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Abstract

We consider the problem of optimizing the processing of batches of fre-
quent itemset queries. One of the methods proposed for this task is
Apriori Common Counting, which consists in concurrent processing of
frequent itemset queries and integrating their database scans. Apriori
Common Counting requires that hash-trees of several queries are stored
in main memory at the same time. Since in practice memory is lim-
ited, the crucial problem is scheduling the queries to execution phases
so that the I/O cost is optimized. As the scheduling algorithm has to
know the hash-tree sizes of the queries, previous approaches generated
all the hash-trees before scheduling and swapped them to disk, which
introduced extra I/O cost. In this paper we present a method of calculat-
ing an upper bound on the size of a hash tree, and propose to schedule
the queries using estimates instead of actual hash-tree sizes.

Keywords: computer science, data mining, frequent itemsets, data min-
ing queries, multi-query optimization

1 Introduction

Discovery of frequent itemsets [1] is a very important data mining problem
with numerous practical applications. Informally, frequent itemsets are subsets



frequently occurring in a collection of sets of items. Frequent itemsets are
typically used to generate association rules. However, since generation of rules
is a rather straightforward task, the focus of researchers has been mostly on
optimizing the frequent itemset discovery step.

Frequent itemset mining (and in general, frequent pattern mining) is often
regarded as advanced querying where a user specifies the source dataset, the
minimum support threshold, and optionally pattern constraints within a given
constraint model [9]. A significant amount of research on efficient processing
of frequent itemset queries has been done in recent years, focusing mainly on
constraint handling and reusing results of previous queries [4][6][10].

Recently, a new problem of optimizing processing of batches of frequent
itemset queries has been considered [14][15]. The problem was motivated by
data mining systems working in a batch mode or periodically refreshed data
warehouses, but is also relevant in the context of multi-user, interactive data
mining environments. It is a particular case of multiple-query optimization
[13], well-studied in database systems. The goal is to find an optimal global
execution plan, exploiting similarities between the queries.

One of the methods we proposed to process batches of frequent itemset
queries is Apriori Common Counting [14], using Apriori [3] as a basic mining
algorithm. Apriori Common Counting consists in concurrent execution of a
set of frequent itemset queries and integration of their I/O operations. It offers
performance gains over sequential processing of the queries thanks to reducing
the number of scans of parts of the database shared among the queries. Basic
Apriori Common Counting assumes that data structures (candidate hash-trees)
of all queries fit in memory, which may not be the case for large batches of
queries, at least in initial Apriori iterations. If the memory can hold only a
subset of queries, then it is necessary to schedule (assign) the queries into
several execution phases.

The query scheduling algorithm used by Apriori Common Counting has to
know the hash-tree sizes of all the queries in advance. In previous approaches
(e.g., [16]) this problem was solved by generating all the hash-trees before
scheduling, swapping them to disk, and reloading when necessary, which in-
troduced extra I/O cost. In this paper, we propose to estimate the sizes of
hash-trees, and run the scheduling on these estimates bounds instead of ac-
tual hash-tree sizes. To the best of our knowledge, the estimation of hash-tree
sizes used by the Apriori algorithm has not been studied before. Therefore,
we propose our own method of estimating hash-tree sizes, based on the upper
bound on the number of candidates which can be computed from the number
of frequent itemsets found in the previous Apriori iteration. We experimentally



evaluate the proposed approach using the best query scheduling algorithm for
Apriori Common Counting proposed so far, called CCAgglomerative [16].

2 Related Work

Multiple-query optimization has been extensively studied in the context of
database systems (see [13] for an overview). The idea was to identify common
subexpressions and construct a global execution plan minimizing the overall
processing time by executing the common subexpressions only once for the
set of queries. Data mining queries could also benefit from this general strat-
egy, however, due to their different nature they require novel multiple-query
processing methods.

To the best of our knowledge, apart from Apriori Common Counting, the
only multiple-query processing method for data mining queries is Mine Merge
[15], which is less predicable and generally offers worse performance than
Apriori Common Counting. As an introduction to multiple data mining query
optimization, we can regard techniques of reusing intermediate [12] or final
[4][6][10][11] results of previous queries to answer a new query. The need for
multiple-query optimization has also been postulated in the somewhat related
research area of inductive logic programming, where a technique based on
similar ideas as Apriori Common Counting has been proposed, consisting in
combining similar queries into query packs [5].

A problem strongly related to our query scheduling is graph partitioning
[7]. In fact, the query scheduling algorithm that we apply in this paper models
the batch of queries as a graph, and thus query scheduling becomes a particular
kind of graph partitioning. Nevertheless, classic graph partitioning algorithms
are not applicable in our case due to different objectives of partitioning. In the
classic formulation of the graph partitioning problem, the goal is to divide the
graph into a given number of partitions, in such a way that the sum of weights
of vertices is approximately equal in each partition, and the sum of weights of
cut edges is minimized. We do not have any balance constraint on the sizes of
resulting partitions, only a strict upper bound on the sum of weights of vertices
(reflecting the memory limit), and we do not care about the number of resulting
partitions as long as the sum of weights of cut edges is minimized.

Candidate number estimation for Apriori-like algorithms has not been an
area of intense research yet. However, in [8], an interesting analytical method
for finding an upper bound on the number of candidates was presented.



3 Background

3.1 Basic Definitions and Problem Statement

A frequent itemset query is a tuple dmq = (R, a,Σ,Φ, β), where R is a
database relation, a is a set-valued attribute of R, Σ is a condition involving the
attributes of R,Φ is a a condition involving discovered frequent itemsets, and β
is the minimum support threshold for the frequent itemsets. The result of dmq
is a set of patterns discovered in πaσΣR, satisfying Φ, and having support ≥ β
(π and σ denote relational projection and selection operations respectively).

The set S = {s1, s2, ..., sk} of data selection predicates over the relation
R is a set of elementary data selection predicates for a set of frequent itemset
queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u, v we have σsuR∩σsvR = ∅
and for each dmqi there exist integers a, b, ...,m such that σΣiR = σsaR∪σsbR∪
.. ∪ σsmR.

Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn},
the problem of multiple query optimization of DMQ consists in generating
such an algorithm to execute DMQ which has the lowest I/O cost.

3.2 Common Counting

Common Counting is so far the best algorithm for multiple-query opti-
mization in frequent itemset mining. It consists in concurrent executing of a
set of frequent itemset queries and integrating their I/O operations. Its imple-
mentation using the Apriori algorithm is depicted in Fig.1.

The algorithm iteratively generates and counts candidates for all the data
mining queries. The candidates of size 1 are all possible items. Candidates of
size k (k>1) are generated from the frequent itemsets of size k-1, separately for
each query. The candidate generation step (represented in the algorithm as the
generate_candidates() function) works exactly the same way as in the original
Apriori algorithm [3]. The candidates generated for each query are stored in a
separate hash-tree structure, implemented according to [3].

The candidates for all the queries are counted in an integrated database
scan in the following manner. For each distinct data selection formula, its
corresponding database partition is scanned, and candidates for all the data
mining queries referring to that partition are counted. Notice that if a given
distinct data selection formula is shared by many data mining queries, then its
corresponding database partition is read only once.

The counting operation itself is represented in the algorithm as the count()
function and works as follows. Sets of items from the given database parti-



Input: DMQ = {dmq1, dmq2, ..., dmqn}, where dmqi = (R, a,Σi,Φi, βi)
for (i=1; i ≤ n; i++) do /* n = number of data mining queries */
Ci

1 = all possible 1-itemsets /* 1-candidates */
for (k=1; C1

k ∪ C2
k ∪ .. ∪ Cn

k � ∅; k++) do begin
for each sj ∈ S do begin
CC = {Ci

k : σs jR ⊆ σΣiR} /* select the candidate sets to count now */
if CC � ∅ then count(CC, σs jR) end

for (i=1; i ≤ n; i++) do begin
F i

k = {C ∈ Ci
k : C.count ≥ βi} /* identify frequent itemsets */

Ci
k+1 = generate_candidates(F i

k ) end
end
for (i=1; i ≤ n; i++) do

Answeri = σΦi

⋃
k F i

k /* generate responses */

Figure 1. Apriori Common Counting

tion are read one by one, and each of them is independently checked against
candidate hash-trees of all relevant queries. Candidates which are found to be
contained in the set of items retrieved from the database have their counters
incremented.

Common Counting does not address the problem of efficient handling of
selection conditions on the discovered patterns Φ, leaving any constraint-based
optimizations to the basic frequent itemset mining algorithm. Since the orig-
inal Apriori does not take pattern constraints into account, in the last step of
Common Counting implementation for Apriori, frequent patterns discovered
by all the queries are filtered according to their individual pattern selection
conditions Φi.

3.3 Query Scheduling for Apriori Common Counting

Basic Apriori Common Counting assumes that memory is unlimited and
therefore the candidate hash-trees for all queries can completely fit in memory.
If, however, the memory is limited, Apriori Common Counting execution must
be divided into multiple phases, so that in each phase only a subset of queries
is processed. In general, many assignments of queries to phases are possible,
differing in the reduction of I/O costs. We refer to the task of assigning queries
to phases as to query scheduling.

Since the sizes of candidate hash-trees change between Apriori iterations,
the scheduling has to be performed at the beginning of every Apriori iteration.
A scheduling algorithm requires that sizes of candidate hash-trees are known in



advance. Therefore, in each iteration of Common Counting, we first generate
all the candidate hash-trees, measure their sizes, save them to disk, schedule
the data mining queries, and then load the hash-trees from disk when they are
needed.

3.4 The CCAgglomerative Query Scheduling Algorithm

The exhaustive search for an optimal (minimizing I/O costs) assignment of
queries to Apriori Common Counting phases is inapplicable for large batches
of queries due to the size of the search space (expressed by a Bell number).
According to the previous studies, the best heuristics for query scheduling
in Apriori Common Counting, both in terms of scheduling time and quality
of schedules, is CCAgglomerative. CCAgglomerative represents the batch of
queries in the form of a gain graph G=(V , E), which contains (1) vertices cor-
responding to the queries (with hash-tree sizes as weights of vertices) and (2)
two-vertex edges whose weights describe gains (in disk blocks read) that can
be reached by executing the connected queries in the same phase. A sample
gain graph is shown in Fig.2. An initial schedule is created by putting each data
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Figure 2. Sample gain graph

mining query into a separate phase. Next, the algorithm processes the edges
sorted with respect to the decreasing weights. For each edge, the algorithm
tries to combine phases containing the connected data mining queries into one
phase. If the total size of hash-trees of all the data mining queries in such a
phase does not exceed the memory size, the original phases are replaced with
the new one. Otherwise the algorithm simply ignores the edge and continues.
The CCAgglomerative algorithm is shown in Fig.3.

4 Estimating Hash-Tree Sizes for Query Scheduling

Instead of generating all the hash-trees before scheduling, we propose to
estimate the hash-tree sizes and generate schedules based on the estimates, in



Input: Gain graph G = (V, E)
begin

Phases = ∅
for each v in V do Phases = Phases ∪ {{v}}
sort E = {e1, e2, ..., ek} in desc. order with respect to ei.gain,

ignoring edges with zero gains
for each ei = (v1, v2) in E do begin

phase1 = p ∈ Phases such that v1 ∈ p
phase2 = p ∈ Phases such that v2 ∈ p
if treesize(phase1 ∪ phase2) ≤ MEMS IZE then

Phases = Phases − {phase1}
Phases = Phases − {phase2}
Phases = Phases ∪ {phase1 ∪ phase2}

end if
end
return Phases

end

Figure 3. CCAgglomerative

order to avoid the costly operations of moving the hash-trees between memory
and disk. As a starting point for our estimation, we use the upper bound on
the number of candidate k+1-itemsets that can be generated from a set L of
frequent k-itemsets (denoted as ub(|Ck+1(L)|)), calculated using the formulas
from [8].

In general, the following elements contribute to the overall size of a hash-
tree: internal nodes (including the root of a tree), leaves pointing to candidate
itemsets, and candidate itemsets themselves. Let x denote the order of a hash-
tree, y the number of internal nodes of a hash-tree, υ the size of an internal
hash-tree node, ρ the amount of space needed to store a reference to a candi-
date in a leaf of a hash-tree, and ϕ(n) the amount of space needed to store a
candidate of size n. Thus, the size of a hash-tree to store a set of candidate
k+1-itemsets is:

size(HTk+1) = y ∗ υ + |Ck+1(L)| ∗ ρ + |Ck+1(L)| ∗ ϕ(k + 1) (1)

Values of υ, ϕ(k + 1), and ρ can be calculated for a given implementation
of a hash-tree structure in a particular programming language on a particular
platform. The number of internal nodes y depends on the distribution of items
present in candidates itemsets and therefore it cannot be determined from the
number of candidates. Nevertheless, for an upper bound on a hash-tree size we



can use the maximal possible number of internal nodes which can be derived
from the order of a tree and the number of tree levels. Numbers of nodes
on consecutive tree levels starting from the root form a geometric progression
with first term equal to 1 and common ratio equal to the order of a tree. The
number of hash-tree levels (excluding the leaf level) is equal to the current
candidate size. Therefore, for candidate k+1-itemsets the maximum number
of internal nodes is:

ymax =
1 − xk+1

1 − x
(2)

Incorporating Equation (2) and the upper bound on a number of candidates
into Equation (1) gives us an upper bound on the hash-tree size for a set of
candidate k+1-itemsets:

ub(size(HTk+1)) =
1 − xk+1

1 − x
∗ υ + ub(|Ck+1(L)|) ∗ (ρ + ϕ(k + 1)) (3)

The problem with the above upper bound is that in practice actual hash-
tree sizes are going to be much smaller since not all possible branches will be
present in a hash-tree due to non-uniform distribution of items in candidates.
To address the problem we propose to estimate the size of a hash-tree based on
the estimated number of internal nodes if the number of candidates indicates
that the full structure of a hash-tree is unlikely to be built. Our estimations are
based on observations from a series of experiments.

First of all, we experimentally discovered the threshold value of the num-
ber of candidates above which the full hash-tree structure is built as xk+2. Next,
again based on observations, we have come up with the following formula to
estimate the size of an incomplete hash-tree:

est(size(HTk+1)) = ub(|Ck+1(L)|) ∗ (
4
3
∗ υ + ρ + ϕ(k + 1)) (4)

In the end, as a projected hash-tree size we use:

• ub(size(HTk+1)) if ub(|Ck+1(L)|) > xk+2,

• min(est(size(HTk+1)), ub(size(HTk+1))) otherwise.

Obviously, relying on the above empirical formula in query scheduling for
Apriori Common Counting poses a risk that in rare cases the actual hash-trees
of queries assigned to one execution phase will not fit into memory. If such
a problem occurs, queries whose hash-trees do not fit into memory should
be removed from the current phase, and then rescheduled together with all
remaining (assigned to subsequent phases) queries.



5 Experimental Evaluation

To evaluate the impact of using estimates of hash-tree sizes on quality of
schedules and overall processing time of Apriori Common Counting, we per-
formed a series of experiments using a synthetic dataset generated with GEN
[2] as the database. The dataset had the following characteristics: number of
transactions = 500000, average number of items in a transaction = 4, number
of different items = 10000, number of patterns = 1000. The experiments were
conducted on a PC with AMD Athlon 1400+ processor and 384 MB of RAM,
running Windows XP. The data resided in a local PostgreSQL database, the
algorithms were implemented in C#.

We experimented with randomly generated batches of queries, operating
on subsets of the test database, containing from six to sixteen frequent itemset
queries. The batches of queries were always generated in such a way that
an average overlapping of datasets between pairs of queries in a batch was
40%. The minimum support threshold for all queries in all experiments was
set to 0.75%.The average size of a hash-tree built in an Apriori iteration for this
support threshold was about 30KB. To introduce the need for query scheduling
we intentionally restricted the amount of available main memory to 120KB.
In all the experiments we used CCAgglomerative algorithm to generate the
schedules.
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 Figure 4. Number of disk blocks read

Figure 4 shows average numbers of disk blocks read by Apriori Common
Counting due to generated schedules (HE denotes exact sizes of hash-trees
and HU - estimates based on upper bounds on candidate numbers). As ex-
pected, since actual hash-tree sizes are typically smaller than their estimates,
the schedules generated using exact sizes resulted in a noticeably smaller num-
ber of disk blocks read (on average by 3% to 4%, depending on the number of
queries). However, as shown in Fig. 5, using estimates reduced the overall pro-



cessing time of Apriori Common Counting by about 10%, thanks to avoiding
the costly operations of moving the hash-trees between memory and disk.
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 Figure 5. Execution time of data mining query scheduling algorithms

6 Conclusions

The paper addressed the problem of optimizing sets of multiple frequent
itemset queries using Apriori Common Counting. Apriori Common Counting
exploits dataset overlapping between the queries by processing a set of queries
concurrently and integrating their disk operations. To be successful, Apriori
Common Counting must keep candidate hash-trees of several queries in mem-
ory at the same time. Since in practice memory is limited, the queries have
to be scheduled into execution phases. A query scheduling algorithm must
be given the hash-tree sizes for all the queries. In previous approaches, the
hash-trees were generated before scheduling, swapped to disk, and reloaded
when needed. This method allowed the scheduling algorithm to operate on
actual hash-tree sizes but introduced the hash-tree materialization step, costly
in terms of time and disk space.

In this paper we have presented a method of estimating hash-tree sizes.
We proposed to use these estimates instead of exact hash-tree sizes for query
scheduling in Apriori Common Counting, to avoid the costly hash-tree swap-
ping and reloading operations. The experiments show that the novel approach
significantly reduces the overall processing time of Apriori Common Count-
ing, despite the fact that the quality of generated schedules is noticeably worse.
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