
Web Users Clustering

Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{morzy,marek,mzakrz}@cs.put.poznan.pl

Abstract. Web log mining is a new subfield of data mining research. It aims at
discovery of trends and regularities in web users' access patterns. This paper
presents a new algorithm for automated segmentation of web users based on
their access patterns. The results may lead to an improved organization of the
web documents for navigational convenience.

1 Introduction

The problem of web log mining consists in automated analyzing of web access logs in
order to discover trends and regularities (patterns) in users' behavior. The discovered
patterns are usually used for improvement of web site organization and presentation.
The term of adaptive web sites has been proposed to denote such automatically
transformed web sites [10].

One of the most interesting web log mining methods is web users clustering [11].
The problem of web users clustering (or segmentation) is to use web access log files
to partition a set of users into clusters such that the users within a cluster are more
similar to each other than users from different clusters. The discovered clusters can
then help in on-the-fly transformation of the web site content. In particular, web pages
can be automatically linked by artificial hyperlinks. The idea is to try to match an
active user's access pattern with one or more of the clusters discovered from the web
log files. Pages in the matched clusters that have not been explored by the user may
serve as navigational hints for the user to follow.

Consider a web access log file, where each URL request is stored together with a
timestamp and a user IP address. An example of such dataset is given in Figure 1a
with its transformed form given in Figure 1b, where an ordered list of URL requests is
stored for each web user. Assume that the problem is to cluster the users' access
sequences into two clusters, containing the users having similar access histories. The
basic question here is: how to measure the similarity of two user's access sequences?
It seems that e.g. the users 150.254.32.101 and 150.254.32.105 are similar since they
both contain the same subsequence 'url7 → url8' . But what can we say about the
similarity of the user's sequences e.g. 150.254.32.102 and 150.254.32.103? We argue
that these two user's sequences also can be considered similar, since there is a user's
sequence (150.254.32.104) which contains both the subsequence that is common to
102 (‘url2 → url9’) and the subsequence that is common to 150.254.32.103 (‘url6 →

url11 → url14’). In general, we assume that two sequences are similar if either they
contain the identical subsequences, or there exists a connecting path (Figure 1c)
through a set of other sequences. In our example, the best solution would be to put the
users 150.254.32.101 and 150.254.32.105 into one cluster and the users
150.254.32.102, 150.254.32.103, 150.254.32.104 into the other. Notice that the
similarity between two user access sequences always depends on the presence of
other sequences contributing to connecting paths. Because of that, we do not
formalize the similarity measure between two sequences. Instead, we directly
introduce a criterion function that represents the quality of clustering. A cluster in our
approach is a set of user access sequences such that within the set several
subsequences occur much more frequently than outside the set. Quality of clustering
depends on how frequently subsequences which are typical for a given cluster occur
in other clusters. We do not consider all possible subsequences that can be extracted
from web access log files, because their number is likely to be very large. We
concentrate on subsequences that frequently occur in the files, called sequential
patterns [2]. There exist a number of fast algorithms for discovering sequential
patterns and we can use any of them as the preprocessing step.

We propose a heuristic algorithm for discovering an arbitrary number of possibly
overlapping clusters that hold the web users, whose behavior is similar to each other.
We refer to our clustering method as to partial clustering, because we allow the users
who are not similar to any other not to be covered by any cluster, and we allow a web
user to belong to more than one cluster.

time user_IP item
03:18 150.254.32.101 url1
03:18 150.254.32.104 url2
03:19 150.254.32.102 url3
03:21 150.254.32.101 url4
03:21 150.254.32.102 url2
03:27 150.254.32.101 url5
04:01 150.254.32.103 url6
04:03 150.254.32.104 url6
04:06 150.254.32.105 url7
04:06 150.254.32.101 url7
04:11 150.254.32.101 url8
04:15 150.254.32.105 url8
04:16 150.254.32.102 url9
04:17 150.254.32.102 url10
04:17 150.254.32.103 url11
04:17 150.254.32.104 url9
04:20 150.254.32.105 url12
04:22 150.254.32.103 url13
04:24 150.254.32.104 url11
04:25 150.254.32.103 url14
04:26 150.254.32.104 url14
04:28 150.254.32.105 url15
04:29 150.254.32.105 url5
04:30 150.254.32.105 url16

Fig. 1a. Example dataset

user_IP sequence
150.254.32.101 url1 → url4 → url5 → url7 → url8
150.254.32.102 url3 → url2 → url9 → url10
150.254.32.103 url6 → url11 → url13 → url14
150.254.32.104 url2 → url6 → url9 → url11 → url14
150.254.32.105 url7 → url8 → url12 → url15 → url5 → url16

 Fig. 1b. Transformed form of the example dataset

 url3 → url2 → url9 → url10

url6 → url11 → url13 → url14

url2 → url6 → url9 → url11 → url14

Fig. 1c. The idea of connecting path.

Our clustering algorithm is agglomerative in nature. It starts with a number of small
clusters and merges them together to reach the given number of resulting clusters. In
the initial set of clusters, each cluster corresponds to one frequent pattern and contains
all sequences supporting it. Clusters are iteratively merged according to the set
similarity measure called Jaccard coefficient [8] applied to their contents.

2 Related Work

Many clustering algorithms have been proposed in the area of machine learning [6]
[8] and statistics [9]. Those traditional algorithms group the data based on some
measure of similarity or distance between data points. They are suitable for clustering
data sets that can be easily transformed into sets of points in n-dimensional space,
which makes them inappropriate for categorical data.

Recently, several clustering algorithms for categorical data have been proposed. In
[7] a method for hypergraph-based clustering of transaction data in a high
dimensional space has been presented. The method used frequent itemsets to cluster
items. Discovered clusters of items were then used to cluster customer transactions.
[5] described a novel approach for clustering collections of sets, and its application to
the analysis and mining of categorical data. The proposed algorithm facilitated a type
of similarity measure arising from the co-occurrence of values in the data set. In [4]
an algorithm named CACTUS was presented together with the definition of a cluster
for categorical data. In contrast with the previous approaches to clustering categorical
data, CACTUS gives formal descriptions of discovered clusters. Unfortunately, none
of the algorithms employs sequential dependencies to generate clusters.

The most similar approach to ours is probably the approach to document clustering
proposed in [3]. The most significant difference between their similarity measure and
ours is that we look for the occurrence of variable-length subsequences and
concentrate only on frequent ones.

Most of the research on sequences of events concentrated on the discovery of
frequently occurring patterns. The problem was introduced in [2]. The class of
patterns considered there, called sequential patterns, had a form of sequences of sets
of items. The statistical significance of a pattern (called support) was measured as a
percentage of data sequences containing the pattern.

3 Problem Formulation

Definition 3.1. Let L = {l1, l2, ..., lm} be a set of literals called items. Each item
represents a single document. A sequence S = <X1 X2 ... Xn> is an ordered list of items
such that each item Xi ∈ L. Let the database D be a set of sequences.

Definition 3.2. We say that the sequence S1 = <Y1 Y2 ... Ym> supports the sequence
S2 = <X1 X2 ... Xn> if there exist integers i1 < i2 < ... < in such that X1 = Yi1, X2 = Yi2, ...,
Xn = Yin. We also say that the sequence S2 is a subsequence of the sequence S1
(denoted by S2 ⊂ S1).

Definition 3.3. A frequent pattern is a sequence that is supported by more than a user-
defined minimum number of sequences in D. Let P be a set of all frequent patterns in
D.

Definition 3.4. A cluster c is an ordered pair <Q,S>, where Q ⊆ P and S ⊆ D, and S is
a set of all database sequences supporting at least one pattern from Q. We call Q a
cluster description, and S a cluster content. We use a dot notation to refer to a cluster
description as to c.Q and to a cluster content as to c.S.

In order to measure, how much a sequence matches a cluster, we introduce the error
function. The function returns 0 when a sequence matches the cluster perfectly.

Definition 3.5. Given the set of clusters C, the error function err(c,s) for a cluster c
and a sequence s is defined as follows:

} supports :.{}support not does :.{),(xscxCxQxppsQcpscerr ∧≠∧∈∈+∈=

In other words, the error of placing a sequence s in a cluster c is equal to the number
of patterns, which define c but are not supported by s, plus the number of patterns,
which define the other clusters but are supported by s. The perfect match of a
sequence s and a cluster c occurs when s supports all patterns from c and none of the
patterns from any other cluster.

Problem statement. Given a database D = {s1, s2, ..., sk} of data sequences, and a set
P = {p1, p2, ..., pm} of frequent patterns in D, the problem is to divide P into a set of n
clusters c1, c2, …, cn, such that:

∅=∩∀
≠

QcQc jijiji
..

,,
,

minimizing the following error criterion:

()∑ ∑
= ∈

=
n

i Scs
i

i

scerrE
1 .

2),(.

4 Pattern-Oriented Partial Clustering

In this section, we describe a new clustering algorithm POPC for clustering large
volumes of web access sequential data. The algorithm implements the general idea of
agglomerative hierarchical clustering. However, instead of starting with a set of
clusters containing one sequence each, our algorithm uses previously discovered
frequent patterns and starts with clusters containing web access sequences supporting
the same pattern. We assume that frequent patterns have already been discovered.

Before we present the clustering algorithm itself, we provide a formal definition of
a union of two clusters, which is the result of merging two clusters together. We also
give a formula that serves as inter-cluster similarity used to determine the order in
which clusters are merged.

Definition 4.1 A union cab of the two clusters ca and cb is defined as follows:
cab = union(ca, cb) = < ca.Q ∪ cb.Q , ca.S ∪ cb.S >

Definition 4.2 Inter-cluster similarity between two clusters ca and cb is a Jaccard
coefficient applied to cluster contents:

ScSc
ScSc

ccf
ba

ba
ba ..

..
),(

∪

∩
= .

The above similarity function reflects co-occurrence of patterns describing two
clusters (the size of the intersection of the cluster contents represents the number of
sequences containing at least one pattern from each of the two cluster descriptions). It
returns values from the range of <0;1>, where the value of 1 means that the clusters
are identical while the value of 0 means that the clusters exhibit no similarity at all.
The inter-cluster similarity measure was chosen so that it reduces the number of
sequences supporting patterns associated with other clusters.

4.1 Algorithm POPC

The algorithm for partial clustering based on frequently occurring patterns is
decomposed into two following phases: Transformation Phase and Merge Phase.

Transformation Phase. In this phase, the database is transformed into a pattern-
oriented form, which is more suitable for evaluating unions and intersections of
cluster contents (used in the subsequent phases). For each frequent pattern we keep an
ordered list of web access sequences supporting the pattern. Each web access
sequence is represented by its identifier, e.g. an IP address of a web client. Sequences
that do not support any frequent pattern are ignored.

Each pattern, together with the list of sequences supporting it, constitutes a cluster
whose description is a set that contains the pattern as its only element. The cluster's
content is made up of a set of web access sequences from the list.

The proposed database representation simplifies evaluation of inter-cluster
similarities. There is no need to refer to the original database in subsequent phases of
the algorithm. Moreover, the size of the transformed database reduces as clusters are
being merged together. When the process is finished, the database contains the result
of clustering (descriptions and contents of the discovered clusters).

Merge Phase. Figure 2 presents the Merge Phase of the clustering algorithm. First,
the m patterns are mapped into m clusters, forming an initial set of clusters C1, where
each cluster is described by exactly one pattern. In the next step, the similarity
function values are evaluated for all possible pairs of clusters. The similarity values
are stored in a form of a matrix M1. Next, the algorithm iteratively merges together
pairs of clusters according to their similarity values and cluster contents' sizes. In each
iteration k, the two most similar clusters ca,cb ∈ Ck are determined, and replaced by a
new cluster cab = union(ca ,cb). If there are several pairs of clusters having maximal
similarity values, then the two clusters having the smallest contents are merged. The
actual merging is done by the function called cluster, described in detail later in the
paper. When the new cluster is created, the matrix containing similarity values has to
be re-evaluated. This operation is performed by means of the function called simeval,
described later in the paper.

C1 = {ci: ci.Q={pi}, ci.S={sj: sj∈D ∧ sj supports pi}};
M1 = simeval(C1, ∅); k=1;
while |Ck| > n and exist ca,cb ∈ Ck such that f(ca,cb) > 0 do begin

Ck+1 = cluster(Ck, Mk); Mk+1 = simeval(Ck+1, Mk); k++;
end;
Answer =Ck;

Fig. 2. Merge Phase

The Merge Phase stops when the number of clusters reaches n (the required number
of clusters) or when there is no such pair of clusters ca,cb ∈ Ck whose similarity is
greater than 0. The latter condition implies that the algorithm may discover a larger
number of clusters than requested by a user. In this case, the number of discovered
clusters (as well as the fraction of the original database covered by them) depends on
the number and strength of frequent patterns used for clustering. If the quality of
clustering is unsatisfactory, the clustering should be repeated with a higher number of
frequent patterns (patterns satisfying a lower frequency threshold).

Similarity Matrix Evaluation: simeval. Similarity matrix Ml stores the values of the
inter-cluster similarity function for all possible pairs of clusters in an l-th algorithm
iteration. The cell Ml(x,y) represents the similarity value for the clusters cx and cy
from the cluster set Cl (see example in Figure 3). The function simeval computes the
values of the similarity matrix Ml+1, using both the similarity matrix Ml and the
current cluster contents. Notice that in all iterations except the first one, the similarity
matrix need not be completely re-computed. Only the similarity values concerning the
newly created cluster have to be evaluated. Due to diagonal symmetry of the
similarity matrix, for k clusters, only (k2-k)/2 similarity function values need to be
computed before the first iteration, and only (k-1) in the subsequent ones.

In each iteration, the size of the matrix decreases since two rows and two columns
corresponding to the clusters merged to form a new one are removed and only one
column and one row are added for a newly created cluster.

- f(c2, c1) f(c3, c1) f(c1,c2) = f(c2, c1)
f(c1,c2) - f(c3, c2) f(c1,c3) = f(c3, c1)
f(c1,c3) f(c2, c3) - f(c2, c3) = f(c3, c2)

Fig. 3. Structure of the similarity matrix for three clusters

Cluster Merging: cluster. In each iteration, the number of processed clusters
decreases by one. The similarity-based merging is done by the function called cluster.
The function cluster scans the similarity matrix and finds pairs of clusters, such that
their similarity is maximal. If there are many pairs of clusters that reach the maximal
similarity values, then the function cluster selects the one with the smallest size of the
union of their contents. Notice that no access to the original database is required to
perform this phase of the algorithm. The function cluster takes a set of clusters Ck as
one of its parameters and returns a set of clusters Ck+1 such that Ck+1 = (Ck \ {ca, cb})
∪ {cab}, where ca,cb ∈ Ck are clusters chosen for merging and cab = union(ca,cb).

4.2 Sequence Classification

Having discovered the clusters, we can use the clustering model, represented by
cluster descriptions, to classify new web users. For each new web user access path,
we look for frequent patterns supported by it. If the access path supports a pattern
from a cluster’s description, it is assigned to that cluster. If the access path supports
patterns from descriptions of more than one cluster it is mapped to all of them. Taking
into account the number of patterns in each cluster’s description that are supported by
a given web user, we could compute membership probability of his access path in
each cluster (based on the error function err).

5 Experimental results

To assess the performance and results of the clustering algorithm, we performed
several experiments on a Pentium II client platform, running MS Windows98,
cooperating with Oracle 8.0.5 relational database management system on 2-processor
Sun SPARCserver 630MP, with 128 MB of main memory, running Solaris.
Experimental data sets were created by synthetic data generator GEN from Quest
project [1]. GEN generates textual data files containing sets of numerical items.

Fig. 4. Execution time for different
database sizes

Fig. 5. Execution time for different number
of resulting clusters

Figure 4 shows the performance of the clustering algorithm for different database
sizes. The execution time grows almost linearly for the increasing number of source
sequences. This behavior is caused by the fact that the number of sequences
supporting given frequent patterns (for the same support threshold) grows linearly as
the size of the database increases.

Figure 5 illustrates the influence of the number of requested clusters on the
execution time of our algorithm. We observe that the execution time depends almost
linearly on the number of iterations of the algorithm (each iteration merges one pair of
clusters). We could expect the execution time of each iteration to decrease, because
the number of clusters reduces. However, we should notice that the size of clusters in
fact increases, and it compensates the above feature.

0

1000

2000

3000

4000

5000

6000

1000 2000 3000 4000 5000
num of sequences

ex
ec

ut
io

n
tim

e
[s

] num_clusters = 5

num_clusters = 10

num_clusters = 15

0

500

1000

1500

2000

2500

5 10 15
num_clusters

ex
ec

ut
io

n
tim

e
[s

]

min_support = 0.10

min_support = 0.15

We have also evaluated the quality of results produced by our heuristic algorithm.
Using our implementation of a combinatory algorithm to find the ideal clustering, we
compared the ideal solution with the heuristic one and we computed the quantity of
incorrectly clustered sequences. Due to NP-complexity of the combinatory algorithm
we were able to perform the test for a small number of initial clusters only (10-15).
However, the test showed that our heuristic algorithm correctly clusters c.a. 91% of
database sequences, what seems to be a very good result.

6 Conclusions and Future Work

We considered the problem of clustering web access sequences. Due to the limitations
of the existing clustering methods, we introduced a new algorithm, which uses
frequent patterns to generate both clustering model and cluster contents. The
algorithm iteratively merges smaller, similar clusters until the requested number of
clusters is reached. In the absence of a well-defined metric space, we propose the
inter-cluster similarity measure based on co-occurrence to be used in cluster merging.

An important feature of the algorithm is that it does not only divide the web users
into clusters but also delivers a classification model that can be used to classify future
web users. Since the model is formed by a set of frequent patterns to be contained, the
classification of a new web user access path simply consists in checking if it contains
patterns from any of the clusters’ descriptions. If the new user access path contains
patterns from different clusters, then it belongs to many clusters with different
membership probabilities.

References

1. Agrawal, R.; Mehta, M.; Shafer, J.; Srikant, R.; Arning, A.; Bollinger, T.: The Quest Data
Mining System. In Proc. of the 2nd KDD Conference (1996)

2. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf. (1995)
3. Broder A., Glassman S., Manasse M., Zweig G.: Syntactic clustering of the Web.

Proceedings of the 6th International WWW (1997)
4. Ganti V., Gehrke J., Ramakrishnan R.: CACTUS-Clustering Categorical Data Using

Summaries. Proc. of the 5th KDD Conference (1999)
5. Gibson D., Kleinberg J.M., Raghavan P.: Clustering Categorical Data: An Approach Based

on Dynamical Systems. Proc. of the 24th VLDB Conference (1998)
6. Hartigan J.: Clustering Algorithms. John Wiley and Sons (1975)
7. Han E., Karypis G., Kumar V., Mobasher B.: Clustering based on association rules

hypergraphs. Proc. Workshop on Research Issues on Data Mining and Knowledge
Discovery (1997)

8. Jain A.K., Dubes R.C.: Algorithms for Clustering Data. Prentice Hall (1988)
9. Kaufman L., Rousseeuw P.: Finding Groups in Data. John Wiley and Sons (1989)
10. Perkowitz, M., Etzioni, O.: Adaptive web sites: an AI challenge, Proc. of the 15th Int'l Joint

Conf. on Artificial Intelligence (1997)
11. Yan, T.W., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From User Access Patterns to

Dynamic Hypertext Linking, proc. of Fifth International WWW Conference (1996)

