible solutions supporting interactive and iterative mining were presented in [3] in
the context of association rules. The solutions presented there consisted in caching
results of mining queries. The most important contribution was the identification of
three relationships between results of mining queries, called equivalence, inclusion,
and dominance. Syntactic differences between association rule queries leading to the
three relationships were analyzed, and efficient query answering algorithms were
proposed. As we mentioned earlier, our technique for reusing results of previous
sequential pattern queries is the adaptation of the approach from [3].

7 Conclusions and Future Work

We have presented our solutions supporting interactive discovery of sequential
patterns in databases which could be applied to extend the functionality of traditional

database management systems: MineSQL data mining query language, the dataset
filtering technique for efficient constraint-based sequential pattern mining, and a
framework for exploiting cached results of previous sequential pattern queries.

In the future we plan to further investigate data mining query optimization issues in
the context of sequential patterns and other classes of patterns, focusing on cost
models and multi-query optimization.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’l Conference on
Data Engineering (1995)

3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

4. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996)

5. Garofalakis M., Rastogi R., Shim K.: SPIRIT: Sequential Pattern Mining with Regular
Expression Constraints. Proceedings of 25th VLDB Conference (1999)

6. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,
Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference (1996)

7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

8. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

9. Morzy M., Wojciechowski M., Zakrzewicz M.: Cost-Based Sequential Pattern Query
Optimization in Presence of Materialized Results of Previous Queries. Proc. of the IIS'2002
Symposium (2002)

10.Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference (2000)

11.Morzy T., Wojciechowski M., Zakrzewicz M.: Efficient Constraint-Based Sequential
Pattern Mining Using Dataset Filtering Techniques, Proc. of the 5th International Baltic
Conference on Databases and Information Systems (2002)

12.Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Symposium
(1997)

13.Ng R., Lakshmanan L., Han J., Pang A.: Exploratory Mining and Pruning Optimizations of
Constrained Association Rules. Proc. of the 1998 ACM SIGMOD Conference (1998)

14.Parthasarathy S., Zaki M.J., Ogihara M., Dwarkadas S.: Incremental and Interactive
Sequence Mining. Proceedings of the 1999 ACM CIKM Conference (1999)

15.Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., Hsu M-C.: PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of
the 17th International Conference on Data Engineering (2001)

16.Pei J., Han J., Wang W.: Mining Sequential Patterns with Constraints in Large Databases.
Proc. of the 2002 ACM CIKM Conference (2002)

17.Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. Proc. of the 5th Int’l Conf. on Extending Database Technology (1996)

18.Wojciechowski M.: Interactive Constraint-Based Sequential Pattern Mining, Proc. of the 5th
ADBIS Conference (2001)

