
Fast Discovery of Sequential Patterns Using
Materialized Data Mining Views

Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{morzy,marek,mzakrz}@cs.put.poznan.pl

Abstract. Most data mining techniques consist in discovery of frequently
occurring patterns in large data sets. From a user’s point of view, data mining
can be seen as advanced querying, where each data mining query specifies the
source data set and the requested class of patterns. Unfortunately, current data
mining systems consume minutes or hours to answer simple queries, which
makes them unsuitable for interactive use. In this paper we present the concept
of materialized data mining views and their application to fast discovery of
sequential patterns. We show how materialized data mining views can be used
to optimize processing of sequential pattern queries.

1 Introduction

Data mining, also referred to as database mining or knowledge discovery in databases
(KDD), aims at discovery of useful patterns from large databases or warehouses.
Currently we are observing the evolution of data mining environments from
specialized tools to multi-purpose data mining systems offering some level of
integration with existing database management systems. From a user’s point of view,
data mining can be seen as an interactive and iterative process of advanced querying:
a user specifies the source data set and the requested class of patterns, the system
chooses the right data mining algorithm and returns discovered patterns to the user.
The most serious problem concerning data mining queries is a long response time.
Current systems consume minutes or hours to answer simple queries.

One of the most popular data mining methods is sequential pattern discovery.
Sequential patterns are the most frequently occurring subsequences in sequential data.
Their applications include analysis of telecommunication systems, discovering
frequent buying patterns, analysis of patients’ medical records, etc.

In this paper we discuss optimization of the sequential pattern discovery problem.
We propose using periodically refreshed materialized data mining views (MDMVs)
for repetitive data mining queries in the same manner as materialized views are used
in relational database management systems to store results of complex and time
consuming queries. We notice that it is obvious that MDMVs can be used to answer
queries identical to the queries over which they have been defined, therefore we focus
on processing queries that differ in their syntax.

1.1 Sequential Patterns

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of
items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>, where
Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. Let D be a set of
variable length sequences, where for each sequence S = <X1 X2 ... Xn>, a timestamp is
associated with each Xi.

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained in
a sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1,
X2 ⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y. We consider the
following user-specified time constraints while looking for occurrences of a given
sequence: minimal and maximal gap allowed between consecutive elements of an
occurrence of the sequence (called min-gap and max-gap), maximal duration (called
time window) of the occurrence and time tolerance that allows a group of consecutive
elements of the occurrence to be merged and treated as a single element.

A sequential pattern is a sequence whose statistical significance in D is above
user-specified threshold. We consider two alternative measures of statistical
significance for sequential patterns: support and number of occurrences. The support
for a sequential pattern <X1 X2 ... Xn> in D is the fraction of sequences in D that
contain the pattern. While counting the support it is not important how many times a
pattern occurs in a given data sequence. This makes support unsuitable when
sequential patterns are mined over a single data sequence (|D| = 1). In such case, the
number of occurrences is more useful as a statistical measure.

1.2 Data Mining Queries

MineSQL [8] is a declarative language for expressing data mining problems by means
of data mining queries. It serves as a SQL-based interface between a client application
and a data mining system. In this section we present elements of MineSQL that are
used later in the paper. The detailed syntax of MineSQL can be found in [8].

MineSQL language defines a set of new SQL data types, which are used to deal
with sequences and sequential patterns. The SEQUENCE OF data type family is used
to represent sequences of sets of items. Sequences are ordered collections of
(timestamp, value) pairs, where timestamp is usually of date and time type and value
can be of any type. In order to convert a collection of (timestamp, value) pairs into a
SEQUENCE OF value, we use a new SQL group function called SEQUENCE. The
PATTERN OF data types family is used to represent sequential patterns and their
statistical significance (support or number of occurrences).

MineSQL defines a set of the following SQL functions and operators that operate
on sequences or patterns: s CONTAINS t returning TRUE if the sequence or pattern s
contains the sequence t, SUPPORT(x) returning the support of the pattern x, and
OCCURRENCES(x) returning the number of occurrences of the pattern x.

The central statement of the MineSQL language is MINE. MINE is used to discover
frequent itemsets, association rules and sequential patterns from the database. MINE
also specifies a set of predicates to be satisfied by the returned rules or patterns. In
order to discover sequential patterns we use the following syntax of MINE statement.

MINE pattern_expression [, pattern_expression…]
[WINDOW window][MAXGAP maxgap][MINGAP mingap][TOLERANCE tolerance]
FOR column FROM subquery
WHERE pattern_predicate [AND pattern_predicate…];

In the above syntax, pattern_expression represents the keyword PATTERN or a
function operating on PATTERN (PATTERN represents a single sequential pattern
being discovered). The clauses window, maxgap, mingap, and tolerance are used to
specify time constraints. Column is the name of the query column of the type
SEQUENCE OF, containing sequences to be mined. Subquery is the SQL subquery,
returning the sequences to be mined. Pattern_predicate is a Boolean predicate on a
function which operates on PATTERN, to be satisfied by returned sequential patterns.

The following MINE statement uses the table CUST_TRANSACTIONS(C_ID,
T_TIME, ITEM) to discover all sequential patterns, whose support is greater than 0.1.

MINE PATTERN, SUPPORT(PATTERN)
FOR X FROM (SELECT SEQUENCE(T_TIME, ITEM) AS X

 FROM CUST_TRANSACTIONS GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

1.3 Related Work

The problem of mining frequent patterns in a set of data sequences together with a
few mining algorithms was first introduced in [2]. The class of patterns considered
there, called sequential patterns, had a form of sequences of sets of items. The
statistical significance of a pattern (called support) was measured as a percentage of
data sequences containing the pattern. In [11], the problem was generalized by adding
taxonomy on items and time constraints such as min-gap, max-gap and sliding
window (in this paper called tolerance).

Another formulation of the problem was given in [7], where discovered patterns
(called episodes) could have different type of ordering: full, none or partial and had to
appear within a user-defined time window. The episodes were mined over a single
event sequence and their statistical significance was measured as a percentage of
windows containing the episode (frequency) or as a number of occurrences.

In [10], an issue of incremental and interactive sequence mining was addressed. An
algorithm was proposed for finding sequential patterns in the expanded database using
the old frequent patterns. Another contribution was a method for handling interactive
sequential pattern queries. The goal was achieved by adding a preprocessing step that
consisted in discovering patterns with a low support threshold and storing them in a
form suitable for efficient retrieval according to user-specified query conditions.

Another approach to incremental mining of sequential patterns was presented in
[12]. The algorithm introduced there was applicable not only for expanded but also
for reduced database. The algorithm required some extra information to be stored
together with the discovered patterns.

In [9], an issue of interactive mining of association rules [1] was addressed and the
concept of knowledge cache was introduced. The cache was designed to hold frequent
itemsets that were discovered while processing other queries. An important
contribution was an algorithm, which used itemsets discovered for higher support

thresholds in the discovery process for the same task, but with a lower support
threshold. The frequent itemsets discovered in previous tasks were stored in cache and
were used for determining support of some candidate itemsets without checking them
against the database. Although the method was proposed in the context of frequent
itemsets, it can also be applied to sequential patterns.

The idea of precomputing frequent itemsets in a partitioned database and using
them while discovering association rules in the whole database or parts of it was
discussed in [13]. The proposed method exploited the property that an itemset can be
frequent in the union of partitions if and only if it is frequent in at least one of the
partitions. Thus itemsets that were frequent in at least one of the partitions of the
mined data set, formed the set of candidates for one verifying database pass.

The notion of data mining queries (or KDD queries) was introduced in [5]. The
need for Knowledge and Data Management Systems (KDDMS) as second generation
data mining tools was expressed. The ideas of application programming interfaces
and data mining query optimizers were also mentioned. Several data mining query
languages that are extensions of SQL were proposed [3][4][6][8].

2 Data Mining Views and Materialized Data Mining Views

In relational database systems views are used to simplify access to frequently used
data sets that are results of complex queries. A view presents the results of the SQL
query hidden in its definition. When a user selects data from a view, its defining query
has to be executed. In case of materialized views, results of defining queries are
stored in the database, which significantly shortens the response time.

Since data mining tasks are repetitive in nature and the syntax of data mining
queries may be complicated, we propose to extend the usage of views to handle both
SQL queries and MineSQL queries. Any SQL query concerning a data mining view
involves performing the data mining task according to the data mining query that
defines the view. This guarantees access to up-to-date patterns but leads to long
response times, since data mining algorithms are time consuming.

To address the above issue, we propose materialized data mining views (MDMVs).
A materialized data mining view is a database object containing patterns discovered
as a result of a data mining query. It contains patterns that were valid at a certain point
of time. MDMVs can be used for further selective analysis of discovered patterns
with no need to re-run mining algorithms. They can be automatically refreshed
according to a user-defined time interval in order to keep the set of patterns up-to-
date. In most cases when a MDMV is being refreshed, it can be refreshed efficiently
with one of the algorithms for incremental mining.

The following statement creates a MDMV containing all sequential patterns with
support greater than 0.1, discovered in the set of sequences from
CUST_TRANSACTIONS table. The view is to be refreshed once a week.

CREATE MATERIALIZED VIEW SEQ_PATTERNS
REFRESH 7 AS MINE PATTERN, SUPPORT(PATTERN)
 FOR X FROM (SELECT SEQUENCE(T_TIME, ITEM) AS X
 FROM CUST_TRANSACTIONS GROUP BY C_ID)
 WHERE SUPPORT(PATTERN)>0.1;

In the defining statement of a data mining view, there are two classes of constraints:
database constraints and mining constraints. Database constraints are located within
the SELECT statement in the FROM clause of the MINE statement. Database
constraints are used to apply selection conditions on the source data set that is being
mined. Mining constraints are located in the WHERE clause of the MINE statement
and are used to specify selection conditions on the set of patterns to be discovered.

3 Discovery of Sequential Patterns in Presence of Materialized
Data Mining Views

MDMVs can be also used to reduce execution time of data mining queries, which are
not identical to those, on which the views were built. Consider the following example:
we are given a materialized data mining view (MDMV1) and a data mining query
issued by a user (DMQ1).

DMQ1:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1
AND PATTERN CONTAINS
 TO_PATTERN('<(10 20) (30)>');

MDMV1:
CREATE MATERIALIZED VIEW MDMV1
AS MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

Notice that in order to execute the query, we can simply filter the actual contents of
the materialized data mining view MDMV1, without running a data mining algorithm.
Thus, MDMVs can play a similar role to data mining queries, as indexes or
materialized views do to database queries. Application developers can create MDMVs
to transparently decrease execution times of their applications' data mining queries.

We need formal methods for determining data mining query execution plans,
which use MDMVs to reduce time complexity. First, we define four relations, which
may occur between two data mining queries, DMQ1 and DMQ2. We say that:

1. DMQ1 extends database constraints of DMQ2, if DMQ1 does one of the following:
appends a WHERE or HAVING clause of database constraints to DMQ2; appends an
additional ANDed condition to a WHERE or HAVING clause of database constraints
of DMQ2; removes an ORed condition from a WHERE or HAVING clause of database
constraints of DMQ2; tightens one or more conditions from a WHERE or HAVING
clause of database constraints of DMQ2.

2. DMQ1 reduces database constraints of DMQ2, if DMQ1 does one of the following:
removes a WHERE or HAVING clause of database constraints from DMQ2; appends
an additional ORed condition to a WHERE or HAVING clause of database
constraints of DMQ2; removes an ANDed condition from a WHERE or HAVING
clause of database constraints of DMQ2; relaxes one or more conditions from a
WHERE or HAVING clause of database constraints of DMQ2.

Example. The following data mining query DMQ1 extends database constraints of the
data mining query DMQ2 (DMQ2 reduces database constraints of DMQ1).

DMQ1:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 WHERE T_TIME > ’10-Jan-2000’
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

DMQ2:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

Intuitively, extension of database constraints means narrowing the mined data set
whereas reduction of database constraints means extending the mined data set.

3. DMQ1 extends mining constraints of DMQ2, if DMQ1 does one of the following:
decreases MAXGAP, WINDOW or TOLERANCE, or increases MINGAP; appends a
WHERE or HAVING clause of mining predicates to DMQ2; appends an additional
ANDed condition to a WHERE or HAVING clause of mining constraints of DMQ2;
removes an ORed condition from a WHERE or HAVING clause of mining constraints
of DMQ2; replaces SUPPORT(PATTERN)>x with SUPPORT(PATTERN)>y in
DMQ2, where x<y; replaces OCCURRENCES(PATTERN)>x with
OCCURRENCES(PATTERN)>y in DMQ2, where x<y; replaces PATTERN
CONTAINS X with PATTERN CONTAINS Y in DMQ2, where X⊂Y; replaces
PATTERN NOT CONTAINS X with PATTERN NOT CONTAINS Y in DMQ2, where
Y⊂X.

4. DMQ1 reduces mining constraints of DMQ2, if DMQ1 does one of the following:
increases MAXGAP, WINDOW or TOLERANCE, or decreases MINGAP; removes a
WHERE or HAVING clause of mining constraints from DMQ2; appends an additional
ORed condition to a WHERE or HAVING clause of mining constraints of DMQ2;
removes an ANDed condition from a WHERE or HAVING clause of mining
constraints of DMQ2; replaces SUPPORT(PATTERN)>x with
SUPPORT(PATTERN)>y in DMQ2, where x>y; replaces
OCCURRENCES(PATTERN)>x with OCCURRENCES(PATTERN)>y in DMQ2,
where x>y; replaces PATTERN CONTAINS X with PATTERN CONTAINS Y in
DMQ2, where Y⊂X; replaces PATTERN NOT CONTAINS X with PATTERN NOT
CONTAINS Y in DMQ2, where X⊂Y.

Example. The following data mining query DMQ1 extends mining constraints of the
data mining query DMQ2 (DMQ2 reduces mining constraints of DMQ1).

DMQ1:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 WHERE T_TIME > ’10-Jan-2000’
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.2;

DMQ2:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 WHERE T_TIME > ’10-Jan-2000’
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

Intuitively, extension of mining constraints means narrowing the resulting set of
discovered patterns whereas reduction of mining constraints means expanding the
resulting set of discovered patterns.

We also define four classes of mining methods, which will be used to execute data
mining queries over MDMVs: full mining, incremental mining, complementary
mining, and verifying mining. Full mining (FM) refers to executing a complete
algorithm for discovering frequent patterns (e.g. [11]). This method is used if
MDMV’s contents cannot support processing of the data mining query. Incremental
mining (IM) refers to discovering frequent patterns in an incremented data set (e.g.
[10]). It can be used for data mining queries which reduce database constraints.
Complementary mining (CM) refers to discovering frequent patterns using currently
materialized patterns which are guaranteed to remain frequent (e.g. [9]). This method
can be used for data mining queries which reduce mining constraints. Finally, we
have verifying mining (VM), that simply consists in pruning those materialized
patterns, which do not satisfy mining constraints. It is used for data mining queries,
which extend mining constraints.

If two relations occur between a data mining query and a data mining query on
which a MDMV is based, then we use the compatibility table (see Table 1) to decide
which mining method to use.

Table 1. Compatibility table for using materialized data mining views

 reduction of database
constraints

extension of database
constraints

-

reduction of mining constraints CM, IM FM CM
extension of mining constraints VM, IM FM VM

- IM FM -

Example. We are given the following data mining query DMQ1 and the materialized
data mining view MDMV1.

DMQ1:
MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.3;

MDMV1:
CREATE MATERIALIZED VIEW MDMV1
AS MINE PATTERN
FOR X FROM
(SELECT SEQUENCE(T_TIME, ITEM)
 AS X FROM CUST_TRANSACTIONS
 WHERE T_TIME > ’10-Jan-2000’
 GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.2;

Since DMQ1 extends mining constraints (higher minimum support) and reduces
database constraints (removed WHERE clause) of the data mining query of MDMV1,
we perform verifying mining (VM), and then incremental mining (IM). The verifying
mining prunes all materialized patterns, whose support value is not above 0.3, while
the incremental mining discovers frequent patterns using the information on frequent
patterns discovered in a subset of the mined data set. It was proven in the literature
that the execution time of the above mining algorithms would be shorter than when
performing full mining.

4 Conclusions and Future Work

In this paper we have presented the concept of materialized data mining views and
their application to fast discovery of sequential patterns. We have proposed several
rules for optimization of data mining queries in environments, where MDMVs,
containing results of other data mining queries are available. These rules can serve as
a basis for rule-based data mining query optimizers. An important advantage of the
solutions we propose is that the algorithms required to implement our optimization
framework have already been introduced and verified.

In the future we plan to address the problem of cost-based data mining query
optimization, especially concentrating on situations when there are several MDMVs
that can be used to optimize the processing of a given data mining query. Another
topic that we plan to discuss is concurrent refreshing of several MDMVs. We believe
that in such case, sometimes it might be desirable to combine mining tasks associated
with several MDMVs to optimize the global performance of the refresh operation.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf. (1995)
3. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.

of the 22nd VLDB Conference (1996)
4. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,

Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference (1996)

5. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

6. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

7. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences. Proc.
of the 1st KDD Conference (1995)

8. Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference (2000)

9. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery
of Association Rules. Proc. of the 5th KDD Conference (1999)

10. Parthasarathy S., Zaki M.J., Ogihara M., Dwarkadas S.: Incremental and Interactive
Sequence Mining. Proc. of the 8th CIKM Conference (1999)

11. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. Proc. of the 5th EDBT Conference (1996)

12. Wang K., Tan J.: Incremental Discovery of Sequential Patterns. ACM-SIGMOD's 96 Data
Mining Workshop: On Research Issues on Data Mining and Knowledge Discovery (1996)

13. Wojciechowski M., Zakrzewicz M.: Itemset Materializing for Fast Mining of Association
Rules. Proc. of the 2nd ADBIS Conference (1998)

