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Abstract. One of the classic data mining problems is discovery of frequent item-
sets. Frequent itemset discovery tasks can be regarded as advanced database queries
specifying the source dataset, the minimum support threshold, and optional con-
straints on itemsets. We consider a data mining system which supports storing of
results of previous queries in the form of materialized data mining views. Previous
work on materialized data mining views addressed the issue of reusing results of
one of the previous frequent itemset queries to efficiently answer the new query.
In this paper we present a new approach to frequent itemset query processing in
which a collection of materialized views can be used for that purpose.

1 Introduction

Frequent itemset mining is one of the classic data mining problems, identi-
fied as the key step in association rule discovery [1]. Frequent itemsets and
association rules capture the co-occurrence of items in the collection of sets,
and find numerous applications including market basket analysis and web
usage mining. Frequent itemset mining can be seen as advanced querying
[6], where a user specifies the source dataset, the minimum support thresh-
old, and optionally some constraints on itemsets, then the system chooses
the appropriate data mining algorithm and returns the results to the user.
Data mining query processing has recently become an important research
area, focusing mainly on constraint handling and reusing results of previous
queries.

We consider a data mining system which supports storing of results of
previous queries in the form of materialized data mining views [7]. In our
previous work [10] we addressed the issue of reusing results of one of the
previous frequent itemset queries to efficiently answer the new query. In this
paper we present a new approach to frequent itemset query processing in
which a collection of materialized views can be used for that purpose. We
propose a query execution method that uses partial results from a set of
materialized views, and provide an algorithm that selects a set of materialized
views that is optimal in terms of the I/O cost.

* This work was partially supported by the grant no. 4T11C01923 from the State
Committee for Scientific Research (KBN), Poland.
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1.1 Background

Frequent itemsets. Let L = {ly,[s,...,I;,} be a set of literals, called items.
Let a non-empty set of items T be called an itemset. Let D be a set of vari-
able length itemsets, where each itemset 7' C L. We say that an itemset T
supports an item x € L if z is in T. We say that an itemset T supports an
itemset X C L if T supports every item in the set X. The support of the
itemset X is the percentage of itemsets in D that support X. The problem
of mining frequent itemsets in D consists in discovering all itemsets whose
support is above a user-defined support threshold minsup.

Apriori algorithm. Apriori [2] is a classic algorithm for frequent item-
set discovery. It makes multiple passes over the input data to determine all
frequent itemsets. Let Lj denote the set of frequent itemsets of size k and
let C'}. denote the set of candidate itemsets of size k. Before making the k-th
pass, Apriori generates Cy using L. Its candidate generation process en-
sures that all subsets of size k — 1 of C}, are all members of the set L;_;. In
the k-th pass, it then counts the support for all the itemsets in C}. At the
end of the pass all itemsets in C} with a support greater than minsup form
the set of frequent itemsets Ly,.

1.2 Related Work

Incremental mining in the context of frequent itemsets was first discussed in
[4]. A novel algorithm called FUP was proposed to efficiently discover frequent
itemsets in an incremented dataset, exploiting previously discovered frequent
itemsets. F'UP was based on the same generate-and-test paradigm as Apriori
- it is bound to a particular mining methodology. Using our terminology, FUP
exploits one materialized view, and cannot be easily extended to use more
than one view.

In [8] the authors postulated to create a knowledge cache that would keep
recently discovered frequent itemsets. Besides presenting the notion of knowl-
edge cache the authors introduced several maintenance techniques for such
cache, and discussed using the cache contents when answering new frequent
set queries.

In [3] relationships between association rule queries were analyzed. They
represented cases when results of one query can be used to efficiently an-
swer the other. However, the relationships concerned association rules - not
frequent itemsets.

The work on materialized views started in the 80s. The basic concept
was to use materialized views as a tool to speed up queries. Since then,
materialized views have become a key element of data warehousing technology
(see [9] for an overview).
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2 Frequent Itemset Query Execution Using a Single
Materialized Data Mining View

In [10] we considered the problem of executing a data mining query using
a single materialized data mining view. In this section we review the basic
definitions and summarize the results of our previous study.

Definition 1 (Data mining query). A data mining query for frequent
itemset discovery is a tuple dmgq = (R,a,X,®,[), where R is a database
relation, a is a set-valued attribute of R, X is a data selection predicate on
R, @ is a selection predicate on frequent itemsets, 5 is the minimum support
for the frequent itemsets. The data mining query dmg returns all frequent
itemsets discovered in w05 R, having support greater than § and satisfying
the constraints .

Example. Given is the database relation Rj(attry,attrs). The data min-
ing query dmqy = (Ry,” attrs”,” attry > 57,7 |itemset| < 4”7, 3) describes the
problem of discovering frequent itemsets in the set-valued attribute attrs of
the relation R;. The frequent itemsets with support above 3 and length less

than 4 are discovered in records having attr; > 5.

Definition 2 (Materialized data mining view). A materialized data
mining view dmv = (R,a, X, ®, ) is a data mining query, whose both the
definition and the result are permanently stored (materialized) in a database.
All frequent itemsets being the result of the data mining query are called ma-
terialized data mining view contents.

For a frequent itemset query dmg = (R, a, Zamq, Pamq> Bamgq), and a material-
ized view dmvy = (R, a, X1, ®1, 51), we identified two general cases, presented
below, in which dmgq can be answered using dmwv;. The cases are described in
terms of relationships between selection predicates. Xy C Xg,,, means that
the source dataset of dmw; is a subset of the source dataset of dmg (e.g.,
Yattry > 57 C "attry > 27). 1 C Py means that if an itemset satisfies
P imq then it must also satisfy &1 (e.g., ”|itemset| < 57 C ”|itemset| < 3”).
See [10] for details.

Verifying Mining (VM): (X1 = Zgmg A B1 < Bamg A P1 C Pamg). Since
the materialized data mining view dmwv; contains a superset of the result of
dmg, then the execution of dmg takes to read the contents of dmwv; and filter
the frequent itemsets with respect to Bgmg and Pgmq. (In a particular case,
when 31 = Bamq and &1 = Pgpq, dmu; contains the exact result of dmg, and
no filtering is needed.)

Incremental Mining (IM): (X7 C Xgng A B1 < Bamg A P1 € Pimg)-
The database has been logically divided into two partitions: (1) the records
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covered by the view dmuy, (2) the records covered by the query dmg, and not
covered by dmwv;. The execution of dmg consists of three steps. In the first
step, the contents of dmwv, are filtered with respect to Bamq and Pgmgq. (In a
particular case, when 81 = Bamg and @1 = Py this step is not needed.) In
the second step, all itemsets frequent in the second partition are discovered
using a complete mining algorithm (e.g., Apriori). Finally, locally frequent
itemsets from both partitions are merged and then counted during the scan
of the database in order to find globally frequent itemsets.

3 Frequent Itemset Query Execution Using a Set of
Materialized Data Mining Views

Problem formulation. Given are: (1) a set of materialized data mining
views DMV = {dmuvy,dmuvs, ...,dmv,}, where dmv; = (R,a,X;, &;,0:),
Y is of the form (Ii,.,, < a < li0e) V in < a < ) VoV
(Uin < a <1 ) 1L € dom(a), and (2) a data mining query dmgqg =

(R,a, Xgmg, Pamg, Bamgq), where Xgpm, is of the form (19mt < < 9™y y

Imin lmaz

(gma < < 190 YV LV (10 < g < 1dma Yy 1™ ¢ dom(a). The prob-
lem of materialized data mining view selection consists in generating such
an algorithm of dmg execution using views from DMV, that its I/O cost is

minimal.
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Fig. 1. Sample set of data mining queries and their distinct selection formulas

Definition 3 (Data sharing graph). Let S = {s;, s2, ..., s1.} be a set of dis-
tinct selection formulas for DMV U{dmgq}, i.e., a set of such selection formulas
over the attribute a of R that for each i, j we have o5, RNo,; R = 0, for each i
there exist integers a, b, ..., m, such that o5, R = 05, RUos, RU...Uos, R, and
there exist integers a,b, ..., k, such that oy, R =0, RU0os;, RU...U0s R
(Fig. 1). A graph DSG = (V,E) will be called a data sharing graph for
DMV and a data mining query dmgq if and only if V.= DMV U S U {dmg},
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E ={(v,s;)lv € DMV U{dmq}, s; € S, ox,RNos;R # 0}.

Example. Let us consider a data sharing graph for a set of materialized data
mining views and a data mining query. Given is a relation Ry = (attry, attrs),
four materialized data mining views: dmvy = (Rq,”attrs”,”10 < attry <
30”7,0,10), dmvy = (Rq,”attry”,”15 < attr; < 407,0,4), dmvs =
(R1,”attrs”,”30 < attry < 407,0,8), dmvy = (Rq,”attry”,”5 < attr; <
30”,0,15), and a data mining query dmq = (Ri,”attry”,”5 < attr; <
40”,0,10). The set of distinct selection formulas consists of the following
elements: S = {s; = 75 < attr; < 107,52 = 710 < attry < 157,53 =
715 < attr; < 30”,s4 = ”30 < attr; < 40”}. The data sharing graph for
DMV = {dmvy,dmuvs,dmuvs,dmvs} and dmgq is shown in Fig. 2.

5<attr;<10

(i (o) e |

Fig. 2. Sample data sharing graph for a set of materialized data mining views and
a data mining query

3.1 Materialized data mining view selection

Consider a data mining query dmgq which can be executed using multiple data
mining views from DMV. According to our previous analysis, dmg can use
such views from DMV that: (1) are based on a subset of dmg’s source dataset
(X C Ximg), (2) use minsup which is not above the minsup of dmq (8; <
Bamq), and (3) their data selection conditions are identical to or relaxed with
respect to dmgq (D; C Pgmq). Moreover, the source datasets of the materialized
views must not overlap, since in such case, certain frequent itemsets might be
lost if they were not frequent in any of the source datasets. Therefore, in order
to efficiently execute the data mining query dmgq = (R, a, Xamqg, Pamq, Bamq),
we should consider the following subsets of materialized views:

DMVqu = {dmvl S DMV|deZ = (R,a, EZ,QSl,ﬂZ),EZ C Equ, (1)
Bi < Bamg, Pi € Pamyg, Vdmuvy, € DM Vg — {dmu;} : X3 N Xy, = 0},
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Using DM Vg to execute dmg consists in: (1) selecting frequent itemsets
from each dmv; € DM Vyp, with supports above Sgmgq, (2) discovering fre-
quent itemsets in the portion of the database, which is not covered by any
view from DM Vyp,, (3) merging all frequent itemsets from (1) and (2) to
form a set of global candidates, and (4) scanning the database to evaluate
their support and prune infrequent ones. The algorithm for executing a data
mining query dmg using a set DM Vg, of materialized data mining views is
shown below.

Algorithm 1 (Data mining query execution using a set of mate-
rialized data mining views).
Input: A data mining query dmg and a set of materialized data mining views

DMV,
Output: The results of dmyg.
Method:
1. for each dmv; € DM Vy,,, do
2. Fi < {frequent itemsets from dmuv; having support > Bamq
and satisfying Pamq}
3. R %dequ_UdmvieDMVqu o, R)
4. F'+ execute(R',a,”true”, Pamq, Bamgq)
5. C+—F UFR U}—QU...U}-‘DMVML”
6. count(C,ox,,,R)
7. Answers < {C € C|C.count > Bamq}
8.  return Answers

Since many applicable subsets of materialized data mining views may exist,
we will look for such DM Vi, that the I/O cost of dmg execution is minimal.
The I/O cost of executing dmgq using DM Vg is the following:

cOStDMV,,y = > ldmul| +k#||R|[ + llosa.,RIL - (2)
dmv; EDM Vypg

where R' represents the portion of o5, R which is not covered by any view
from DM Vg, and k is the number of scans of R’ required by a complete
mining algorithm (e.g., Apriori) that has to be run to discover locally frequent
itemsets in R'.

In order to estimate the benefits from using multiple data mining views,
let us compare the above cost with the cost of running a regular algorithm on
the complete dataset. Assuming that the complete mining algorithm would
need the same number k of dataset scans on the whole database and the
portion of it not covered by materialized views, the materialized data mining
views should be used if:

o ldmul|+k#||R| < (k= 1) *||os,,, R (3)
dmv; EDM Vg
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Since in practical applications we have ||dmuv;|| << ||ox, R||, then the larger
coverage of dmg’s source dataset by the views from DM Vg, the better
performance of dmg’s execution. Therefore we look for such a DM Vg, that
provides the largest coverage of dmg’s source dataset.

Algorithm 2 (Materialized data mining view selection).
Input: A data sharing graph DSG = (DMV U {dmgq}, E), a set of distinct
selection formulas S, a data mining query dmgq = (R, a, Xamg, Pamq> Bamg)
Output: DMVy,,, providing the largest coverage of dmg’s source dataset.
Method:
begin
P« {s € S|(dmg,s) € E}
SV « {dmv € DMV|Vs € S,(dmv,s) € E = s € P}
AV {de € SV|de = (R,G,E,¢,ﬂ),ﬂ S ﬂqua¢ g ¢qu}
global optCost + +oo
global OptViewSet < ()
scanViewSets(AV, D)
return OptViewSet
end

N W=

8. procedure scanViewSets(V, Seed):
begin

9. for all dmv € V do begin

10.  newCost + cost(Seed U {dmv}, dmq)

11.  if newCost < optCost then

12. optCost + newCost
13. optViewSet + Seed U {dmv}
end if

14.  V «V —{dmv}
15.  OL < {dmvj|3s, (dmwv,s) € E A (dmv;,s) € E}
16.  scanViewSets(V — OL, Seed U {dmv})

end

The above algorithm constructs a DM Vg,,, providing the largest coverage
of dmg’s source dataset. In step (1) we build the set P of distinct selection
formulas for dmgq. In step (2) we select materialized data mining views (SV)
containing such data selection conditions that are relaxed with respect to
dmg’s data selection conditions. In step (3) we select such views from SV
that use minsup not above dmgq’s minsup and use pattern selection condi-
tions identical to or relaxed with respect to dmg. In step (4) we initialize a
global variable to hold the best I/O cost found so far. In step (5) we initialize
a global variable to hold the best set of materialized data mining views found
so far. In step (6) we call the recursive procedure to generate all allowable
subsets AV of the materialized data mining. In step (7) we return the optimal
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set of materialized data mining views for the execution of dmg. In step (8)
the procedure called scanViewSets begins; it scans all allowable subsets of
V', and it appends Seed to each of them. In step (9) a loop begins to iterate
over all materialized data mining views from V. In step (10) we evaluate the
I/O cost of executing dmg using the set of materialized data mining views.
If the cost is lower that the best one found so far, then in steps (12)-(13)
we update the global variables. In step (14) we eliminate the current view
from the set not to process it again during recursive calls. In step (15) we
select all materialized data mining views which share at least one distinct
data selection formula with the current view. In step (16) we recursively call
scan ViewSets to append more views to the current set.

4 Experimental Results

In order to evaluate performance of frequent itemset discovery using a col-
lection of materialized views, we performed several experiments on a Pen-
tium IT 433MHz PC with 128 MB of RAM. The experiments were conducted
on the MSWeb! (Microsoft Anonymous Web Data) dataset from the UCI
KDD Archive [5]. The dataset contained 32710 transactions (user sessions),
the average size of transaction was 3 URLSs, and the total number of different
URLs in the dataset was 285. As a complete data mining algorithm we used
our implementation of Apriori.
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Fig. 3. Execution times for different numbers of used materialized views

Figure 3 presents the execution times for a different number of selected ma-
terialized views (1, 2, and 3) compared to the execution time of the complete

! http://kdd.ics.uci.edu/databases/msweb/msweb.html
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Apriori algorithm. For the cases involving materialized views we varied the
fraction of the dataset covered by them from 25% to 100%. The minimum
support threshold of the query to be answered was by 0.1 higher than the
average minimum support threshold of the selected materialized views.

The experiments show that using materialized views reduces processing
time if the views cover a significant fraction of the original query’s dataset.
Already for materialized views covering 37.5% of the source dataset, using
up to 3 views paid off. The best performance was achieved when the selected
views covered the whole dataset - in such cases there was no need to run
Apriori at all.

Regarding the number of selected materialized views, we observe that
for the same level of coverage, the smaller the number of views the better.
One reason for performance degradation due to using a higher number of
views is that using more views means higher I/O costs as more views have
to be read from disk. This effect is particularly noticeable for small datasets
like MSWeb. Another issue that might affect performance even in case of
large datasets is the distribution of values in the dataset. If the distribution
is strongly skewed, each of the views will introduce many locally frequent
patterns, which then have to be counted (verified) in the whole dataset.

5 Conclusions

In this paper we discussed answering a frequent itemset query using a collec-
tion of materialized data mining views. The proposed method is independent
of a particular mining algorithm, and is a generalization of the method from
our previous work that was capable of using only one view.

We have presented: (1) the conditions on a set of materialized views that
have to be fulfilled for the set to be useful, (2) the algorithm that uses results
from a set of materialized views to answer a new frequent itemset query, (3)
the algorithm that finds the subset of applicable materialized views that is
optimal in terms of I/O costs.

The experiments confirm our theoretical analysis and show that using a
set of materialized views is an efficient solution, provided that the views cover
a significant part of the dataset.
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