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Abstract. We consider the problem of optimizing processing of batches of 
frequent itemset queries. The problem is a particular case of multiple-query 
optimization, where the goal is to minimize the total execution time of the set of 
queries. We propose an algorithm that is a combination of the Mine Merge 
method, previously proposed for processing of batches of frequent itemset 
queries, and the Partition algorithm for memory-based frequent itemset mining. 
The experiments show that the novel approach outperforms the original Mine 
Merge and sequential processing in majority of cases.  

1   Introduction 

Discovery of frequent itemsets [1] is a very important data mining problem with 
numerous practical applications. Informally, frequent itemsets are subsets frequently 
occurring in a collection of sets of items. Frequent itemsets are typically used to 
generate association rules. However, since generation of rules is a rather 
straightforward task, the focus of researchers has been mostly on optimizing the 
frequent itemset discovery step.  

Frequent itemset mining (and in general, frequent pattern mining) is often regarded 
as advanced querying where a user specifies the source dataset, the minimum support 
threshold, and optionally pattern constraints within a given constraint model [9]. A 
significant amount of research on efficient processing of frequent itemset queries has 
been done in recent years, focusing mainly on constraint handling and reusing results 
of previous queries [5][7][12][13]. 

Recently, a new problem of optimizing processing of batches of frequent itemset 
queries has been considered [19][20]. The problem was motivated by data mining 
systems working in a batch mode or periodically refreshed data warehouses, but is 
also relevant in the context of multi-user, interactive data mining environments. It is a 
particular case of multiple-query optimization [18], well-studied in database systems. 
The goal is to find an optimal global execution plan, exploiting similarities between 
the queries.  

So far, two methods of processing batches of frequent itemset queries have been 
proposed: Mine Merge [19] and Common Counting [20]. Both methods exploit the 
overlapping between queries’ datasets to reduce the overall processing time. 



Unfortunately, both methods have serious limitations, which is the motivation for 
further research on the topic.  

Common Counting consists in concurrent executing of a frequent itemset mining 
algorithm for the queries, and integrating dataset scans performed by the queries. 
Common Counting was designed to work with Apriori [3], in case of which it needs 
to maintain candidate hash-trees of several queries in main memory. If not all the 
hash-trees fit into memory, the queries have to be scheduled into phases, which 
degrades Common Counting’s performance. Application of Common Counting to 
newer pattern-growth mining algorithms [8] is problematic as these algorithms store a 
compressed form of the database in main memory, which may be infeasible for more 
than one query at the same time, even for today’s machines.  

The idea of Mine Merge is to transform the original batch of overlapping queries 
into the set of intermediate non-overlapping queries operating on dataset partitions, 
whose boundaries are defined by the overlapping between the original queries. After 
executing the intermediate queries, the answers to original queries are generated using 
the method proposed in [17] for memory-based partitioning. Mine Merge is not bound 
to a particular mining algorithm and its memory requirements are not greater that 
those of the basic mining algorithm applied to intermediate queries. The disadvantage 
of Mine Merge is that it requires significant overlapping between the queries in order 
to compensate the extra database scan needed to consolidate the results from 
intermediate queries. 

In this paper we propose a novel method for processing batches of frequent itemset 
queries, called PMM+ (Partition Mine Merge Improved), which combines disk-based 
partitioning of Mine Merge with memory-based partitioning of the well-known 
Partition algorithm from [17]. The advantage of the new method is that it requires 
exactly two scans of the union of source datasets of the queries forming a batch.  

The paper is organized as follows. In Section 2 we review related work. Section 3 
contains basic definitions regarding frequent itemset queries and reviews the Mine 
Merge method for processing of batches of frequent itemset queries. The motivations 
underlying PMM+ and the new method itself are presented in Section 4. In Section 5 
we present and discuss results of experiments conducted to evaluate performance of 
PMM+. Section 6 contains conclusions.  

2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (see [18] for an overview). The idea was to identify common subexpressions 
and construct a global execution plan minimizing the overall processing time by 
executing the common subexpressions only once for the set of queries [4][10][15]. 
Data mining queries could also benefit from this general strategy, however, due to 
their different nature they require novel multiple-query processing methods. 

To the best of our knowledge, the only two multiple-query processing methods for 
data mining queries are Mine Merge [19] and Common Counting [20], mentioned 
above. Recently, the need for multiple-query optimization has been postulated in the 
somewhat related research area of inductive logic programming, where a technique 



based on similar ideas as Common Counting has been proposed, consisting in 
combining similar queries into query packs [6]. 

As an introduction to multiple data mining query optimization, we can regard 
techniques of reusing intermediate or final results of previous queries to answer a new 
query. Methods falling into that category that have been studied in the context of 
frequent itemset discovery are: incremental mining [7], caching intermediate query 
results [14], and reusing materialized complete [5][12][13] or condensed [11] results 
of previous queries provided that syntactic differences between the queries satisfy 
certain conditions.  

Dividing the dataset into partitions fitting into main memory in order to find 
locally frequent itemsets using only in-memory operations, and then integrating the 
partial results to find globally frequent itemsets was first considered in [17], where the 
Partition algorithm was proposed. The most important contribution of [17] was the 
proof that given the dataset divided into the set of non-overlapping partitions, an 
itemset can be globally frequent only if it is locally frequent in at least one of the 
partitions. Partition used a variation of Apriori for in-memory frequent itemset 
mining, and its advantage over the original Apriori was that it performed exactly two 
database scans: one to read the partitions and one to verify which of the locally 
frequent itemsets are globally frequent. 

In [16] another memory-based partitioning algorithm H-Mine was proposed for 
frequent itemset mining, outperforming Partition thanks to: (1) replacing Apriori for 
in-memory mining with a newly developed efficient pattern-growth algorithm 
H-Mine(Mem), and (2) applying some optimizations in the consolidation step. 

3   Background 

3.1   Basic Definitions and Problem Statement  

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β), 
where R is a relation, a is a set-valued attribute of R, Σ is a condition involving the 
attributes of R, Φ is a condition involving discovered itemsets, and β is the minimum 
support threshold. The result of dmq is a set of itemsets discovered in πaσΣR, 
satisfying Φ, and having support ≥ β (π and σ denote relational projection and 
selection operations respectively). 

Example. Given the database relation R1(a1, a2), where a2 is a set-valued attribute 
and a1 is of integer type. The frequent itemset query dmq1 = (R1, "a2", "a1>5", 
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-
valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3% 
and length less than 4 are discovered in the collection of records having a1>5. 

 
Elementary data selection predicates. The set S={s1, s2 ,..., sk} of data selection 
predicates over the relation R is a set of elementary data selection predicates for a set 
of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u,v we have 
σsuR∩σsvR =∅ and for each dmqi there exist integers a, b, ..., m such that 
σΣiR=σsaR∪σsbR∪..∪σsmR. 



Example. Given the relation R1=(attr1, attr2) and three data mining queries: 
dmq1=(R1, "attr2", "5 <attr1<20", ∅, 3), dmq2=(R1, "attr2", "0<attr1<15", ∅, 5), 
dmq3=(R1, "attr2", "5<attr1<15 or 30<attr1<40", ∅, 4). The set of elementary data 
selection predicates is then S={s1="0<attr1<5", s2="5<attr1<15", s3="15<attr1<20", 
s4="30<attr1<40"}.  

 
Problem Statement. Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ..., 
dmqn}, the problem of multiple query optimization of DMQ consists in generating 
such an algorithm to execute DMQ which minimizes the overall processing time. 

3.2   Mine Merge 

Similarly to Partition, Mine Merge employs the property that for a database divided 
into a set of disjoint partitions, an itemset which is frequent in a whole database, must 
also be frequent in at least one partition of it. The difference is that Partition uses 
memory-based partitions, determined by the amount of available main-memory, while 
Mine Merge operates on disk-based partitions, which are the consequence of 
overlapping between queries’ datasets.  

 
/* Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...} */ 

IDMQ ←∅ 
for each sj∈S do begin       
   Q ← {dmqi∈DMQ | σsjR⊆σΣiR } 
   intermediate_β ← min{βi |  dmqi=(R, a, si, Φi, βi)∈Q} 
   intermediate_Φ ←Φ1∨Φ2∨...∨Φ|Q|, ∀i=1..|Q|,  dmqi=(R, a, si, Φi, βi)∈Q 
   IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β) 

     end 
/* Execute intermediate data mining queries */ 
     for each idmqi ∈ IDMQ do  

  IFi ← execute(idmqi) 
/* Generate results for original queries DMQ = {dmq1, dmq2, ...} */ 
     for each dmqi∈ DMQ do 
         Ci ← {c|c∈ Uk IFk , σskR⊆σΣiR, c.count ≥ βi, c satisfies Φi} 

for each sj∈S do begin       
      CC ← {Ci | σsjR⊆σΣiR }; /* select the candidates to count now */ 
      if CC≠∅ then count(CC, σsjR); 
end 
for (i=1; i<=n; i++) do 
    Answeri ← {c ∈ Ci | c.count ≥ βi}   /* generate responses */ 
 

Fig. 1. Mine Merge method 



Mine Merge first generates a set of intermediate data mining queries, in which each 
data mining query is based on a single elementary selection predicate only. The 
intermediate data mining queries are derived from those original data mining queries 
that are sharing a given elementary selection predicate. The minimum support 
thresholds and selection conditions on itemsets for the intermediate queries are chosen 
so that their results are guaranteed to include all locally frequent itemsets for all the 
original queries that refer to the database partition corresponding to a given 
intermediate query.  

Next, the intermediate data mining queries are executed sequentially using any 
frequent itemset mining algorithm (Apriori, Partition, etc.) and then their results are 
merged to form global candidates for the original data mining queries. Finally, a 
database scan is performed to count the global candidate supports and to answer the 
original data mining queries. The pseudocode of the Mine Merge algorithm is shown 
in Fig. 1. 
 

4   PMM+: Combining Disk-Based and Memory-Based Dataset 
Partitioning 

The problem of the basic Mine Merge algorithm is that it requires significant 
overlapping between the queries in order to compensate for the extra database scan 
needed to consolidate the results from intermediate queries. To avoid this problem we 
introduce a new method called Partition Mine Merge Improved (PMM+), which 
additionally partitions the intermediate queries in such a way that the data they 
operate on can completely fit in memory. Therefore, only a single database scan is 
needed to execute all the intermediate queries. After the partitioned intermediate 
queries have been executed, another database scan is performed to generate final 
results for the original data mining queries. In this way, PMM+ can execute a batch of 
data mining queries by reading the database only two times. 

The pseudocode of the Partition Mine Merge Improved algorithm is shown in 
Fig. 2. The actual partitioning of the intermediate data mining queries (partition() 
function) can be performed either statically, with help of database query optimizer, or 
dynamically, while reading the database. Partitioning of the intermediate data mining 
queries must guarantee that their source data - σsiR – can completely fit in memory. 
Only then a query will be able to discover all the frequent itemsets by using fast in-
memory scans. 

Partition Mine Merge Improved introduces some overhead caused by discovering 
locally-frequent itemsets, which are then eliminated in the final scan phase. We 
expect this overhead to be slightly bigger compared to the basic Mine Merge because 
the intermediate data mining queries operate on smaller database fragments.  

 
 



/* Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...}  
 * MEM_SIZE is the memory buffer size for reading database partitions  
 */ 

IDMQ ←∅ 
PDMQ ←∅ 
for each sj∈S do begin       
   Q ← {dmqi∈DMQ | σsjR⊆σΣiR } 
   intermediate_β ← min{βi |  dmqi=(R, a, si, Φi, βi)∈Q} 
   intermediate_Φ ←Φ1∨Φ2∨...∨Φ|Q|, ∀i=1..|Q|,  dmqi=(R, a, si, Φi, βi)∈Q 
   IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β) 

     end 
/* Partition intermediate data mining queries to fit their σsiR in memory */ 
     for each idmqi ∈ IDMQ do  

  PDMQ ← PDMQ ∪  partition(idmqi, MEM_SIZE) 
/* Execute partitioned data mining queries */ 
     for each pdmqi ∈ PDMQ do begin 

  read_in_partition(σsiR); 
  PFi ← execute(pdmqi); 
end 

/* Generate results for original queries DMQ = {dmq1, dmq2, ...} */ 
     for each dmqi∈ DMQ do 
         Ci ← {c|c∈ Uk PFk , σskR⊆σΣiR, c.count ≥ βi, c satisfies Φi} 

for each sj∈S do begin       
      CC ← {Ci | σsjR⊆σΣiR }; /* select the candidates to count now */ 
      if CC≠∅ then count(CC, σsjR); 
end 
for (i=1; i<=n; i++) do 
    Answeri ← {c ∈ Ci | c.count ≥ βi}   /* generate responses */ 
 

Fig. 2. PMM+ method 

5   Experimental Results 

To evaluate performance of the improved batch processing method for frequent 
itemset queries, we performed a series of experiments using a synthetic dataset 
generated with GEN [2] as the database. The dataset contained 100000 transactions 
built from 1000 different items. All the tested batches of queries operated on this 
dataset. We varied the number of queries in a batch, the level of overlapping between 
queries’ datasets, the minimum support thresholds, and the variance of dataset sizes of 
the queries forming a batch. The experiments were conducted on a PC with AMD 
Athlon 1800+ processor and 256 MB of RAM, running Windows XP. The data 
resided in a flat file on disk, the algorithms were implemented in C++.  



We implemented PMM+ with Apriori for in-memory frequent itemset mining. In 
all the tests, we compared its execution time with: (1) SEQA – sequential processing 
using Apriori, (2) SEQP – sequential processing  using Partition, (3) AMM – Mine 
Merge using Apriori, and (4) PMM – Mine Merge using Partition. For the methods 
involving in-memory mining (SEQP, PMM, and PMM+) the amount of main memory 
reserved for that purpose was always 10000 of the average transaction size1.  

To evaluate performance of PMM+ in various circumstances, we used 14 different 
batches of queries, differing in the number of queries (two or three), dataset sizes, 
dataset overlapping, and minimum support thresholds. The execution times for the 14 
test query batches of PMM+ and four reference methods are presented in Table 1. 

Table 1. Execution times of five methods of processing batches of  
frequent itemset queries for 14 test query batches 

Case Queries Execution times [in seconds] 
 from to minsup SEQA SEQP AMM PMM PMM+ 

1 70000 0,01 
20001 100000 0,01 1 

30001 60000 0,01 

53 25 36 19 13 

1 70000 0,02 
2a 

50001 100000 0,01 
24 14 28 18 12 

1 70000 0,015 
2b 

50001 100000 0,015 
22 13 24 17 11 

1 70000 0,01 
3a 

20001 100000 0,01 
44 21 36 20 14 

1 70000 0,02 
3b 

20001 100000 0,02 
20 16 20 16 10 

1 70000 0,02 
4a 

60001 100000 0,02 
15 12 20 16 10 

1 70000 0,05 
4b 

60001 100000 0,05 
8 10 13 14 9 

1 70000 0,01 
5 

30001 100000 0,05 
26 16 29 18 12 

1 100000 0,01 
6a 

10001 30000 0,01 
35 16 36 20 14 

1 100000 0,05 
6b 

10001 30000 0,01 
13 12 19 16 10 

1 100000 0,10 
7a 

10001 20000 0,01 
10 9 16 14 10 

1 100000 0,05 
7b 

10001 20000 0,01 
11 10 16 15 11 

1 100000 0,03 
7c 

10001 20000 0,01 
16 11 21 16 11 

1 100000 0,01 
7d 

10000 20000 0,01 
32 15 36 19 14 

                        
1 For the ease of implementation, we actually expressed the memory limit as 10000 

transactions. 



The experiments show that PMM+ is the best from all the tested methods in 
majority of cases. In particular, PMM+ outperformed PMM and AMM for all tested 
batches. The average execution time of PMM+ was by 48% shorter than the average 
execution time of AMM (the original Mine Merge method) and by 32% shorter than 
the average execution time of PMM. 

The only cases in which PMM+ lost to sequential processing (by 10% in the worst 
case) were 4b, 7a, and 7b. In case 4b the overlapping between the queries was very 
small and the support threshold very high (5%). As a result, there were only 2 Apriori 
iterations for each query, and sequential Apriori finished first. In cases 7a and 7b 
there were significant differences in dataset sizes and support thresholds of the 
queries. As a consequence, one of the queries completed very quickly, not leaving 
much space for I/O cost reduction with such a small part of the database shared 
between the queries. 

In the next series of experiments we thoroughly evaluated the impact of the 
overlapping between the queries and the minimum support threshold on the 
performance of PMM+. This time we tested only batches of two queries operating on 
the datasets of equal size of 50000 transactions. We changed the overlapping between 
the queries (expressed as the percentage of transactions shared by the queries) from 
0% to 100%, repeating the experiments for the minimum support thresholds of 1%, 
3%, and 5%. Figures 3, 4, and 5 present execution times measured for PMM+ and 
four reference algorithms. 

The experiments show that the processing time of PMM+ reduces linearly as the 
overlapping between queries’ datasets increases. More importantly, the usability of 
PMM+ (i.e., its advantage over sequential processing) has improved significantly 
compared to the original Mine Merge. To outperform SEQA, AMM required at least 
50% of overlapping for the supports of 1% and 3%, and 80% for the support of 5%. 
PMM+ was the most efficient of the tested methods if any overlapping between the 
queries occurred for the supports of 1% and 3%. PMM+ lost to SEQA only for the 
support of 5% and dataset overlapping less than 30%. This can be explained by the 
fact that for the support of 5% Apriori needed only 2 iterations to execute each of the 
queries. Nevertheless, even for such a high minimum support threshold, PMM+ was 
the most efficient method already starting with the dataset overlapping of 30%. 
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Fig. 3. Execution times for different levels of overlapping between two queries (minsup = 1%) 



minsup=3%

0
2
4
6
8

10
12
14
16
18
20

0 10 20 30 40 50 60 70 80 90 10
0

dataset overlapping [%]

ti
m

e[
s]

SEQA

SEQP

AMM

PMM

PMM+

 

Fig. 4. Execution times for different levels of overlapping between two queries (minsup = 3%) 
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Fig. 5. Execution times for different levels of overlapping between two queries (minsup = 5%) 

6   Conclusions 

In this paper we considered the problem of optimizing batches of frequent itemset 
queries. We presented a novel batch processing technique, improving the previously 
proposed Mine Merge method. The new technique, called PMM+, combines disk-
based dataset partitioning of Mine Merge with memory-based partitioning of the 
Partition frequent itemset mining algorithm. PMM+ minimizes I/O costs by 
performing exactly two scans over the union of datasets of frequent itemset queries 
forming a batch. The experiments show that PMM+ always performs better than the 
original Mine Merge and outperforms sequential processing in majority of cases.  
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