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Abstract. Frequent itemset mining is often regarded as advanced querying where
a user speci�es the source dataset and pattern constraints using a given constraint
model. Recently, a new problem of optimizing processing of batches of frequent
itemset queries has been considered. The best technique for this problem proposed
so far is Common Counting, which consists in concurrent processing of frequent
itemset queries and integrating their database scans. Common Counting requires
that data structures of several queries are stored in main memory at the same
time. Since in practice memory is limited, the crucial problem is scheduling the
queries to Common Counting phases so that the I/O cost is optimized. According
to our previous studies, the best algorithm for this task, applicable to large batches
of queries, is CCAgglomerative. In this paper we present a novel query schedul-
ing method CCAgglomerativeNoise, built around CCAgglomerative, increasing its
chances of �nding an optimal solution.

1 Introduction

Discovery of frequent itemsets [1] is a very important data mining problem
with numerous practical applications. Informally, frequent itemsets are sub-
sets frequently occurring in a collection of sets of items. Frequent itemsets
are typically used to generate association rules. However, since generation
of rules is a rather straightforward task, the focus of researchers has been
mostly on optimizing the frequent itemset discovery step.

Frequent itemset mining (and in general, frequent pattern mining) is of-
ten regarded as advanced querying where a user speci�es the source dataset,
the minimum support threshold, and optionally pattern constraints within
a given constraint model [9]. A signi�cant amount of research on eÆcient
processing of frequent itemset queries has been done in recent years, focus-
ing mainly on constraint handling and reusing results of previous queries
[4][6][10].

Recently, a new problem of optimizing processing of batches of frequent
itemset queries has been considered [14][15]. The problem was motivated by
data mining systems working in a batch mode or periodically refreshed data
warehouses, but is also relevant in the context of multi-user, interactive data
mining environments. It is a particular case of multiple-query optimization
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[13], well-studied in database systems. The goal is to �nd an optimal global
execution plan, exploiting similarities between the queries.

One of the methods we proposed to process batches of frequent itemset
queries is Common Counting [14] using Apriori [3] as a basic mining algo-
rithm1. Common Counting integrates database scans performed by frequent
itemset queries. It o�ers performance gains over sequential processing of the
queries thanks to reducing the number of scans of parts of the database
shared among the queries. Basic Common Counting assumes that the data
structures (candidate hash-trees) of all the queries �t in memory, which may
not be the case for large batches of queries, at least in initial Apriori itera-
tions. If the memory can hold only a subset of queries, then it is necessary
to schedule (assign) the queries into subsets, called phases. The way such
scheduling is done determines the overall cost of batched execution of the
queries.

The number of all possible assignments of queries to phases is expressed
with the Bell number, which makes the complete algorithm considering all
feasible assignments inapplicable for large batches of queries. Therefore, in
our previous works we proposed several heuristic algorithms, the best of which
was CCAgglomerative [16]. In this paper, we present a novel query scheduling
method CCAgglomerativeNoise, built around CCAgglomerative, increasing
its chances of �nding an optimal solution. CCAgglomerativeNoise achieves its
goal by iteratively randomizing the graph model on which CCAgglomerative
operates.

2 Related Work

Multiple-query optimization has been extensively studied in the context of
database systems (see [13] for an overview). The idea was to identify common
subexpressions and construct a global execution plan minimizing the overall
processing time by executing the common subexpressions only once for the
set of queries. Data mining queries could also bene�t from this general strat-
egy, however, due to their di�erent nature they require novel multiple-query
processing methods.

To the best of our knowledge, apart from Common Counting, the only
multiple-query processing method for data mining queries is Mine Merge [15],
which is less predicable and generally o�ers worse performance than Common
Counting. As an introduction to multiple data mining query optimization,
we can regard techniques of reusing intermediate [12] or �nal [4][6][10][11]
results of previous queries to answer a new query.

1 It should be noted that Common Counting can be directly applied to mining
other types of frequent patterns using Apriori-like algorithms. Its general idea
can also be carried over to other mining paradigms like pattern-growth methods.
Nevertheless, Apriori-like methods are best-suited for Common Counting as they
require numerous database scans.
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The need for multiple-query optimization has also been postulated in
a somewhat related research area of inductive logic programming, where a
technique based on similar ideas as Common Counting has been proposed,
consisting in combining similar queries into query packs [5].

A problem strongly related to our query scheduling is graph partitioning
[7]. In fact, the methods that we consider in this paper model the batch of
queries as a graph, and thus query scheduling becomes a particular kind of
graph partitioning. Nevertheless, classic graph partitioning algorithms are
not applicable in our case due to di�erent objectives of partitioning. In the
classic formulation of the graph partitioning problem, the goal is to divide
the graph into a given number of partitions, in such a way that the sum of
weights of vertices is approximately equal in each partition, and the sum of
weights of cut edges is minimized. We have a strict constraint on the sum of
weights of vertices (re
ecting the memory limit), and we do not care about
the number of resulting partitions as long as the sum of weights of cut edges
is minimized.

The method that we propose in this paper in order to improve the previ-
ously proposed algorithm CCAgglomerative is based on the same ideas as the
semi-greedy heuristics proposed in [8] to improve on a greedy search strategy.
Both techniques execute some basic algorithm several times and exploit ran-
domization. The main di�erence is that our method randomizes the model
on which the basic algorithm operates, not its individual steps as in [8].

3 Background

3.1 Basic De�nitions and Problem Statement

A frequent itemset query is a tuple dmq = (R; a; �; �; �), where R is a
database relation, a is a set-valued attribute of R, � is a condition involving
the attributes of R, � is a a condition involving discovered frequent itemsets,
and � is the minimum support threshold for the frequent itemsets. The re-
sult of dmq is a set of patterns discovered in �a��R, satisfying �, and having
support � � (� and � denote relational projection and selection operations
respectively).

The set S = fs1; s2; :::; skg of data selection predicates over the relation
R is a set of elementary data selection predicates for a set of frequent itemset
queries DMQ = fdmq1; dmq2; :::; dmqng if for all u; v we have �suR\�svR =
; and for each dmqi there exist integers a; b; :::;m such that ��i

R = �saR[
�sbR [ :: [ �smR.

Given a set of frequent itemset queries DMQ = fdmq1; dmq2; :::; dmqng,
the problem of multiple query optimization of DMQ consists in generating
such an algorithm to execute DMQ which has the lowest I/O cost.
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3.2 Common Counting

Common Counting is so far the best algorithm for multiple-query optimiza-
tion in frequent itemset mining. It consists in concurrent executing of a set
of frequent itemset queries and integrating their I/O operations. Its imple-
mentation using the Apriori algorithm is depicted in Fig. 1.

Input: DMQ = fdmq1; dmq2; :::; dmqng, where dmqi = (R; a; �i; �i; �i)
for (i=1; i � n; i++) do /* n = number of data mining queries */
Ci1 = all possible 1-itemsets /* 1-candidates */

for (k=1; C1k [ C
2
k [ :: [ C

n
k 6= ;; k++) do begin

for each sj 2 S do begin

CC = fCik : �sjR � ��iRg /* select the candidate sets to count now */
if CC 6= ; then count(CC; �sjR) end

for (i=1; i � n; i++) do begin

F i
k = fC 2 Cik : C:count � �ig /* identify frequent itemsets */

Cik+1 = generate candidates(F i
k) end

end

for (i=1; i � n; i++) do
Answeri = ��i

S
k
F i
k /* generate responses */

Fig. 1. Common Counting for Apriori

The algorithm iteratively generates and counts candidates for all the data
mining queries. The candidates of size 1 are all possible items. Candidates of
size k (k>1) are generated from the frequent itemsets of size k-1, separately
for each query. The candidate generation step (represented in the algorithm
as the generate candidates() function) works exactly the same way as in the
original Apriori algorithm [3]. The candidates generated for each query are
stored in a separate hash-tree structure, implemented according to [3].

The candidates for all the queries are counted in an integrated database
scan in the following manner. For each distinct data selection formula, its
corresponding database partition is scanned, and candidates for all the data
mining queries referring to that partition are counted. Notice that if a given
distinct data selection formula is shared by many data mining queries, then
its corresponding database partition is read only once.

The counting operation itself is represented in the algorithm as the count()
function and works as follows. Sets of items from the given database partition
are read one by one, and each of them is independently checked against
candidate hash-trees of all relevant queries. Candidates which are found to be
contained in the set of items retrieved from the database have their counters
incremented.

Common Counting does not address the problem of eÆcient handling of
selection conditions on the discovered patterns �, leaving any constraint-
based optimizations to the basic frequent itemset mining algorithm. Since
the original Apriori does not take pattern constraints into account, in the
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last step of Common Counting implementation for Apriori, frequent patterns
discovered by all the queries are �ltered according to their individual pattern
selection conditions �i.

3.3 Query Scheduling for Common Counting

Basic Common Counting assumes that memory is unlimited and therefore the
candidate hash-trees for all queries can completely �t in memory. If, however,
the memory is limited, Common Counting execution must be divided into
multiple phases, so that in each phase only a subset of queries is processed.
In general, many assignments of queries to phases are possible, di�ering in
the reduction of I/O costs. We refer to the task of assigning queries to phases
as to query scheduling.

Since the sizes of candidate hash-trees change between Apriori iterations,
the scheduling has to be performed at the beginning of every Apriori itera-
tion. A scheduling algorithm requires that sizes of candidate hash-trees are
known in advance. Therefore, in each iteration of Common Counting, we �rst
generate all the candidate hash-trees, measure their sizes, save them to disk,
schedule the data mining queries, and then load the hash-trees from disk
when they are needed.

3.4 The CCAgglomerative Query Scheduling Algorithm

The exhaustive search for an optimal (minimizing I/O costs) assignment
of queries to Common Counting phases is inapplicable for large batches of
queries due to the size of the search space (expressed by a Bell number).
According to the previous studies, the best heuristics for query scheduling in
Common Counting, both in terms of scheduling time and quality of schedules,
is CCAgglomerative. CCAgglomerative represents the batch of queries in the
form of a gain graph G=(V , E), which contains (1) vertices corresponding
to the queries (with hash-tree sizes as weights of vertices) and (2) two-vertex
edges whose weights describe gains (in disk blocks read) that can be reached
by executing the connected queries in the same phase. A sample gain graph
is shown in Fig. 2.
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Fig. 2. Sample gain graph
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An initial schedule is created by putting each data mining query into a
separate phase. Next, the algorithm processes the edges sorted with respect to
the decreasing weights. For each edge, the algorithm tries to combine phases
containing the connected data mining queries into one phase. If the total size
of hash-trees of all the data mining queries in such a phase does not exceed
the memory size, the original phases are replaced with the new one. Otherwise
the algorithm simply ignores the edge and continues. The CCAgglomerative
algorithm is shown in Fig. 3.

Input: Gain graph G = (V;E)
begin

Phases = ;
for each v in V do Phases = Phases [ ffvgg
sort E = fe1; e2; :::; ekg in desc. order with respect to ei:gain,
ignoring edges with zero gains

for each ei = (v1; v2) in E do begin

phase1 = p 2 Phases such that v1 2 p

phase2 = p 2 Phases such that v2 2 p

if treesize(phase1 [ phase2) �MEMSIZE then

Phases = Phases� fphase1g
Phases = Phases� fphase2g
Phases = Phases [ fphase1 [ phase2g

end if

end

return Phases

end

Fig. 3. CCAgglomerative Algorithm

4 CCAgglomerativeNoise: Scheduling on a

Randomized Model

Algorithm CCAgglomerative is a heuristics that su�ers from the same prob-
lem as classic greedy algorithms. Merging phases connected by the heavi-
est edge in each iteration may not always lead to the optimal assignment
of queries to phases. Let us consider an example gain graph representing a
batch of queries shown in Fig. 4.

Assume that in a certain iteration of Common Counting the sizes of can-
didate hash-trees are 20 KB for all four queries, and the amount of avail-
able memory is 40KB, which means that no more than two queries can be
processed in one phase. In such a case, CCAgglomerative would start with
assigning dmq2 and dmq3 to the same phase, and then dmq1 and dmq4 would
be scheduled into separate phases. The reduction in number of disk blocks
read, compared to sequential execution, would be 20 blocks. Obviously, the
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Fig. 4. Example gain graph for which CCAgglomerative misses the optimal solution

optimal solution is to execute dmq1 and dmq2 in one phase and dmq3 and
dmq4 in another, leading to the gain of 30 blocks.

To give the scheduling algorithm a chance of �nding an optimal assign-
ment, we propose to randomize the graph by randomly modifying weights
of graph edges within a user-speci�ed window (expressed in percents, e.g.,
�10%), and then execute the unmodi�ed CCAgglomerative algorithm on a
modi�ed gain graph. The procedure of randomizing the graph and schedule
generation should be repeated a user-speci�ed number of times, each time
starting with the original gain graph. We call the extended scheduling algo-
rithm CCAgglomerativeNoise as it introduces some "noise" into the graph
model of the batch of queries, before performing actual scheduling. For the
noise of X%, in a randomized gain graph the weight e:gain0 of each edge
e will be a random number from the range he:gain�X% � e:gain; e:gain+
X% � e:gaini, where e:gain is the original weight of the edge e.

To illustrate a potential usefulness of CCAgglomerativeNoise let us go
back to the example gain graph from Fig. 4. For the noise of 20%, in each
iteration of CCAgglomerativeNoise modi�ed values of edge weights would
be from the following ranges: e1:gain

0 2 h12; 18i, e2:gain0 2 h16; 24i, and
e3:gain

0 2 h12; 18i. So, it is possible that in some iteration of CCAgglom-
erativeNoise we would have e1:gain

0 > e2:gain
0 or e3:gain

0 > e2:gain
0 (e.g.,

e1:gain
0 = 18, e2:gain

0 = 16, and e3:gain
0 = 13), in which case the basic

CCAgglomerative scheduling procedure would �nd the optimal assignment
of queries to Common Counting phases.

We should note that the CCAgglomerativeNoise method should be treated
as a means of improving the results of pure CCAgglomerative. In other words,
the initial iteration of CCAgglomerativeNoise should always be on the original
gain graph. This way it can be guaranteed that CCAgglomerativeNoise will
never generate worse schedules than CCAgglomerativeNoise.

5 Experimental Evaluation

To evaluate performance of the improved query scheduling method for Com-
mon Counting, we performed a series of experiments using a synthetic dataset
generated with GEN [2] as the database. The dataset had the following char-
acteristics: number of transactions = 500000, average number of items in a
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transaction = 4, number of di�erent items = 10000, number of patterns =
1000. The experiments were conducted on a PC with AMD Athlon 1400+
processor and 384 MB of RAM, running Windows XP. The data resided in
a local PostgreSQL database, the algorithms were implemented in C#.

We experimented with randomly generated batches of queries, operating
on subsets of the test database, containing from 6 to 16 frequent itemset
queries. To generate batches of overlapping queries we implemented our own
generator, whose one of parameters was average overlapping of datasets be-
tween pairs of queries in a batch. Below we report results for the overlapping
of 40% but similar relative improvements were observed for other tested lev-
els of overlapping (20%, 60%, and 80%). The minimum support threshold for
all queries in all experiments was set to 0.75%, which resulted in reasonable
processing times. The average size of a hash-tree built in an Apriori iteration
for this support threshold was about 30KB. Therefore, to introduce the need
for query scheduling we intentionally restricted the amount of available main
memory to 120KB2.

Figure 5 shows average number of disk blocks read in an Apriori itera-
tion for batches of queries ranging from 6 to 16 queries, and four schedul-
ing algorithms: the optimal one, the random one, CCAgglomerative, and
CCAgglomerativeNoise with 5 iterations of randomizing the gain graph with
noise of 15% (the optimal algorithm did not �nish in a reasonable time for
batches larger than 14 queries). The experiments prove that CCAgglomera-
tiveNoise on average generates noticeably better schedules than the original
CCAgglomerative method.

The average improvement in the overall processing time of Common
Counting execution in case of CCAgglomerativeNoise compared to CCAgglom-
erative was about 1%. To provide the scale for judging the achieved improve-
ment, we have to mention that the di�erence in processing time between
CCAgglomerativeNoise and the optimal complete scheduling algorithm for
the case of 6 queries, where the time needed to generate the optimal schedule
was approximately the same as used by CCAgglomerativeNoise, was about
1.3%.

In the experiments we also tested the impact of the amount of noise
introduced into the gain graph on the quality of schedules generated by
CCAgglomerativeNoise. The best results were achieved for noise between
5% and 15%, depending on the number of queries in a batch. The optimal
amount of noise depends also on the distribution of edge weights in the gain
graph, which represent the sizes of common parts of the database. In gen-
eral, too little noise may not be enough to change the schedules generated by
CCAgglomerative. On the other hand, too much noise results in the degra-

2 Obviously, instead of just simulating the physical memory limit we could decrease
the support threshold or use a more dense dataset. We opted for limiting the
available memory to shorten the time needed to conduct the experiments.
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Fig. 5. Number of disk blocks read for di�erent query scheduling algorithms (min-
sup=0.75%, memory limited to 120 KB, avg dataset overlapping=40%)

dation of generated schedules, as the modi�ed gain graphs become more and
more random.

6 Conclusions

The paper addressed the problem of optimizing processing of batches of
frequent itemset queries by using the Common Counting scheme. Common
Counting exploits dataset overlapping between the queries by processing a
set of queries concurrently (keeping their data structures in main memory at
the same time) and integrating their disk operations. Since in practice the
amount of available main memory is limited, the queries have to be assigned
(scheduled) into execution phases. The best algorithm proposed for this task
so far was CCAgglomerative.

In this paper, we have presented and experimentally evaluated a novel
method, called CCAgglomerativeNoise, built around CCAgglomerative that
increases its chances of �nding the optimal solution. In the future, we plan to
investigate the possibilities of improving schedules generated by CCAgglom-
erative by applying some of the classic metaheuristics.
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