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Abstract. Frequent itemset mining can be regarded as advanced data-
base querying where a user specifies the dataset to be mined and con-
straints to be satisfied by the discovered itemsets. One of the research
directions influenced by the above observation is the processing of sets of
frequent itemset queries operating on overlapping datasets. Several meth-
ods of solving this problem have been proposed, all of them assuming
selective access to the partitions of data determined by the overlapping
of queries, and tested so far only on flat files. In this paper we theo-
retically and experimentally analyze the influence of data access paths
available in database systems on the methods of frequent itemset query
set processing, which is crucial from the point of view of their possible
applications.

1 Introduction

Frequent itemset mining [1] is one of the fundamental data mining techniques,
used both on its own and as the first step of association rules generation. The
problem of frequent itemset and association rule mining was initially formu-
lated in the context of market-basket analysis, aiming at the discovery of items
frequently co-occurring in customer transactions, but it quickly found numer-
ous applications in various domains, such as medicine, telecommunications and
World Wide Web.

Frequent itemset mining can be regarded as advanced database querying
where a user specifies the source dataset, the mininum support threshold and
(optionally) the pattern constraints within a given constraint model [7]. Frequent
itemset queries are therefore a special case of data mining queries.

Many frequent itemset mining alogrithms have been developed. The two most
prominent classes of algorithms are determined by the strategy of the pattern
search space traversal. Level-wise algorithms, represented by the classic Apriori
algorithm [3], follow the breadth-first strategy, whereas pattern-growth methods,
among which FP-growth [6] is the best known, perform the depth-first search.

Although many algoritms have been proposed, effective knowledge discovery
in large volumes of data remains a complicated task and requires considerable
time investment. Long data mining query execution times often result in queries
being collected and processed in a batch when the system load is lower. Since
those queries may have certain similarities, e.g. refer to the same data, processing
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them concurrently rather than sequentially gives the opportunity to execute the
whole set of queries much more effectively [10].

As far as processing batches of frequent itemset queries is concerned, several
methods exploiting the overlapping of queries’ source datasets have been devel-
oped: Mine Merge, independent of the frequent itemset mining algorithm used
[10]; Common Counting [10] and Common Candidate Tree [5] designed for Apri-
ori; Common Building and Common FP-tree [11] based on FP-growth. Each of
these methods, in addition to the theoretical analysis, has been tested in practice
with the use of flat files and direct access paths to the source dataset’s partitions.
In reality, however, the mined data is often stored in databases, where, depending
on the selection conditions, many different access paths may be available.

The aim of this paper is both the theoretical and practical analysis of the
aforementioned concurrent frequent mining methods in the light of different data
access paths. As the FP-growth methods are adaptions of the methods developed
for Apriori, the analysis will be conducted for Apriori only. Apriori it is the most
widely implemented frequent itemset mining algorithm and the multiple source
data reads it performs should make the differences between the access paths and
their impact on the total execution time more noticeable.

The topics discussed in this paper can be regarded as multiple-query opti-
mization, which was previously extensively studied in the context of database
systems [9] geared towards building a global execution plan that exploits the
similarities between queries. In the field of data mining, except the problem
discussed in this paper, multiple-query optimization was considered in a vastly
different problem of frequent itemset mining in multiple datasets [8]. Solutions
similar to the ones in this paper, however, can be found in the related domain
of logic programming, where a method similar to Common Counting has been
proposed [4].

2  Multiple-Query Optimization for Frequent Itemset
Queries

2.1 Basic Definitions and Problem Statement

Itemset. Let I = {i1,i2,...,9,} be a set of literals called items. An itemset X
is a set of items from I, ie. X C I. The size of the itemset X is the number of
items in it.

Transaction. Let D be a database of transactions, where transaction T is a set
of elements such that T'C I and T' # 0. A transaction T supports the item x € T
if z € T. A transaction T supports the itemset X C I if it supports all items
reX,ie. XCT.

Support. The support of the itemset X in the database D is the number of
transactions 7' € D that support X.

Frequent itemset. An itemset X C [ is frequent in D if its support is no less
than a given minimum support threshold.
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Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, X, @,
minsup), where R is a database relation, a is a set-valued attribute of R, X' is
a condition involving the attributes of R called data selection predicate, @ is a
condition involving discovered itemsets called pattern constraint, and minsup is
the minimum support threshold. The result of dmgis a set of itemsets discovered
in m,ox R, satisfying @, and having support > minsup (7 and o denote relational
projection and selection operations respectively).

Elementary data selection predicates. The set of elementary data selection
predicates for a set of frequent itemset queries DMQ = {dmg,, dmq,, ..., dmg,, } is
the smallest set S = {s1, $2, ..., i} of data selection predicates over the relation
R such that for each u, v (u # v) we have o;, RN os, R = () and for each
dmg; there exist integers a, b, ...,m such that ox,R = 0,, RUo,, RU .. U0, R.
The set of elementary data selection predicates represents the partitioning of the
database determined by overlapping of queries’ datasets.

Problem. Given a set of frequent itemset queries DMQ = {dmg,, dmqs,, ...,
dmg,, }, the problem of multiple-query optimization of DM@ consists in generat-
ing an algorithm to execute DM() that minimizes the overall processing time.

2.2 Apriori

Introduced in [3] and based on the observation that every subset of a frequent
itemset is also frequent, the Apriori algorithm iteratively discovers frequent item-
sets of increasing size. Frequent 1-itemsets are discovered by simply counting
the occurences of each item in the database. Following iterations consist of two
phases: the generation phase, during which frequent itemsets from previous iter-
ation are used to generate candidate itemsets of size 1 more, and a verification
phase, during which the algorithm counts the occurences of those itemsets in the
database and discards the ones that do not meet the minimum support thresh-
old. This process is repeated until no more frequent itemsets are discovered.
To avoid performing a costly inclusion test for every candidate and every read
transaction, generated candidate itemsets are stored in a hash tree.

3 Review of Existing Methods

3.1 Sequential Execution

The simplest way of processing a set of frequent itemset queries is to process them
sequentially using a standard algorithm like the aforementioned Apriori. This
represents the naive approach and even though it’s not an effective solution to the
problem, it provides a natural reference point when evaluating other methods.

3.2 Common Counting

The Common Counting [10] method reduces the amount of required data reads
by integrating the scans of those parts of the database that are shared by more
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than one query. All queries from the set are executed concurrently in a two-
phase iterative process similar to Apriori. Candidate generation is performed
seperately for each query, with the generated candidates stored in separate hash
trees. Verification, however, is performed simultaneously for all queries during
a single database scan. Each database partition is therefore read only once per
iteration, effectively reducing the number of I/O operations.

3.3 Common Candidate Tree

While Common Counting optimizes only the database reads, Common Can-
didate Tree [5] goes a step further and shares the data structures between the
concurrently processed queries as well. Like in Common Counting, each partition
is read only once per iteration, but this time a single hash tree is shared by all
queries from the set, reducing the cost associated with inclusion tests. While the
structure of the hash tree itself remains identical to the one used in the original
Apriori, the candidate itemsets are modified to include a vector of counters (one
for each query) and a vector of boolean flags (to track which queries generated
the itemset). Candidate generation is performed seperately for each query as in
Common Counting, with the generated sets of candidates being merged into the
extended representation and put in the common hash tree afterwards. Only that
single tree is then used during the verification phase, with only the appropriate
counters (ie. those corresponding to queries that both generated the candidate
and refer to the currently processed partition) being incremented.

3.4 Mine Merge

The Mine Merge [10] algorithm presents an entirely different approach. It em-
ploys the property that in a database divided into partitions, an itemset frequent
in the whole database is also frequent in at least one of the partitions. Mine Merge
first generates intermediate queries, each of them based on a single elementary
data selection predicate (ie. each referring to a single database partition). Inter-
mediate queries are then executed sequentially (for example using Apriori) and
their results are used to create a global list of candidate itemsets' for each orig-
inal query. A single database scan is then performed to calculate the support of
every candidate itemset and discard the ones below the desired threshold, thus
producing the actual results for each of the original queries.

4 Data Access Paths in Frequent Itemset Query Set
Processing
4.1 Data Structures and Access Paths

In today’s world the vast majority of data, including the data targeted by fre-
quent itemset mining, is stored in relational database systems. Contemporary

1 Such a list consists of frequent itemsets from all partitions the query refers to.
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relational database management systems (DBMSs) follow the SQL standard and
offer similar fundamental functionality in the sense that they store data in ta-
bles, which can be accompanied by indexes to speed-up the selection of that
data. Thus, as far as the analyzed frequent itemset query processing methods
are concerned we can generally assume that: (1) the data to be mined is stored in
a database table, (2) each data selection predicate selects a subset of rows from
that table, (3) there are two methods of accessing the rows satisfying a given
data selection predicate: a full scan of the table during which the predicate is
evaluated for each row, and selective access with the help of index structures.

While keeping the analysis as general and product-independent as possible,
it should be noted that DBMSs available on the market compete with each other
and therefore provide different choices for table organization and indexing. In the
experiments accompanying our theoretical study we use Oracle 11g, considered
the industry-leading database management system. Oracle 11g is an example of
an object-relational DBMS, i.e. it offers object extensions to the relational model
such as user-defined types and collections. We use a VARRAY collection type
to store itemsets. The default table organization in Oracle 11g is heap (which is
unordered). Two types of indexes are available: B-tree and bitmap indexes. We
use B-trees as they support range selection predicates. An interesting alternative
to a heap-organized table accompanied by an index in Oracle 11g is an index-
organized table. We also consider it in the experiments.

4.2 Implementation of Compared Methods

All the compared methods were formulated in terms of reading partitions cor-
responding to elementary data selection predicates. Therefore, if all partitions
of the table can be selectively accessed thanks to an index, all the considered
methods are directly applicable with no need for extra optimizations. The ques-
tion is whether these methods can avoid performing a separate full scan of the
table for each partition if no applicable index is available or the query optimizer
decides not to use it2.

As for Mine Merge, we currently do not see any satisfactory solutions that
would prevent it from suffering a significant performance loss when full scans
are necessary®. However, it should be noted that since Mine Merge executes
its intermediate queries independently of each other, each query can employ
a different access path (a full scan or an index scan depending on the index
availability and the estimated cost).

Contrary to Mine Merge, Common Counting and Common Candidate Tree
can be implemented in a way that minimizes the negative effects of full scans.

2 The optimizer might not use an index if a full scan results in a lower estimated cost
due to poor selectivity of the index for a given selection predicate. In our discussion
it is not relevant what the reason for performing a full scan to access a partition
actually was.

3 One possible solution is to materialize partitions corresponding to intermediate
queries in one full table scan, but we consider it impractical for large datasets.
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Both methods read multiple partitions (the ones referred to by the queries
still being executed) per iteration. However, since their candidate counting is
in fact performed per transaction, not per partition (individual transactions
passed through hash trees), the actual order in which transactions are retrieved
from the database is irrelevant. Thus, Common Counting and Common Candi-
date Tree can perform a single SQL query in each iteration, reading the sum of
the partitions required by the queries whose execution still did not finish. This
modification is crucial if full scans would be required to retrieve any individual
partition (one full scan instead of several full scans and/or table accesses by
index per iteration?) but can also be beneficial if all the partitions are accessible
by index (in certain circumstances reading all the partitions in one full table
scan may be more efficient than reading them one by one using an index®).

4.3 Theoretical Cost Analysis

In order to analyze the impact of data access paths we will provide cost formulas
for the amount of data read by the compared methods for both selective access
and full table scans. We will not include the cost of in-memory computations in
the formulas as it does not depend on the chosen data access path. For the sake
of simplicity we will assume that all Apriori executions (for the original as well
as Mine Merge intermediate queries) require the same number of iterations. The
variables appearing in the formulas are as follows: k - the number of Apriori
iterations for each query, n - the number of original queries, ni - the number of
Mine Merge intermediate queries, DB - the size of the database table containing
input data, SUM - the sum of the sizes of the original queries’ datasets, CVR -
the total size of the parts of the table referred to (covered) by the queries.

The cost formulas for sequential execution for selective access (SEQ;px) and
full table scans (SEQpy11) are presented below. For selective data access each
query reads its source dataset k times. With full scans each query reads the
whole table £ times.

The formulas for Mine Merge include the cost of the (additional) verifying
scan of data. Full scan formula involves the number of intermediate queries,
which is not present in the formula for selective data reads — in that case, only
the amount of covered data is important, not the number of partitions into which
it is divided.

MM[DX:(k—Fl)*CVR, MMFULL:(TLi*k—I—l)*DB (2)

Common Counting and Common Candidate Tree differ only in in-memory
data structures, therefore the two methods share the formulas for data access

4 Even if for just one partition a full scan is the only or the best option, all the
partitions are to be retrieved in one full table scan. This is different from Mine
Merge where each partition could be retrieved using a different access path.

5 The choice of an access path is up to the query optimizer.
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costs. Thanks to the integrated full scan proposed in Sect. 4.2, the cost for full
scans does not depend on the number of queries (similarly as in the case of
selective access).

CC]DX =k * CVR, CCFULL:k*DB (3)

When comparing the above cost formulas one should take into account that:
nx DB > SUM > CVR, DB > CVR, ni > n (regarding the latter, the upper
limit on niis 2" — 1)5.

Comparing the data access costs per algorithm, the increase of the cost when
selective access is replaced with full scans varies among the methods: it is the
smallest for Common Counting (independent of the number of queries) and the
biggest for Mine Merge (dependent on the number of intermediate queries). The
consequence of the above difference is a questionable applicability of Mine Merge
if the data has to be retrieved using full table scans. With selective access Mine
Merge should outperform sequential execution, provided the overlapping among
the queries (exploited in each Apriori iteration) compensates for the extra scan
of data”. With full scans Mine Merge can be expected to always perform worse
than sequential execution. On the other hand, Common Counting (and Common
Candidate Tree) not only should outperform sequential execution regardless of
the available access path but even relatively benefit from full scans.

5 Experimental Results

Experiments were conducted on a synthetic dataset generated with GEN [2] us-
ing the following settings: number of transactions = 10000 000, average number
of items in a transaction = 8, number of different items = 1000, number of pat-
ters = 15000, average pattern length = 4. Data was stored as <transaction id,
varray of item> pairs inside Oracle 11g database deployed on SuSE Linux,
with the test application written in Java running on Mac OS X 10.6.6. Database
connection was handled through JDBC over 1 Gigabit Ethernet.

Two experiments were conducted: the first one included two fixed-size queries
with varying level of overlapping between them; in the second the overall scope
of the processed part of the dataset was fixed while the number of fixed-size
queries in the set varied. Both experiments measured the execution times of
sequential execution (SEQ), Common Counting (CC), Common Candidate Tree
(CCT) and Mine Merge (MM) for both the sequential (full scan) and selective
(index scan®) access paths.

6 The upper limit on the number of Mine Merge intermediate queries (equal to the
number of elementary data selection predicates) can be smaller if certain constraints
on data selection predicates are applied. For example, if all the predicates select
single ranges of the same attribute, the maximal number of intermediate queries is
2xn—1.

" In our analysis we do not consider the differences in the cost of in-memory compu-
tation, which can be a differentiator if the data access costs are identical or similar.

8 The same experiments were repeated using an index-organized table, giving consis-
tent results.
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Fig. 1. Execution times for two queries and different levels of overlapping.

The results of the first experiment for two queries of 1000000 transactions
each, minimum support of 0.7%° and the level of overlapping from 0% to 100%
are shown in Fig. 1.

As predicted, Mine Merge performed significantly worse than other methods
without selective access, losing even with the sequential execution. With index
scans available its loss wasn’t as noticeable and it even managed to outperform
Common Counting when the level of overlapping is high enough.

Both Common Counting and Common Candidate Tree performed well re-
gardless of the access path. While their times for lower levels of overlapping
were similar, Common Candidate Tree was clearly better when queries over-
lapped signficantly.

The second experiment had the queries access the same fixed part of the
database each time. The query set consisted of 2 to 6 queries of size 600000

% Experiments were conducted with two different minimum support thresholds of 0.7%
and 2% with consistent results; due to limited space, only the former threshold is
presented.
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Fig. 2. Execution times for fixed scope and different numbers of queries.

transactions each, spread evenly across the first 1000000 transactions from the
database (each time the first query in the set referred to transactions with identi-
fiers from 0 to 600 000, the last one — 400000 to 1 000 000). Results are presented
in Fig. 2.

As was the case in the first experiment, Mine Merge was very inefficient
when forced to execute full table scans, performing even worse than sequential
execution. With selective access, however, the number of queries had little impact
on Mine Merge execution times, which again allowed it to perform better than
Common Counting and quite close to Common Candidate Tree, which was the
fastest algorithm for both access paths. Common Counting, though better than
sequential execution in both cases, provided a more noticeable gain over the
naive method during full scans than when using the selective access path.

6 Conclusion

We considered the influence of data access paths available in DBMSs on the
implementations and performance of the methods of frequent itemset query set



10 Piotr Jedrzejczak, Marek Wojciechowski

processing designed for the Apriori algorithm. As expected, both the theoretical
and experimental analysis showed that the performance of all the compared
methods suffers if selective access to data partitions is replaced with full scans.
However, an important conclusion is that while the negative effect of full scans
on Mine Merge is more significant than in the case of sequential processing,
properly implemented Common Counting and Common Candidate Tree actually
increase their advantage over sequential execution if full scans are necessary. In
other words, Mine Merge is strongly dependent on efficient access paths to data
partitions, whereas Common Counting and Common Candidate Tree can be
successfully applied regardless of available data access paths.
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