
On Multiple Query Optimization in Data Mining∗∗∗∗

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{marek,mzakrz}@cs.put.poznan.pl

Abstract. Traditional multiple query optimization methods focus on identifying
common subexpressions in sets of relational queries and on constructing their
global execution plans. In this paper we consider the problem of optimizing sets
of data mining queries submitted to a Knowledge Discovery Management
System. We describe the problem of data mining query scheduling and we
introduce a new algorithm called CCAgglomerative to schedule data mining
queries for frequent itemset discovery.

1 Introduction

Multiple Query Optimization (MQO) [10] is a database research area which focuses
on optimizing a set of queries together by executing their common subexpressions
once in order to save execution time. The main tasks in MQO are common subexpres-
sion identification and global execution plan construction. When common subexpres-
sions have been identified, they can be executed just once and materialized for all the
queries, instead of being executed once for each query. A specific type of a query is a
Data Mining Query (DMQ) [7], describing a data mining task. It defines constraints
on the data to be mined and constraints on the patterns to be discovered. DMQs are
submitted for execution to a Knowledge Discovery Management System KDDMS
[7], which is a DBMS extended with data mining functions. Traditional KDDMSs
execute DMQs serially and do not try to share any common subexpressions.

DMQs are often processed in batches of 10-100 queries. Such queries may show
many similarities about data or pattern constraints. If they are executed serially, it is
likely that many I/O operations are wasted because the same database blocks may be
required by multiple DMQs. If I/O steps of different DMQs were integrated and per-
formed once, then we would be able to decrease the overall execution cost of the
whole batch. Traditional MQO methods are not applicable to DMQs. DMQs perform
huge database scans, which cannot and should not be materialized. Moreover, DMQs
usually have high memory requirements that make it difficult to dynamically
materialize intermediate results. One of the methods we proposed to process batches
of DMQs is Apriori Common Counting (ACC), focused on frequent itemset discovery

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for

Scientific Research (KBN), Poland.

queries [1]. ACC is based on Apriori algorithm [2], it integrates the phases of support
counting for candidate itemsets – candidate hash trees for multiple DMQs are loaded
into memory together and then the database is scanned once. Basic ACC [11] assumes
that all DMQs fit in memory, which is not the common case, at least for initial Apriori
iterations. If the memory can hold only a subset of all DMQs, then it is necessary to
schedule the DMQs into subsets, called phases [12]. The way such scheduling is done
determines the overall cost of batched DMQs execution. To solve the scheduling
problem, in [12] we proposed an “initial” heuristic algorithm, called CCRecursive.

2 Related Work

To the best of our knowledge, apart from the ACC method discussed in this paper, the
only other multiple query processing scheme for frequent pattern discovery is Mine
Merge, presented in one of our previous papers [13]. In contrast to ACC, Mine Merge
is independent of a particular frequent itemset mining algorithm. However, it was
proven very sensitive to data distribution and less predictable than ACC. A MQO
technique based on similar ideas as ACC has been proposed in the context of induc-
tive logic programming, where similar queries were combined into query packs [4].

Somewhat related to the problem of multiple data mining query optimization is re-
using results of previous queries to answer a new query, which can be interpreted as
optimizing processing of a sequence of queries independently submitted to the sys-
tem. Methods falling into that category are: incremental mining [5], caching interme-
diate query results [9], and reusing materialized results of previous queries provided
that syntactic differences between the queries satisfy certain conditions [3] [8].

3 Preliminaries and Problem Statement

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ, β), where R
is a relation, a is an attribute of R, Σ is a condition involving the attributes of R, Φ is a
condition involving discovered patterns, β is the min. support threshold. The result of
the DMQ is a set of patterns discovered in πaσΣ, satisfying Φ, and having support � β.

Problem statement. Given a set of data mining queries DMQ = {dmq1, dmq2, ...,
dmqn}, where dmqi = (�, a, Σi, Φi, βi), Σi has the form “(li

1min < a < li
1max) ∨ (li

2min < a <
li

2max) ∨..∨ (li
kmin < a < li

kmax)”, li
* ∈ dom(a) and there exist at least two data mining

queries dmqi = (�, a, Σi, Φi, βi) and dmqj = (�, a, Σj, Φj, βj) such that σΣi� ∩
∩ σΣj� ≠ ∅. The problem of multiple query optimization of DMQ consists in gener-
ating such an algorithm to execute DMQ which has the lowest I/O cost.

Data sharing graph. Let S = {s1 , s2 ,..., sk} be a set of distinct data selection
formulas for DMQ, i.e., a set of selection formulas on the attribute a of the relation R
such that for each i,j we have σsi� ∩ σsj���= ∅, and for each i there exist integers a,
b, ..., m, such that σΣi���= σsa���∪ σsb���∪...∪ σsm�. We refer to the graph DSG =
(V,E) as to a data sharing graph for the set of data mining queries DMQ if and only if
V = DMQ ∪ S, E = {(dmqi,sj) | dmqj ∈ DMQ, sj ∈ S, σΣi� ∩ σsj� ≠ ∅}.

Example. Consider the following example of a data sharing graph. Given a
database relation �1 = (attr1, attr2) and three data mining queries: dmq1 = (�1, “attr2”,
“5 < attr1 < 20”, ∅, 3), dmq2 = (R1, “attr2”, “10 < attr1 < 30”, ∅, 5), dmq3 = (�1,
“attr2”, “15 < attr1 < 40”, ∅, 4). The set of distinct data selection formulas is: S = {s1

= “5 < attr1 < 10”, s2 = “10 < attr1 < 15”, s3 = “15 < attr1 < 20”, s4 = “20 < attr1 < 30”,
s5 = “30 < attr1 < 40”}. The data sharing graph for {dmq1, dmq2, dmq3} is shown in
Fig. 1. Ovals represent DMQs and boxes represent distinct selection formulas.

dmq1

dmq2

dmq3

5<attr1<10

10<attr1<15 20<attr1<30

30<attr1<40

15<attr1<20

Fig. 1. Sample data sharing graph for a set of data mining queries

Apriori Common Counting (Fig. 2). ACC executes a set of data mining queries by
integrating their I/O operations. First, for each data mining query we build a separate
hash tree for 1-candidates. Next, for each distinct data selection formula we scan its
corresponding database partition and we count candidates for all the data mining
queries that contain the formula. Such a step is performed for 2-candidates, 3-
candidates, etc. Notice that if a given distinct data selection formula is shared by
many data mining queries, then its corresponding database partition is read only once.

for (i=1; i<=n; i++) /* n = number of data mining queries */
 �1

i = {all 1-itemsets from σs1∪s2∪..∪sk�, ∀sj∈S: (dmqi,sj)∈E} ��/* generate 1-candidates */
for (k=1; �k

1 ∪ �k
2 ∪..∪ �k

n ≠ ∅; k++) do begin
 for each sj∈S do begin
 ��= ��k

l: (dmql,sj)∈E; /* select the candidates to count now */
 if ��≠ ∅ then count(��, σsj�); end
 for (i=1; i<=n; i++) do begin
 �k

i = {C ∈ �k
i | C.count ≥ minsupi}; /* identify frequent itemsets */

 �k+1
i = generate_candidates(�k

i); end
end
for (i=1; i<=n; i++) do Answeri = Uk�k

i; /* generate responses */

Fig. 2. Apriori Common Counting

4 Data Mining Query Scheduling

The basic ACC algorithm assumes that memory is unlimited and therefore the candi-
date hash trees for all DMQs can completely fit in memory. If, however, the memory
is limited, ACC execution must be partitioned into multiple phases, so that in each

phase only a subset of DMQs is processed. In such a case, the key question to answer
is: which data mining queries from the set should be executed together in one phase
and which data mining queries can be executed in different phases? We will refer to
the task of data mining queries partitioning as to data mining query scheduling.

There are several issues to be addressed when scheduling data mining queries. First
of all, it is obvious that the number of data mining queries which can be included in
the same phase is restricted by the actual memory size. Memory requirements of
individual data mining queries are determined by sizes of their candidate hash trees,
which in turn are dependent on underlying data characteristics and on candidate sizes.
Since the sizes of candidate hash trees change between Apriori iterations, the
scheduling should be performed at the beginning of every iteration, not only before
data mining query set execution starts.

Another observation concerns the nature of ACC. Scheduling of DMQs should be
based on inter-query similarities. Queries which operate on separate database
partitions should be performed in separate phases, while queries which operate on
significantly overlapping database partitions could benefit from being executed in the
same phase. To measure the level of “overlapping” we can use cost estimation
features of existing cost-based query optimizers.

A scheduling algorithm requires that sizes of candidate hash trees are known in
advance. They can be estimated in two ways. We can find an upper bound for the
number of candidates knowing the number of frequent itemsets from the previous
Apriori iteration. Unfortunately, typical upper bounds are far from actual sizes of the
candidate hash trees. Another approach is to first generate all the candidate hash trees,
measure their sizes, save them to disk, schedule the data mining queries, and then load
the required trees from disk. This method introduces the cost of materialization.

5 CCAgglomerative Scheduling Algorithm

The CCAgglomerative algorithm first transforms the data sharing graph into a gain
graph, which contains (1) vertices being the original data mining queries and (2) two-
vertex edges whose weights describe gains that can be reached by executing the con-
nected queries in the same phase. Due to the restricted size of this paper we skip the
algorithm of gain graph generation. A sample gain graph for the earlier discussed set
of data mining queries is shown in Fig. 3. For example, putting the data mining
queries dmq1 and dmq2 in the same phase will allow us to save 9000 I/O cost units.

e2
(9000)

e3
(4000)

dmq1

dmq2

dmq3 e1
(2000)

Fig. 3. Sample gain graph

An initial schedule is created by putting each data mining query into a separate
phase. Next, the algorithm processes the edges sorted with respect to the decreasing
weights. For each edge, the algorithm tries to combine phases containing the
connected data mining queries into one phase. If the total size of all the data mining
queries in such phase does not exceed the memory size, the original phases are
replaced with the new one. Otherwise the algorithm simply ignores the edge and
continues. The CCAgglomerative algorithm is shown on Fig. 4.

CCAgglomerative(G=(V,E), E contains 2-node edges only):
begin
 Phases ← ∅
 for each v in V do Phases ← Phases ∪ {{v}}
 sort E = {ei , e2 ,..., ek} in desc. order with respect to ei.gain, ignore edges with zero gains
 for each ei = (v1, v2) in E do begin
 phase1 ← p ∈ Phases such that v1 ∈ p
 phase2 ← p ∈ Phases such that v2 ∈ p
 if treesize(phase1 ∪ phase2) ≤ MEMSIZE then
 Phases ← Phases – {phase1}
 Phases ← Phases – {phase2}
 Phases ← Phases ∪ {phase1 ∪ phase2}
 end if
 end
 return Phases

 end
Fig. 4. CCAgglomerative Algorithm

0,98

1,03

1,08

1,13

1,18

1,23

2 3 4 5 6 7 8 9 10 11

num. queries

nu
m

. b
lo

ck
s

(r
el

at
iv

e)

CCRecursive

CCAgglomerative

Optimal

Random

Fig. 5. Accuracy of data mining query

scheduling algorithms

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14 15

num. queries

ex
ec

ut
io

n
tim

e
[s

]

CCRecursive

CCAgglomerative

Optimal

Fig. 6. Execution time of data mining query

scheduling algorithms

6 Experimental Evaluation

We performed several experiments using the MSWeb dataset from the UCI KDD
Archive [6]. The experiments were conducted on a PC AMD Duron 1.2 GHz with
256 MB of RAM. The datasets resided in flat files on a local disk. Memory was
intentionally restricted to 10kB-50kB. Each experiment was repeated 100 times.

Fig.5 shows disk I/O costs of schedules generated by the optimal scheduling algo-
rithm, by the CCAgglomerative algorithm, by the CCRecursive algorithm, and by a
random algorithm (which randomly builds phases from queries). CCAgglomerative
has outperformed the other heuristic approach and achieved a very good accuracy. For

example, for the set of 10 data mining queries, the CCAgglomerative algorithm
misses the optimal solution by only 1.5%. Fig. 6 presents execution times for the
optimal scheduling algorithm, CCRecursive, and CCAgglomerative (the execution
time for CCAgglomerative includes the time required to build the gain graph). Notice
that the optimal algorithm needed ca. 1000s to schedule 12 data mining queries,
CCRecursive showed exponential execution time, while CCAgglomerative (polyno-
mial wrt. the number of queries) still needed just about 0.0001s even for 15 queries.

7 Conclusions

The paper addressed the problem of optimizing sets of multiple data mining queries.
We showed that in order to apply Apriori Common Counting in a restricted memory
system, it is required to schedule data mining queries into separate phases. The way
such scheduling is performed influences the overall cost of executing the set of data
mining queries. We presented the new heuristic scheduling algorithm, called CCAg-
glomerative which significantly outperforms the other existing approach, CCRecur-
sive, yet it provides a very good accuracy.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data, 1993.

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

3. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

4. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, H. Vandecasteele: Improving
the Efficiency of Inductive Logic Programming Through the Use of Query Packs, Journal of
Artificial Intelligence Research, Vol. 16 (2002)

5. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

6. Hettich S., Bay S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: (1999)
7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Communica-

tions of the ACM, Vol. 39, No. 11 (1996)
8. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views. Proceed-

ings of the 4th PKDD Conference (2000)
9. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery

of Association Rules. Proc. of the 5th KDD Conference (1999)
10.Sellis T.: Multiple query optimization. ACM Transactions on Database Systems, Vol. 13,

No. 1 (1988)
11.Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for Concur-

rent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)
12.Wojciechowski M., Zakrzewicz M.: Data Mining Query Scheduling for Apriori Common

Counting. Proc. of the 6th Int’l Baltic Conf. on Databases and Information Systems (2004)
13.Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining

Query Processing. Proc. of the 8th ADBIS Conference (2004)

