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Abstract. Web log mining is a new subfield of data mining research. It aims at 
discovery of trends and regularities in web users' access patterns. This paper 
presents a new algorithm for automated segmentation of web users based on 
their access patterns. The results may lead to an improved organization of the 
web documents for navigational convenience. 

1 Introduction 

The problem of web log mining consists in automated analyzing of web access logs in 
order to discover trends and regularities (patterns) in users' behavior. The discovered 
patterns are usually used for improvement of web site organization and presentation. 
The term of adaptive web sites has been proposed to denote such automatically 
transformed web sites [10].  

One of the most interesting web log mining methods is web users clustering [11]. 
The problem of web users clustering (or segmentation) is to use web access log files 
to partition a set of users into clusters such that the users within a cluster are more 
similar to each other than users from different clusters. The discovered clusters can 
then help in on-the-fly transformation of the web site content. In particular, web pages 
can be automatically linked by artificial hyperlinks. The idea is to try to match an 
active user's access pattern with one or more of the clusters discovered from the web 
log files. Pages in the matched clusters that have not been explored by the user may 
serve as navigational hints for the user to follow. 

Consider a web access log file, where each URL request is stored together with a 
timestamp and a user IP address. An example of such dataset is given in Figure 1a 
with its transformed form given in Figure 1b, where an ordered list of URL requests is 
stored for each web user. Assume that the problem is to cluster the users' access 
sequences into two clusters, containing the users having similar access histories. The 
basic question here is: how to measure the similarity of two user's access sequences? 
It seems that e.g. the users 150.254.32.101 and 150.254.32.105 are similar since they 
both contain the same subsequence 'url7 → url8' . But what can we say about the 
similarity of the user's sequences e.g. 150.254.32.102 and 150.254.32.103? We argue 
that these two user's sequences also can be considered similar, since there is a user's 
sequence (150.254.32.104) which contains both the subsequence that is common to 
102 (‘url2 → url9’) and the subsequence that is common to 150.254.32.103 (‘url6 → 



url11 → url14’). In general, we assume that two sequences are similar if either they 
contain the identical subsequences, or there exists a connecting path (Figure 1c) 
through a set of other sequences. In our example, the best solution would be to put the 
users 150.254.32.101 and 150.254.32.105 into one cluster and the users 
150.254.32.102, 150.254.32.103, 150.254.32.104 into the other. Notice that the 
similarity between two user access sequences always depends on the presence of 
other sequences contributing to connecting paths. Because of that, we do not 
formalize the similarity measure between two sequences. Instead, we directly 
introduce a criterion function that represents the quality of clustering. A cluster in our 
approach is a set of user access sequences such that within the set several 
subsequences occur much more frequently than outside the set. Quality of clustering 
depends on how frequently subsequences which are typical for a given cluster occur 
in other clusters. We do not consider all possible subsequences that can be extracted 
from web access log files, because their number is likely to be very large. We 
concentrate on subsequences that frequently occur in the files, called sequential 
patterns [2]. There exist a number of fast algorithms for discovering sequential 
patterns and we can use any of them as the preprocessing step. 

We propose a heuristic algorithm for discovering an arbitrary number of possibly 
overlapping clusters that hold the web users, whose behavior is similar to each other. 
We refer to our clustering method as to partial clustering, because we allow the users 
who are not similar to any other not to be covered by any cluster, and we allow a web 
user to belong to more than one cluster.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

time user_IP item 
03:18 150.254.32.101 url1 
03:18 150.254.32.104 url2 
03:19 150.254.32.102 url3 
03:21 150.254.32.101 url4 
03:21 150.254.32.102 url2 
03:27 150.254.32.101 url5 
04:01 150.254.32.103 url6 
04:03 150.254.32.104 url6 
04:06 150.254.32.105 url7 
04:06 150.254.32.101 url7 
04:11 150.254.32.101 url8 
04:15 150.254.32.105 url8 
04:16 150.254.32.102 url9 
04:17 150.254.32.102 url10 
04:17 150.254.32.103 url11 
04:17 150.254.32.104 url9 
04:20 150.254.32.105 url12 
04:22 150.254.32.103 url13 
04:24 150.254.32.104 url11 
04:25 150.254.32.103 url14 
04:26 150.254.32.104 url14 
04:28 150.254.32.105 url15 
04:29 150.254.32.105 url5 
04:30 150.254.32.105 url16 

Fig. 1a. Example dataset 

user_IP sequence 
150.254.32.101 url1 → url4 → url5 → url7 → url8  
150.254.32.102 url3 → url2 → url9 → url10 
150.254.32.103 url6 → url11 → url13 → url14 
150.254.32.104 url2 → url6 → url9 → url11 → url14 
150.254.32.105 url7 → url8 → url12 → url15 → url5 → url16 

    Fig. 1b. Transformed form of the example dataset 

 
 url3 → url2 → url9 → url10 

url6 → url11 → url13 → url14 

url2 → url6 → url9 → url11 → url14 

 
Fig. 1c. The idea of connecting path. 

 



Our clustering algorithm is agglomerative in nature. It starts with a number of small 
clusters and merges them together to reach the given number of resulting clusters. In 
the initial set of clusters, each cluster corresponds to one frequent pattern and contains 
all sequences supporting it. Clusters are iteratively merged according to the set 
similarity measure called Jaccard coefficient [8] applied to their contents.  

2 Related Work 

Many clustering algorithms have been proposed in the area of machine learning [6] 
[8] and statistics [9]. Those traditional algorithms group the data based on some 
measure of similarity or distance between data points. They are suitable for clustering 
data sets that can be easily transformed into sets of points in n-dimensional space, 
which makes them inappropriate for categorical data.  

Recently, several clustering algorithms for categorical data have been proposed. In 
[7] a method for hypergraph-based clustering of transaction data in a high 
dimensional space has been presented. The method used frequent itemsets to cluster 
items. Discovered clusters of items were then used to cluster customer transactions. 
[5] described a novel approach for clustering collections of sets, and its application to 
the analysis and mining of categorical data. The proposed algorithm facilitated a type 
of similarity measure arising from the co-occurrence of values in the data set. In [4] 
an algorithm named CACTUS was presented together with the definition of a cluster 
for categorical data. In contrast with the previous approaches to clustering categorical 
data, CACTUS gives formal descriptions of discovered clusters. Unfortunately, none 
of the algorithms employs sequential dependencies to generate clusters.   

The most similar approach to ours is probably the approach to document clustering 
proposed in [3]. The most significant difference between their similarity measure and 
ours is that we look for the occurrence of variable-length subsequences and 
concentrate only on frequent ones. 

Most of the research on sequences of events concentrated on the discovery of 
frequently occurring patterns. The problem was introduced in [2]. The class of 
patterns considered there, called sequential patterns, had a form of sequences of sets 
of items. The statistical significance of a pattern (called support) was measured as a 
percentage of data sequences containing the pattern.  

3 Problem Formulation 

Definition 3.1. Let L = {l1, l2, ..., lm} be a set of literals called items. Each item 
represents a single document. A sequence S = <X1 X2 ... Xn> is an ordered list of items 
such that each item Xi ∈ L. Let the database D be a set of sequences. 
 

Definition 3.2. We say that the sequence S1 = <Y1 Y2 ... Ym> supports the sequence 
S2 = <X1 X2 ... Xn> if there exist integers i1 < i2 < ... < in such that X1 = Yi1, X2 = Yi2, ..., 
Xn = Yin. We also say that the sequence S2 is a subsequence of the sequence S1 
(denoted by S2 ⊂ S1). 
 



Definition 3.3. A frequent pattern is a sequence that is supported by more than a user-
defined minimum number of sequences in D. Let P be a set of all frequent patterns in 
D. 
 

Definition 3.4. A cluster c is an ordered pair <Q,S>, where Q ⊆ P and S ⊆ D, and S is 
a set of all database sequences supporting at least one pattern from Q. We call Q a 
cluster description, and S a cluster content. We use a dot notation to refer to a cluster 
description as to c.Q and to a cluster content as to c.S. 
 

In order to measure, how much a sequence matches a cluster, we introduce the error 
function. The function returns 0 when a sequence matches the cluster perfectly. 
 

Definition 3.5. Given the set of clusters C, the error function err(c,s) for a cluster c 
and a sequence s is defined as follows: 
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In other words, the error of placing a sequence s in a cluster c is equal to the number 
of patterns, which define c but are not supported by s, plus the number of patterns, 
which define the other clusters but are supported by s. The perfect match of a 
sequence s and a cluster c occurs when s supports all patterns from c and none of the 
patterns from any other cluster.  
 

Problem statement. Given a database D = {s1, s2, ..., sk} of data sequences, and a set  
P = {p1, p2, ..., pm} of frequent patterns in D, the problem is to divide P into a set of n 
clusters c1, c2, …, cn, such that: 
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4 Pattern-Oriented Partial Clustering 

In this section, we describe a new clustering algorithm POPC for clustering large 
volumes of web access sequential data. The algorithm implements the general idea of 
agglomerative hierarchical clustering. However, instead of starting with a set of 
clusters containing one sequence each, our algorithm uses previously discovered 
frequent patterns and starts with clusters containing web access sequences supporting 
the same pattern. We assume that frequent patterns have already been discovered. 

Before we present the clustering algorithm itself, we provide a formal definition of 
a union of two clusters, which is the result of merging two clusters together. We also 
give a formula that serves as inter-cluster similarity used to determine the order in 
which clusters are merged. 
 

Definition 4.1 A union cab of the two clusters ca and cb is defined as follows: 
cab = union(ca, cb) = < ca.Q ∪ cb.Q , ca.S ∪ cb.S > 

 



Definition 4.2 Inter-cluster similarity between two clusters ca and cb is a Jaccard 
coefficient applied to cluster contents: 
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The above similarity function reflects co-occurrence of patterns describing two 
clusters (the size of the intersection of the cluster contents represents the number of 
sequences containing at least one pattern from each of the two cluster descriptions). It 
returns values from the range of <0;1>, where the value of 1 means that the clusters 
are identical while the value of 0 means that the clusters exhibit no similarity at all. 
The inter-cluster similarity measure was chosen so that it reduces the number of 
sequences supporting patterns associated with other clusters. 

4.1 Algorithm POPC 

The algorithm for partial clustering based on frequently occurring patterns is 
decomposed into two following phases: Transformation Phase and Merge Phase. 

Transformation Phase. In this phase, the database is transformed into a pattern-
oriented form, which is more suitable for evaluating unions and intersections of 
cluster contents (used in the subsequent phases). For each frequent pattern we keep an 
ordered list of web access sequences supporting the pattern. Each web access 
sequence is represented by its identifier, e.g. an IP address of a web client. Sequences 
that do not support any frequent pattern are ignored.  

Each pattern, together with the list of sequences supporting it, constitutes a cluster 
whose description is a set that contains the pattern as its only element. The cluster's 
content is made up of a set of web access sequences from the list.  

The proposed database representation simplifies evaluation of inter-cluster 
similarities. There is no need to refer to the original database in subsequent phases of 
the algorithm. Moreover, the size of the transformed database reduces as clusters are 
being merged together. When the process is finished, the database contains the result 
of clustering (descriptions and contents of the discovered clusters). 

Merge Phase. Figure 2 presents the Merge Phase of the clustering algorithm. First, 
the m patterns are mapped into m clusters, forming an initial set of clusters C1, where 
each cluster is described by exactly one pattern. In the next step, the similarity 
function values are evaluated for all possible pairs of clusters. The similarity values 
are stored in a form of a matrix M1. Next, the algorithm iteratively merges together 
pairs of clusters according to their similarity values and cluster contents' sizes. In each 
iteration k, the two most similar clusters ca,cb ∈ Ck are determined, and replaced by a 
new cluster cab = union(ca ,cb). If there are several pairs of clusters having maximal 
similarity values, then the two clusters having the smallest contents are merged. The 
actual merging is done by the function called cluster, described in detail later in the 
paper. When the new cluster is created, the matrix containing similarity values has to 
be re-evaluated. This operation is performed by means of the function called simeval, 
described later in the paper.  



C1 = {ci: ci.Q={pi}, ci.S={sj: sj∈D ∧ sj supports pi}}; 
M1 = simeval(C1, ∅);    k=1; 
while |Ck| > n and exist ca,cb ∈ Ck such that f(ca,cb) > 0 do begin 

Ck+1 = cluster(Ck, Mk);    Mk+1 = simeval(Ck+1, Mk);    k++; 
end; 
Answer =Ck; 

Fig. 2. Merge Phase 

The Merge Phase stops when the number of clusters reaches n (the required number 
of clusters) or when there is no such pair of clusters ca,cb ∈ Ck whose similarity is 
greater than 0. The latter condition implies that the algorithm may discover a larger 
number of clusters than requested by a user. In this case, the number of discovered 
clusters (as well as the fraction of the original database covered by them) depends on 
the number and strength of frequent patterns used for clustering. If the quality of 
clustering is unsatisfactory, the clustering should be repeated with a higher number of 
frequent patterns (patterns satisfying a lower frequency threshold). 

Similarity Matrix Evaluation: simeval. Similarity matrix Ml stores the values of the 
inter-cluster similarity function for all possible pairs of clusters in an l-th algorithm 
iteration. The cell Ml(x,y) represents the similarity value for the clusters cx and cy 
from the cluster set Cl (see example in Figure 3). The function simeval computes the 
values of the similarity matrix Ml+1, using both the similarity matrix Ml and the 
current cluster contents. Notice that in all iterations except the first one, the similarity 
matrix need not be completely re-computed. Only the similarity values concerning the 
newly created cluster have to be evaluated. Due to diagonal symmetry of the 
similarity matrix, for k clusters, only (k2-k)/2 similarity function values need to be 
computed before the first iteration, and only (k-1) in the subsequent ones. 

In each iteration, the size of the matrix decreases since two rows and two columns 
corresponding to the clusters merged to form a new one are removed and only one 
column and one row are added for a newly created cluster. 

 

- f(c2, c1) f(c3, c1) f(c1,c2) = f(c2, c1) 
f(c1,c2) - f(c3, c2) f(c1,c3) = f(c3, c1) 
f(c1,c3) f(c2, c3) - f(c2, c3) = f(c3, c2) 

Fig. 3. Structure of the similarity matrix for three clusters 

Cluster Merging: cluster. In each iteration, the number of processed clusters 
decreases by one. The similarity-based merging is done by the function called cluster. 
The function cluster scans the similarity matrix and finds pairs of clusters, such that 
their similarity is maximal. If there are many pairs of clusters that reach the maximal 
similarity values, then the function cluster selects the one with the smallest size of the 
union of their contents. Notice that no access to the original database is required to 
perform this phase of the algorithm. The function cluster takes a set of clusters Ck as 
one of its parameters and returns a set of clusters Ck+1 such that Ck+1 = (Ck \ {ca, cb}) 
∪ {cab}, where ca,cb ∈ Ck are clusters chosen for merging and cab = union(ca,cb). 



4.2 Sequence Classification 

Having discovered the clusters, we can use the clustering model, represented by 
cluster descriptions, to classify new web users. For each new web user access path, 
we look for frequent patterns supported by it. If the access path supports a pattern 
from a cluster’s description, it is assigned to that cluster. If the access path supports 
patterns from descriptions of more than one cluster it is mapped to all of them. Taking 
into account the number of patterns in each cluster’s description that are supported by 
a given web user, we could compute membership probability of his access path in 
each cluster (based on the error function err).  

5 Experimental results 

To assess the performance and results of the clustering algorithm, we performed 
several experiments on a Pentium II client platform, running MS Windows98, 
cooperating with Oracle 8.0.5 relational database management system on 2-processor 
Sun SPARCserver 630MP, with 128 MB of main memory, running Solaris. 
Experimental data sets were created by synthetic data generator GEN from Quest 
project [1]. GEN generates textual data files containing sets of numerical items.  

Fig. 4. Execution time for different 
database sizes 

Fig. 5. Execution time for different number 
of resulting clusters 

 
Figure 4 shows the performance of the clustering algorithm for different database 
sizes. The execution time grows almost linearly for the increasing number of source 
sequences. This behavior is caused by the fact that the number of sequences 
supporting given frequent patterns (for the same support threshold) grows linearly as 
the size of the database increases. 

Figure 5 illustrates the influence of the number of requested clusters on the 
execution time of our algorithm. We observe that the execution time depends almost 
linearly on the number of iterations of the algorithm (each iteration merges one pair of 
clusters). We could expect the execution time of each iteration to decrease, because 
the number of clusters reduces. However, we should notice that the size of clusters in 
fact increases, and it compensates the above feature. 
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We have also evaluated the quality of results produced by our heuristic algorithm. 
Using our implementation of a combinatory algorithm to find the ideal clustering, we 
compared the ideal solution with the heuristic one and we computed the quantity of 
incorrectly clustered sequences. Due to NP-complexity of the combinatory algorithm 
we were able to perform the test for a small number of initial clusters only (10-15). 
However, the test showed that our heuristic algorithm correctly clusters c.a. 91% of 
database sequences, what seems to be a very good result.  

6 Conclusions and Future Work 

We considered the problem of clustering web access sequences. Due to the limitations 
of the existing clustering methods, we introduced a new algorithm, which uses 
frequent patterns to generate both clustering model and cluster contents. The 
algorithm iteratively merges smaller, similar clusters until the requested number of 
clusters is reached. In the absence of a well-defined metric space, we propose the 
inter-cluster similarity measure based on co-occurrence to be used in cluster merging.  

An important feature of the algorithm is that it does not only divide the web users 
into clusters but also delivers a classification model that can be used to classify future 
web users. Since the model is formed by a set of frequent patterns to be contained, the 
classification of a new web user access path simply consists in checking if it contains 
patterns from any of the clusters’ descriptions. If the new user access path contains 
patterns from different clusters, then it belongs to many clusters with different 
membership probabilities. 
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