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Abstract. Most data mining techniques consist in discovery of frequently 
occurring patterns in large data sets. From a user’s point of view, data mining 
can be seen as advanced querying, where each data mining query specifies the 
source data set and the requested class of patterns. Unfortunately, current data 
mining systems consume minutes or hours to answer simple queries, which 
makes them unsuitable for interactive use. In this paper we present the concept 
of materialized data mining views and their application to fast discovery of 
sequential patterns. We show how materialized data mining views can be used 
to optimize processing of sequential pattern queries.  

1 Introduction 

Data mining, also referred to as database mining or knowledge discovery in databases 
(KDD), aims at discovery of useful patterns from large databases or warehouses. 
Currently we are observing the evolution of data mining environments from 
specialized tools to multi-purpose data mining systems offering some level of 
integration with existing database management systems. From a user’s point of view, 
data mining can be seen as an interactive and iterative process of advanced querying: 
a user specifies the source data set and the requested class of patterns, the system 
chooses the right data mining algorithm and returns discovered patterns to the user. 
The most serious problem concerning data mining queries is a long response time. 
Current systems consume minutes or hours to answer simple queries.  

One of the most popular data mining methods is sequential pattern discovery. 
Sequential patterns are the most frequently occurring subsequences in sequential data. 
Their applications include analysis of telecommunication systems, discovering 
frequent buying patterns, analysis of patients’ medical records, etc. 

In this paper we discuss optimization of the sequential pattern discovery problem. 
We propose using periodically refreshed materialized data mining views (MDMVs) 
for repetitive data mining queries in the same manner as materialized views are used 
in relational database management systems to store results of complex and time 
consuming queries. We notice that it is obvious that MDMVs can be used to answer 
queries identical to the queries over which they have been defined, therefore we focus 
on processing queries that differ in their syntax.  



1.1 Sequential Patterns 

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of 
items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>, where 
Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. Let D be a set of 
variable length sequences, where for each sequence S = <X1 X2 ... Xn>, a timestamp is 
associated with each Xi. 

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained in 
a sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, 
X2 ⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1 Yi2 ... Yin > an occurrence of X in Y. We consider the 
following user-specified time constraints while looking for occurrences of a given 
sequence: minimal and maximal gap allowed between consecutive elements of an 
occurrence of the sequence (called min-gap and max-gap), maximal duration (called 
time window) of the occurrence and time tolerance that allows a group of consecutive 
elements of the occurrence to be merged and treated as a single element. 

A sequential pattern is a sequence whose statistical significance in D is above 
user-specified threshold. We consider two alternative measures of statistical 
significance for sequential patterns: support and number of occurrences. The support 
for a sequential pattern <X1 X2 ... Xn> in D is the fraction of sequences in D that 
contain the pattern. While counting the support it is not important how many times a 
pattern occurs in a given data sequence. This makes support unsuitable when 
sequential patterns are mined over a single data sequence (|D| = 1). In such case, the 
number of occurrences is more useful as a statistical measure. 

1.2 Data Mining Queries 

MineSQL [8] is a declarative language for expressing data mining problems by means 
of data mining queries. It serves as a SQL-based interface between a client application 
and a data mining system. In this section we present elements of MineSQL that are 
used later in the paper. The detailed syntax of MineSQL can be found in [8]. 

MineSQL language defines a set of new SQL data types, which are used to deal 
with sequences and sequential patterns. The SEQUENCE OF data type family is used 
to represent sequences of sets of items. Sequences are ordered collections of 
(timestamp, value) pairs, where timestamp is usually of date and time type and value 
can be of any type. In order to convert a collection of (timestamp, value) pairs into a 
SEQUENCE OF value, we use a new SQL group function called SEQUENCE. The 
PATTERN OF data types family is used to represent sequential patterns and their 
statistical significance (support or number of occurrences). 

MineSQL defines a set of the following SQL functions and operators that operate 
on sequences or patterns: s CONTAINS t returning TRUE if the sequence or pattern s 
contains the sequence t, SUPPORT(x) returning the support of the pattern x, and 
OCCURRENCES(x) returning the number of occurrences of the pattern x. 

The central statement of the MineSQL language is MINE. MINE is used to discover 
frequent itemsets, association rules and sequential patterns from the database. MINE 
also specifies a set of predicates to be satisfied by the returned rules or patterns. In 
order to discover sequential patterns we use the following syntax of MINE statement. 



 
MINE pattern_expression [, pattern_expression…] 
[WINDOW window][MAXGAP maxgap][MINGAP mingap][TOLERANCE tolerance] 
FOR column FROM subquery 
WHERE pattern_predicate [AND pattern_predicate…]; 

 

In the above syntax, pattern_expression represents the keyword PATTERN or a 
function operating on PATTERN (PATTERN represents a single sequential pattern 
being discovered). The clauses window, maxgap, mingap, and tolerance are used to 
specify time constraints. Column is the name of the query column of the type 
SEQUENCE OF, containing sequences to be mined. Subquery is the SQL subquery, 
returning the sequences to be mined. Pattern_predicate is a Boolean predicate on a 
function which operates on PATTERN, to be satisfied by returned sequential patterns. 
 

The following MINE statement uses the table CUST_TRANSACTIONS(C_ID, 
T_TIME, ITEM) to discover all sequential patterns, whose support is greater than 0.1.  
 

MINE PATTERN, SUPPORT(PATTERN) 
FOR X FROM (SELECT SEQUENCE(T_TIME, ITEM) AS X 

          FROM CUST_TRANSACTIONS GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1; 

1.3 Related Work 

The problem of mining frequent patterns in a set of data sequences together with a 
few mining algorithms was first introduced in [2]. The class of patterns considered 
there, called sequential patterns, had a form of sequences of sets of items. The 
statistical significance of a pattern (called support) was measured as a percentage of 
data sequences containing the pattern. In [11], the problem was generalized by adding 
taxonomy on items and time constraints such as min-gap, max-gap and sliding 
window (in this paper called tolerance).  

Another formulation of the problem was given in [7], where discovered patterns 
(called episodes) could have different type of ordering: full, none or partial and had to 
appear within a user-defined time window. The episodes were mined over a single 
event sequence and their statistical significance was measured as a percentage of 
windows containing the episode (frequency) or as a number of occurrences.  

In [10], an issue of incremental and interactive sequence mining was addressed. An 
algorithm was proposed for finding sequential patterns in the expanded database using 
the old frequent patterns. Another contribution was a method for handling interactive 
sequential pattern queries. The goal was achieved by adding a preprocessing step that 
consisted in discovering patterns with a low support threshold and storing them in a 
form suitable for efficient retrieval according to user-specified query conditions. 

Another approach to incremental mining of sequential patterns was presented in 
[12]. The algorithm introduced there was applicable not only for expanded but also 
for reduced database. The algorithm required some extra information to be stored 
together with the discovered patterns. 

In [9], an issue of interactive mining of association rules [1] was addressed and the 
concept of knowledge cache was introduced. The cache was designed to hold frequent 
itemsets that were discovered while processing other queries. An important 
contribution was an algorithm, which used itemsets discovered for higher support 



thresholds in the discovery process for the same task, but with a lower support 
threshold. The frequent itemsets discovered in previous tasks were stored in cache and 
were used for determining support of some candidate itemsets without checking them 
against the database. Although the method was proposed in the context of frequent 
itemsets, it can also be applied to sequential patterns. 

The idea of precomputing frequent itemsets in a partitioned database and using 
them while discovering association rules in the whole database or parts of it was 
discussed in [13]. The proposed method exploited the property that an itemset can be 
frequent in the union of partitions if and only if it is frequent in at least one of the 
partitions. Thus itemsets that were frequent in at least one of the partitions of the 
mined data set, formed the set of candidates for one verifying database pass. 

The notion of data mining queries (or KDD queries) was introduced in [5]. The 
need for Knowledge and Data Management Systems (KDDMS) as second generation 
data mining tools was expressed. The ideas of application programming interfaces 
and data mining query optimizers were also mentioned. Several data mining query 
languages that are extensions of SQL were proposed [3][4][6][8].  

2 Data Mining Views and Materialized Data Mining Views 

In relational database systems views are used to simplify access to frequently used 
data sets that are results of complex queries. A view presents the results of the SQL 
query hidden in its definition. When a user selects data from a view, its defining query 
has to be executed. In case of materialized views, results of defining queries are 
stored in the database, which significantly shortens the response time. 

Since data mining tasks are repetitive in nature and the syntax of data mining 
queries may be complicated, we propose to extend the usage of views to handle both 
SQL queries and MineSQL queries. Any SQL query concerning a data mining view 
involves performing the data mining task according to the data mining query that 
defines the view. This guarantees access to up-to-date patterns but leads to long 
response times, since data mining algorithms are time consuming.  

To address the above issue, we propose materialized data mining views (MDMVs). 
A materialized data mining view is a database object containing patterns discovered 
as a result of a data mining query. It contains patterns that were valid at a certain point 
of time. MDMVs can be used for further selective analysis of discovered patterns 
with no need to re-run mining algorithms. They can be automatically refreshed 
according to a user-defined time interval in order to keep the set of patterns up-to-
date. In most cases when a MDMV is being refreshed, it can be refreshed efficiently 
with one of the algorithms for incremental mining. 

The following statement creates a MDMV containing all sequential patterns with 
support greater than 0.1, discovered in the set of sequences from 
CUST_TRANSACTIONS table. The view is to be refreshed once a week. 

 
CREATE MATERIALIZED VIEW SEQ_PATTERNS 
REFRESH 7 AS MINE PATTERN, SUPPORT(PATTERN) 
             FOR X FROM (SELECT SEQUENCE(T_TIME, ITEM) AS X  
                         FROM CUST_TRANSACTIONS GROUP BY C_ID) 
             WHERE SUPPORT(PATTERN)>0.1; 



In the defining statement of a data mining view, there are two classes of constraints: 
database constraints and mining constraints. Database constraints are located within 
the SELECT statement in the FROM clause of the MINE statement. Database 
constraints are used to apply selection conditions on the source data set that is being 
mined. Mining constraints are located in the WHERE clause of the MINE statement 
and are used to specify selection conditions on the set of patterns to be discovered. 

3 Discovery of Sequential Patterns in Presence of Materialized 
Data Mining Views 

MDMVs can be also used to reduce execution time of data mining queries, which are 
not identical to those, on which the views were built. Consider the following example: 
we are given a materialized data mining view (MDMV1) and a data mining query 
issued by a user (DMQ1). 

 

DMQ1: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1 
AND PATTERN CONTAINS 
    TO_PATTERN('<(10 20) (30)>'); 

MDMV1: 
CREATE MATERIALIZED VIEW MDMV1 
AS MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1; 

 

Notice that in order to execute the query, we can simply filter the actual contents of 
the materialized data mining view MDMV1, without running a data mining algorithm. 
Thus, MDMVs can play a similar role to data mining queries, as indexes or 
materialized views do to database queries. Application developers can create MDMVs 
to transparently decrease execution times of their applications' data mining queries.  

We need formal methods for determining data mining query execution plans, 
which use MDMVs to reduce time complexity. First, we define four relations, which 
may occur between two data mining queries, DMQ1 and DMQ2. We say that: 
 

1. DMQ1 extends database constraints of DMQ2, if DMQ1 does one of the following: 
appends a WHERE or HAVING clause of database constraints to DMQ2; appends an 
additional ANDed condition to a WHERE or HAVING clause of database constraints 
of DMQ2; removes an ORed condition from a WHERE or HAVING clause of database 
constraints of DMQ2; tightens one or more conditions from a WHERE or HAVING 
clause of database constraints of DMQ2. 
 

2. DMQ1 reduces database constraints of DMQ2, if DMQ1 does one of the following: 
removes a WHERE or HAVING clause of database constraints from DMQ2; appends 
an additional ORed condition to a WHERE or HAVING clause of database 
constraints of DMQ2; removes an ANDed condition from a WHERE or HAVING 
clause of database constraints of DMQ2; relaxes one or more conditions from a 
WHERE or HAVING clause of database constraints of DMQ2. 
 



Example. The following data mining query DMQ1 extends database constraints of the 
data mining query DMQ2 (DMQ2 reduces database constraints of DMQ1). 

 

DMQ1: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 WHERE T_TIME > ’10-Jan-2000’ 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1; 

DMQ2: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM) 
 AS X FROM CUST_TRANSACTIONS 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1; 

 

Intuitively, extension of database constraints means narrowing the mined data set 
whereas reduction of database constraints means extending the mined data set. 
 

3. DMQ1 extends mining constraints of DMQ2, if DMQ1 does one of the following: 
decreases MAXGAP, WINDOW or TOLERANCE, or increases MINGAP; appends a 
WHERE or HAVING clause of mining predicates to DMQ2; appends an additional 
ANDed condition to a WHERE or HAVING clause of mining constraints of DMQ2; 
removes an ORed condition from a WHERE or HAVING clause of mining constraints 
of DMQ2; replaces SUPPORT(PATTERN)>x with SUPPORT(PATTERN)>y in 
DMQ2, where x<y; replaces OCCURRENCES(PATTERN)>x with 
OCCURRENCES(PATTERN)>y in DMQ2, where x<y; replaces PATTERN 
CONTAINS X with PATTERN CONTAINS Y in DMQ2, where X⊂Y; replaces 
PATTERN NOT CONTAINS X with PATTERN NOT CONTAINS Y in DMQ2, where 
Y⊂X. 
 

4. DMQ1 reduces mining constraints of DMQ2, if DMQ1 does one of the following: 
increases MAXGAP, WINDOW or TOLERANCE, or decreases MINGAP; removes a 
WHERE or HAVING clause of mining constraints from DMQ2; appends an additional 
ORed condition to a WHERE or HAVING clause of mining constraints of DMQ2; 
removes an ANDed condition from a WHERE or HAVING clause of mining 
constraints of DMQ2; replaces SUPPORT(PATTERN)>x with 
SUPPORT(PATTERN)>y in DMQ2, where x>y; replaces 
OCCURRENCES(PATTERN)>x with OCCURRENCES(PATTERN)>y in DMQ2, 
where x>y; replaces PATTERN CONTAINS X with PATTERN CONTAINS Y in 
DMQ2, where Y⊂X; replaces PATTERN NOT CONTAINS X with PATTERN NOT 
CONTAINS Y in DMQ2, where X⊂Y. 
 

Example. The following data mining query DMQ1 extends mining constraints of the 
data mining query DMQ2 (DMQ2 reduces mining constraints of DMQ1). 
 

DMQ1: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 WHERE T_TIME > ’10-Jan-2000’ 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.2; 

DMQ2: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 WHERE T_TIME > ’10-Jan-2000’ 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.1; 

 



Intuitively, extension of mining constraints means narrowing the resulting set of 
discovered  patterns whereas reduction of mining constraints means expanding the 
resulting set of discovered patterns. 
 

We also define four classes of mining methods, which will be used to execute data 
mining queries over MDMVs: full mining, incremental mining, complementary 
mining, and verifying mining. Full mining (FM) refers to executing a complete 
algorithm for discovering frequent patterns (e.g. [11]). This method is used if 
MDMV’s contents cannot support processing of the data mining query. Incremental 
mining (IM) refers to discovering frequent patterns in an incremented data set (e.g. 
[10]). It can be used for data mining queries which reduce database constraints. 
Complementary mining (CM) refers to discovering frequent patterns using currently 
materialized patterns which are guaranteed to remain frequent (e.g. [9]). This method 
can be used for data mining queries which reduce mining constraints. Finally, we 
have verifying mining (VM), that simply consists in pruning those materialized 
patterns, which do not satisfy mining constraints. It is used for data mining queries, 
which extend mining constraints. 

If two relations occur between a data mining query and a data mining query on 
which a MDMV is based, then we use the compatibility table (see Table 1) to decide 
which mining method to use. 

Table 1. Compatibility table for using materialized data mining views 

 reduction of database 
constraints 

extension of database 
constraints 

- 

reduction of mining constraints CM, IM FM CM 
extension of mining constraints VM, IM FM VM 

- IM FM - 
 
Example. We are given the following data mining query DMQ1 and the materialized 
data mining view MDMV1. 

 

DMQ1: 
MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.3; 

MDMV1: 
CREATE MATERIALIZED VIEW MDMV1 
AS MINE PATTERN 
FOR X FROM  
(SELECT SEQUENCE(T_TIME, ITEM)  
 AS X FROM CUST_TRANSACTIONS 
 WHERE T_TIME > ’10-Jan-2000’ 
 GROUP BY C_ID) 
WHERE SUPPORT(PATTERN)>0.2; 

 

Since DMQ1 extends mining constraints (higher minimum support) and reduces 
database constraints (removed WHERE clause) of the data mining query of MDMV1, 
we perform verifying mining (VM), and then incremental mining (IM). The verifying 
mining prunes all materialized patterns, whose support value is not above 0.3, while 
the incremental mining discovers frequent patterns using the information on frequent 
patterns discovered in a subset of the mined data set. It was proven in the literature 
that the execution time of the above mining algorithms would be shorter than when 
performing full mining. 



4 Conclusions and Future Work 

In this paper we have presented the concept of materialized data mining views and 
their application to fast discovery of sequential patterns. We have proposed several 
rules for optimization of data mining queries in environments, where MDMVs, 
containing results of other data mining queries are available. These rules can serve as 
a basis for rule-based data mining query optimizers. An important advantage of the 
solutions we propose is that the algorithms required to implement our optimization 
framework have already been introduced and verified. 

In the future we plan to address the problem of cost-based data mining query 
optimization, especially concentrating on situations when there are several MDMVs 
that can be used to optimize the processing of a given data mining query. Another 
topic that we plan to discuss is concurrent refreshing of several MDMVs. We believe 
that in such case, sometimes it might be desirable to combine mining tasks associated 
with several MDMVs to optimize the global performance of the refresh operation. 
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