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Abstract. Conceptual clustering is a discovery process that groups a set of data in 
the way that the intra-cluster similarity is maximized and the inter-cluster similarity is 
minimized. Traditional clustering algorithms employ some measure of distance 
between data points in n-dimensional space. However, not all data types can be 
represented in a metric space, therefore no natural distance function is available for 
them. We address the problem of clustering sequences of categorical values. We 
present a measure of similarity for the sequences and an agglomerative hierarchical 
algorithm that uses frequent sequential patterns found in the database to efficiently 
generate the resulting clusters. The algorithm iteratively merges smaller, similar 
clusters into bigger ones until the requested number of clusters is reached.  

1 Introduction 

Clustering is one of the most popular data mining methods [5] [6] [8] [9] [10] [11] 
[13] [14] [22] [23] [27]. It consists in discovering interesting data distributions and 
patterns in very large databases. The problem of clustering is to partition a set of k data 
objects into n clusters such that the data objects within a cluster are closer (more 
similar) to each other than data objects in different clusters. Clustering is often used for 
market segmentation, in which the customers are divided into groups based on the 
similarity of their characteristics. Market segmentation is commonly used in targeted 
marketing and advertising, where specific products are directed towards specific 
customer segments. Other applications of clustering cover catalog design, store layout, 
stock market segmentation, buying patterns prediction, etc. 
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Clustering techniques developed in literature usually partition points in 
d-dimensional metric space into n clusters c1, c2, ..., cn optimizing some distance-based 
criterion function. The most commonly used criterion is the square-error criterion 
defined as follows: 
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where mi is the mean of cluster ci, p is a data point, and E is the square error. There are 
two major groups of clustering algorithms: partitional and agglomerative. Partitional 
algorithms start with a single cluster containing all data objects and iteratively divide it 
into smaller clusters, while agglomerative algorithms start with one-object clusters and 
iteratively merge them.  

In this paper we address the problem of clustering event sequences, where each 
event is represented by a set of categorical values (values that cannot be naturally 
ordered by a metric, e.g. products purchased in a supermarket). We notice that this 
problem cannot be solved using traditional distance-based clustering methods because: 
1. the sequences are variable-length, 2. the sequences cannot be represented in a d-
dimensional metric space, and 3. no natural distance function is available. Algorithms 
for clustering categorical data that have been proposed recently are not suitable either, 
as they cannot take advantage of sequential dependencies in data. Moreover, most of 
them do not provide descriptions for discovered clusters, which we believe is very 
important. Although similarity measures and clustering algorithms were proposed for 
other kinds of sequential data, such as time series or strings, they are not applicable for 
event sequences, which have a significantly different nature.  

Consider a database of event sequences, where each event is described by a set of 
categorical values. An example of such database is a customer purchase history given 
in Figure 1a with its transformed form given in Figure 1b, where an ordered set of 
purchased products is stored for each customer. Assume that the problem is to cluster 
the sequences into two clusters, containing the customers having similar purchase 
histories. The basic question here is: how to measure the similarity of two customer’s 
sequences? It seems that e.g. the sequences 101 and 105 are similar since they both 
contain the same subsequence ‘book → c_disk’. But what can we say about the 
similarity of the sequences e.g. 102 and 103? We argue that these two sequences also 
can be considered similar, since there is a sequence (104) which contains both the 
subsequence that is common to 102 (‘bicycle → b_ball’) and the subsequence that is 
common to 103 (‘tv_set → vcr → cassette’). In general, we assume that two sequences 
are similar if either they contain the identical subsequences, or there exists a 
connecting path (Figure 1c) through a set of other sequences. In our example, the best 
solution would be to put the customers 101 and 105 into one cluster and the customers 
102, 103, 104 into the other. Notice that the similarity between two sequences always 
depends on the presence of other sequences contributing to connecting paths. Because 
of that, we do not formalize the similarity measure between two sequences. Instead, we 
directly introduce a criterion function that represents the quality of clustering. A cluster 
in our approach is a set of data sequences such that within the set several subsequences 
occur much more frequently than outside the set. Quality of clustering depends on how 
frequently subsequences which are typical for a given cluster occur in other clusters. 
We do not consider all possible subsequences that can be extracted from the database, 



because their number is likely to be very large. We concentrate on subsequences that 
frequently occur in the database, called sequential patterns [3] [25]. There exist a 
number of fast algorithms for discovering sequential patterns and we can use any of 
them as the preprocessing step. 

We propose a heuristic algorithm for discovering an arbitrary number of possibly 
overlapping clusters that hold the customers, whose behavior is similar to each other. 
We refer to our clustering method as to partial clustering, because we allow the 
customers who are not similar to any other not to be covered by any cluster, and we 
allow a customer to belong to more than one cluster. We believe that for clustering 
customers based on their behavior, hard membership algorithms leading to disjoint 
clusters are not suitable, because a given client may follow buying patterns typical for 
several classes of customers. It is even possible that a single customer sequence may 
present products bought by different family members sharing one frequent buyer’s 
card. The goal of our algorithm is not only to divide the customers’ sequences into 
clusters, but also to develop a clustering model that can be used in the future to classify 
unknown sequences. In our model a single sequence may belong to several clusters.  

Our clustering algorithm is agglomerative in nature. It starts with a number of 
small clusters and merges them together to reach the given number of resulting 
clusters. In the initial set of clusters, each cluster corresponds to one frequent pattern 
and contains all sequences supporting it. Clusters are iteratively merged according to 
the set similarity measure called Jaccard coefficient [15] applied to their contents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1a. Example database 
 
The paper is organized as follows. In Section 2, we present related work in the 

area. The basic definitions and the formulation of the problem are given in Section 3. 
Section 4 contains the problem decomposition and the description of the algorithm for 

time cust_id item 
03/18 101 lamp 
03/18 104 bicycle 
03/19 102 t_rocket 
03/21 101 l_bulb 
03/21 102 bicycle 
03/27 101 pillow 
04/01 103 tv_set 
04/03 104 tv_set  
04/06 105 book 
04/06 101 book 
04/11 101 c_disk 
04/15 105 c_disk 
04/16 102 b_ball 
04/17 102 s_bindings 
04/17 103 vcr 
04/17 104 b_ball 
04/20 105 Dryer 
04/22 103 c_phone 
04/24 104 vcr 
04/25 103 cassette 
04/26 104 cassette 
04/28 105 lamp 
04/29 105 pillow 
04/30 105 d_washer 

 

cust_id sequence 
101 lamp → l_bulb → pillow → book → c_disk  
102 t_rocket → bicycle → b_ball → s_bindings 
103 tv_set → vcr → c_phone → cassette 
104 bicycle → tv_set → b_ball → vcr → cassette 
105 book → c_disk → dryer → lamp → pillow → d_washer 

 Fig. 1b. Transformed form of the example database 

 
t_rocket → bicycle → b_ball → s_bindings

tv_set → vcr → c_phone → cassette

bicycle → tv_set → b_ball → vcr → cassette

 
Fig. 1c. The idea of connecting path. 

 
 



pattern-oriented clustering. The idea behind our algorithm is illustrated by a detailed 
example. In Section 5 we present our experimental results on synthetic data. We 
conclude with a summary and directions for future work in Section 6. 

2 Related work 

Many clustering algorithms have been proposed in the area of machine learning 
[7] [12] [15] and statistics [18]. Those traditional algorithms group the data based on 
some measure of similarity or distance between data points. They are suitable for 
clustering data sets that can be easily transformed into sets of points in n-dimensional 
space. Most of these algorithms are effective when the dimensionality of the space (the 
number of variables describing objects) is relatively small. Traditional algorithms also 
have problems with clusters having non-spherical shapes. They were not optimized for 
large databases and are not appropriate for categorical data.  

In recent years, a number of clustering algorithms for large databases has been 
proposed. In [22], a clustering method based on randomized search, called CLARANS 
has been introduced. CLARANS was dedicated to solve problems of data mining in 
spatial databases. The problem of clustering in large spatial databases was also 
addressed in [5] and [6]. In [27], the authors presented a clustering method named 
BIRCH, which required a little more than one scan of the data. In [10], the hierarchical 
clustering algorithm named CURE was presented. The algorithm was designed for 
identifying clusters having non-spherical shapes. 

Recently, several clustering algorithms for categorical data have been proposed. In 
[13] and [14], a method for hypergraph-based clustering of transaction data in a high 
dimensional space has been presented. The method used frequent itemsets to cluster 
items. Discovered clusters of items were then used to cluster customer transactions. In 
[23], a method for clustering data without distance functions was considered, and the 
proposed algorithm tried to group together records that had frequently co-occurring 
items. The implementation of the algorithm was similar to the one from [13] and [14].  

In [9] a novel approach to clustering collections of sets and its application to the 
analysis and mining of categorical data was described. The proposed algorithm 
facilitated a type of similarity measure arising from the co-occurrence of values in the 
data set. This similarity measure was transitive in such a way that if A and B are 
similar and so are B and C there is said to be a weak type of similarity between A and 
C. This approach was applied to analysis of sequential data by looking for co-
occurrences of events close in time, regardless of their ordering. In [11] an 
agglomerative hierarchical clustering algorithm called ROCK was introduced. The 
algorithm heuristically optimizes a criterion function based on links between tuples. 
The number of links between tuples depends on the number of common neighbors. In 
[8] an algorithm named CACTUS was presented together with the definition of a 
cluster for categorical data which is the generalization of the definition for numerical 



data. The algorithm is fast and scalable. In contrast with the previous approaches to 
clustering categorical data, CACTUS gives formal descriptions of discovered clusters. 

Many similarity measures that can be applied in clustering algorithms were 
presented for time series (see e.g. [1]). Similarity between two time series depends on 
the distances between corresponding elements, which are numbers. Elements of event 
sequences are sets of categorical values for which no distance function is available.  

Another type of sequences, whose similarity has been extensively studied in 
literature, are strings (see e.g. [26]). A widely used notion of string similarity is the 
edit distance, which is expressed as the minimum number of insertions, deletions, and 
substitutions to transform one string into the other. We believe that the edit distance is 
not a good similarity measure for event sequences, because event sequences are likely 
to contain elements that correspond to very rare actions, which should be treated as 
noise. We also claim that sequence elements that are different but seem to be related, 
because they frequently co-occur together, should contribute to the similarity measure 
between sequences. The edit distance measure cannot take that into account. 

Significant research has been done in the area of clustering of multivariate data 
with dynamic behavior using hidden Markov models [24]. However, Markov chains 
are not applicable in our problem, because they focus on direct precedence of events 
only. 

Sequential dependencies are also taken into account in the problem of protein 
clustering [17], but the similarity measures considered there are based on common 
contiguous subsequences. We take into account only the ordering between events, not 
considering their distance in time. 

The most similar approach to ours is probably the approach to document 
clustering proposed in [4]. The most significant difference between their similarity 
measure and ours is that we look for the occurrence of variable-length subsequences 
and concentrate only on frequent ones. 

The problem of clustering sequences of complex objects was addressed in [16]. 
The clustering method presented there used class hierarchies discovered for objects 
forming sequences in the process of clustering sequences seen as complex objects. The 
approach assumed applying some traditional clustering algorithm to discover classes of 
sub-objects, which makes it suitable for sequences of objects described by numerical 
values, e.g. trajectories of moving objects.  

Most of the research on sequences of events concentrated on the discovery of 
frequently occurring patterns. The problem of mining frequent patterns in a set of data 
sequences was first introduced in [3] and three different algorithms were given. The 
class of patterns considered there, called sequential patterns, had a form of sequences 
of sets of items. The statistical significance of a pattern (called support) was measured 
as a percentage of data sequences containing the pattern. In [25], the problem was 
generalized by adding taxonomy (is-a hierarchy) on items and various time constraints.  

Another approach to the problem of mining frequent patterns in event sequences 
was presented in [21], where discovered patterns (called episodes) could have different 
type of ordering: full (serial episodes), none (parallel episodes) or partial and had to 
appear within a user-defined time window. The episodes were mined over a single 
event sequence and their statistical significance was measured as a percentage of 
windows containing the episode (frequency) or as a number of occurrences. In [20], 



the model was extended to handle episodes described by a set of unary and binary 
predicates on event attributes.  

In [19] an interesting approach to sequence classification was presented. In the 
approach, sequential patterns were used as features describing objects and standard 
classification algorithms were applied. To reduce the number of features used in the 
classification process, only distinctive (correlated with one class) patterns were taken 
into account. 

3 Problem formulation 

In this section, we formulate the problem of clustering of event sequences. 
 
Definition 3.1. Let L = {l1, l2, ..., lm} be a set of literals called items. A sequence 

S = <X1 X2 ... Xn> is an ordered list of sets of items such that each set of items Xi ⊆ L. 
Let the database D be a set of sequences. 

 
Definition 3.2. We say that the sequence S1 = <Y1 Y2 ... Ym> supports the sequence 

S2 = <X1 X2 ... Xn> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2 ⊆ Yi2, ..., 
Xn ⊆ Yin. We also say that the sequence S2 is a subsequence of the sequence S1 (denoted 
by S2 ⊂ S1). 
 

Definition 3.3. A frequent pattern is a sequence that is supported by more than a 
user-defined minimum number of sequences in D.  Let P be a set of all frequent 
patterns in D. 

 
Definition 3.4. A cluster c is an ordered pair <Q,S>, where Q ⊆ P and S ⊆ D, and 

S is a set of all database sequences supporting at least one pattern from Q. We call Q a 
cluster description, and S a cluster content. We use a dot notation to refer to a cluster 
description as to c.Q and to a cluster content as to c.S. 

 
In order to measure, how much a sequence matches a cluster, we introduce the 

error function. The function takes the minimum value of 0 when a sequence matches 
the cluster perfectly. 
 

Definition 3.5. Given the set of clusters C, the error function err(c,s) for a cluster 
c and a sequence s is defined as follows: 
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In other words, the error of placing a sequence s in a cluster c is equal to the 
number of patterns, which define c but are not supported by s, plus the number of 
patterns, which define the other clusters but are supported by s. The perfect match of a 



sequence s and a cluster c occurs when s supports all patterns from c and none of the 
patterns from any other cluster.  

 
Problem statement. Given a database D = {s1, s2, ..., sk} of data sequences, and a 

set P = {p1, p2, ..., pm} of frequent patterns in D, the problem is to divide P into a set of 
n clusters c1, c2, …, cn, such that ∅=∩∀
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is minimized. 

4 Pattern-oriented hierarchical clustering 

In this section, we describe a new clustering algorithm POPC for clustering large 
volumes of sequential data. The algorithm implements the general idea of 
agglomerative hierarchical clustering. However, instead of starting with a set of 
clusters containing one data sequence each, our algorithm uses previously discovered 
frequent patterns and starts with clusters containing data sequences supporting the 
same frequent pattern. We assume that a set of frequent patterns has already been 
discovered. 
 Before we present the clustering algorithm itself, we provide a formal definition of 
a union of two clusters, which is the result of merging two clusters together. We also 
give a formula that serves as inter-cluster similarity used to determine the order in 
which clusters are merged. 
 

Definition 4.1 A union cab of the two clusters ca and cb is defined as follows: 
cab = union(ca, cb) = < ca.Q ∪ cb.Q , ca.S ∪ cb.S > 

 
Definition 4.2 Inter-cluster similarity between two clusters ca and cb is a Jaccard 

coefficient applied to cluster contents: 
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The above similarity function reflects co-occurrence of patterns describing two 

clusters (the size of the intersection of the cluster contents represents the number of 
sequences containing at least one pattern from each of the two cluster descriptions). It 
returns values from the range of <0;1>, where the value of 1 means that the clusters 
are identical while the value of 0 means that the clusters exhibit no similarity at all. 



The inter-cluster similarity measure was chosen so that it reduces the number of 
sequences supporting patterns associated with other clusters. 

4.1 Algorithm POPC 

The algorithm for partial clustering based on frequently occurring patterns is 
decomposed into two following phases:  
• Transformation Phase, which prepares the database for effective similarity 

evaluations, 
• Merge Phase, which iteratively reduces the number of clusters by merging the 

most similar ones. 

4.1.1 Transformation phase 

In this phase, the database is transformed into a pattern-oriented form, which is 
more suitable for evaluating unions and intersections of cluster contents (used in the 
Merge Phase). For each frequent pattern we keep an ordered list of data sequences 
supporting the pattern. Each data sequence is represented by its identifier, e.g. in our 
example of sequences corresponding to lists of products bought by clients of a 
supermarket, a sequence could be identified by a unique identifier of a client. 
Sequences that do not support any frequent pattern are ignored.  

Each pattern, together with the list of sequences supporting it, constitutes a cluster 
whose description is a set that contains the pattern as its only element. The cluster's 
content is made up of a set of data sequences from the list.  

The proposed database representation simplifies evaluation of inter-cluster 
similarities. There is no need to refer to the original database in subsequent phases of 
the algorithm. Moreover, the size of the transformed database reduces as clusters are 
being merged together. When the process is finished, the database contains the result 
of clustering (descriptions and contents of the discovered clusters). 

4.1.2 Merge phase 

Figure 2 presents the Merge Phase of the clustering algorithm. First, the m patterns 
are mapped into m clusters, forming an initial set of clusters C1, where each cluster is 
described by exactly one pattern. In the next step, the similarity function values are 
evaluated for all possible combinations of clusters. The similarity values are stored in 
a form of a matrix M1. Next, the algorithm iteratively merges together pairs of clusters 
according to their similarity values and cluster contents' sizes. In each iteration k, the 



two most similar clusters ca,cb ∈ Ck are determined, and replaced by a new cluster 
cab = union(ca ,cb). If there are several pairs of clusters having maximal similarity 
values, then the two clusters having the smallest contents are merged. The actual 
merging is done by the function called cluster, described in detail in Section 4.1.4. 
When the new cluster is created, the matrix containing similarity values has to be re-
evaluated. This operation is performed by means of the function called simeval, 
described in Section 4.1.3.  

The Merge Phase stops when the number of clusters reaches n (the required 
number of clusters) or when there is no such pair of clusters ca,cb ∈ Ck whose 
similarity is greater than 0. The latter condition implies that the algorithm may 
discover a larger number of clusters than requested by a user. In this case, the number 
of discovered clusters (as well as the fraction of the original database covered by them) 
depends on the number and strength of frequent patterns used for clustering. If the 
quality of clustering is unsatisfactory, the clustering should be repeated with a higher 
number of frequent patterns (a set of patterns satisfying a lower frequency threshold). 

C1 = {ci: ci.Q={pi}, ci.S={sj: sj∈D ∧ sj supports pi}}; 
M1 = simeval(C1, ∅); 
k=1; 
while |Ck| > n and exist ca,cb ∈ Ck such that f(ca,cb) > 0 do begin 

Ck+1 = cluster(Ck, Mk); 
Mk+1 = simeval(Ck+1, Mk); 
k++; 

end; 
Answer =Ck; 

Fig. 2. Merge phase 

4.1.3 Similarity matrix evaluation: simeval  

Similarity matrix Ml stores the values of the inter-cluster similarity function for all 
possible pairs of clusters in an l-th algorithm iteration. The cell Ml(x,y) represents the 
similarity value for the clusters cx and cy from the cluster set Cl (see example in Figure 
3). The function simeval computes the values of the similarity matrix Ml+1, using both 
the similarity matrix Ml and the current cluster contents. Notice that in all iterations 
except the first one, the similarity matrix need not be completely re-computed. Only 
the similarity values concerning the newly created cluster have to be evaluated. Due to 
diagonal symmetry of the similarity matrix, for k clusters, only (k2-k)/2 similarity 
function values need to be computed before the first iteration, and only (k-1) in the 
subsequent ones. 

In each iteration, the size of the matrix decreases since two rows and two columns 
corresponding to the clusters merged to form a new one are removed and only one 
column and one row are added for a newly created cluster. 



 
- f(c2, c1) f(c3, c1) f(c1,c2) = f(c2, c1) 

f(c1,c2) - f(c3, c2) f(c1,c3) = f(c3, c1) 
f(c1,c3) f(c2, c3) - f(c2, c3) = f(c3, c2) 

Fig. 3. Structure of the similarity matrix for three clusters 

4.1.4 Cluster merging: cluster  

In each iteration, the number of processed clusters decreases by one. The 
similarity-based merging is done by the function called cluster. The function cluster 
scans the similarity matrix and finds pairs of clusters, such that their similarity is 
maximal. If there are many pairs of clusters that reach the maximal similarity values, 
then the function cluster selects the one with the smallest size of the union of their 
contents. Notice that no access to the original database is required to perform this 
phase of the algorithm. The function cluster takes a set of clusters Ck as one of its 
parameters and returns a set of clusters Ck+1 such that Ck+1 = (Ck \ {ca, cb}) ∪ {cab}, 
where ca,cb ∈ Ck are clusters chosen for merging and cab = union(ca,cb). 

4.2 Sequence classification 

Having discovered the clusters, we can use the clustering model, represented by 
cluster descriptions, to classify new event sequences. For each new event sequence, we 
look for frequent patterns supported by it. If a sequence supports a pattern from a 
cluster’s description, it is assigned to that cluster. If a sequence supports patterns from 
descriptions of more than one cluster it is mapped to all of them. Taking into account 
the number of patterns in each cluster’s description that are supported by a given 
sequence, we could compute membership probability of the sequence in each cluster 
(based on the error function err). For example, in this way we can perform market 
segmentation on a customer purchase history database, and later we can easily classify 
new customers into the discovered market segments (clusters). 

4.3 Example 

Consider a database of customer transactions shown in Figure 4. For each 
transaction, we keep the transaction’s time, items bought in the transaction and a 
unique customer identifier. Let us assume that a user wants to cluster customers who 



follow similar frequent buying patterns into three clusters. Figure 5 presents an 
alternative representation of the database, where an ordered set of purchased items is 
given for each customer. Figure 6 shows frequent sequential patterns discovered in the 
database from Figure 4 (with a support threshold of 25%). The clustering algorithm 
starts with the Transformation Phase, which results in the initial set of clusters shown 
in Figure 7. 

 
Customer Id Transaction Time Items Bought 

1 
1 
1 
1 

October 10 1998 
December 10 1998 
December 15 1998 
February 19 1999 

10 60 
20 30 
40 
50 

2 
2 
2 
2 

November 10 1998 
November 21 1998 
December 12 1998 
January 18 1999 

40 
50 
10 
20 30 70 

3 
3 
3 
3 
3 

October 15 1998 
November 29 1998 
December 14 1998 
January 22 1999 
February 11 1999 

40 
50 
10 
80 
20 30 

4 
4 

December 20 1998 
February 4 1999 

10 
20 

5 February 12 1999 80 
6 
6 

November 1 1998 
November 22 1998 

10 
30 90 

7 February 1 1999 20 30 
8 
8 

October 10 1998 
November 22 1998 

60 
100 

9 January 12 1999 100 
10 January 21 1999 90 100 

Fig. 4. Database sorted by Customer ID and Transaction Time 

 
 
 
 
 
 
 
 
 

 

 

 

ID Customer sequence  
1 < (10 60) (20 30) (40) (50) > 
2 < (40) (50) (10) (20 30 70) > 
3 < (40) (50) (10) (80) (20 30) > 
4 < (10) (20) > 
5 < (80) > 
6 < (10) (30 90) > 
7 < (20) (30) > 
8 < (60) (100) > 
9 < (100) > 
10 < (90 100) > 

Fig. 5. Customer-sequence 
representation of the database 

Patterns with support > 25% 
p1 
p2 
p3 
p4 
p5 
p6 
p7 
p8 
p9 
p10 
p11 

< (10) (20 30) > 
< (10) (20) > 
< (10) (30) > 
< (20 30) > 
< (10) > 
< (20) > 
< (30) > 
< (40) (50) > 
< (40) > 
< (50) > 
< (100) > 

Fig. 6. Pattern set used for 
clustering 



Fig. 7. Pattern-oriented representation of the database 

Before the first iteration of the Merge Phase the similarity matrix should be build. 
The similarity matrix for the initial set of clusters from Figure 7 is shown in Figure 8. 

 
 ca cb cc cd ce cf cg ch ci cj ck 

ca x 0.75 0.75 0.75 0.6 0.6 0.6 1 1 1 0 
cb 0.75 x 0.6 0.6 0.8 0.8 0.5 0.75 0.75 0.75 0 
cc 0.75 0.6 x 0.6 0.8 0.5 0.8 0.75 0.75 0.75 0 
cd 0.75 0.6 0.6 x 0.5 0.8 0.8 0.75 0.75 0.75 0 
ce 0.6 0.8 0.8 0.5 x 0.66 0.66 0.6 0.6 0.6 0 
cf 0.6 0.8 0.5 0.8 0.66 x 0.66 0.6 0.6 0.6 0 
cg 0.6 0.5 0.8 0.8 0.66 0.66 x 0.6 0.6 0.6 0 
ch 1 0.75 0.75 0.75 0.6 0.6 0.6 x 1 1 0 
ci 1 0.75 0.75 0.75 0.6 0.6 0.6 1 x 1 0 
cj 1 0.75 0.75 0.75 0.6 0.6 0.6 1 1 x 0 
ck 0 0 0 0 0 0 0 0 0 0 x 

Fig. 8. Initial similarity matrix 

In the first iteration there are six pairs of clusters having maximal similarity 
(similarity = 1): (ca, ch), (ca, ci), (ca, cj), (ch, ci), (ch, cj) and (ci, cj). Since all the six 
pairs have the same sum of cluster contents' sizes, any of them can be chosen for 
merging (the actual choice may depend on a particular implementation of the 
algorithm). In this example we assume that a pair of clusters first found during a scan 
of the similarity matrix (performed row after row, from left to right) is chosen in such 
situations. This leads to selecting (ca, ch) as the first pair of clusters to be merged. In 
the next two iterations clusters having similarity = 1 are merged to form cahij. The 
database and the similarity matrix after the third iteration are shown in Figure 9. In a 
practical implementation of the algorithm, it would be desirable to look for sets of 
clusters having similarity = 1 for each pair of clusters from a given set, because such 
groups of clusters could be merged in a single iteration. In our example, clusters ca, ch, 
ci, and cj could be merged at once. 

In the fourth iteration, we merge the clusters cb and ce (see Figure 10). In the fifth 
iteration, the clusters cbe and cc are merged to form the intermediate result presented in 
Figure 11. Then, the merging of the cluster clusters cd and cf in the sixth iteration leads 
to the state illustrated by Figure 12. 

 
 
 

Cluster Description Sequences 
ca 
cb 
cc 
cd 
ce 
cf 
cg 
ch 
ci 
cj 
ck 

p1 
p2 
p3 
p4 
p5 
p6 
p7 
p8 
p9 
p10 
p11 

1, 2, 3 
1, 2, 3, 4 
1, 2, 3, 6 
1, 2, 3, 7 
1, 2, 3, 4, 6 
1, 2, 3, 4, 7 
1, 2, 3, 6, 7 
1, 2, 3 
1, 2, 3 
1, 2, 3 
8, 9, 10 



 
 
 
 
 
 

 

Fig. 9. Database and similarity matrix after 3 iterations 

 
 
 
 
 

 
Fig. 10. Database and similarity matrix after 4 iterations 

 
 
 
 
 

Fig. 11. Database and similarity matrix after 5 iterations 

 
 
 
 
 

Fig. 12. Database and similarity matrix after 6 iterations 

 
 
 
 

Fig. 13. Database and similarity matrix after 7 iterations 

 
 

 

Fig. 14. Database and similarity matrix after 8 iterations 

Cluster Description Sequences 
cahij 
cb 
cc 
cd 
ce  
cf 
cg 
ck 

p1, p8,  p9,  p10 
p2 
p3 
p4 
p5 
p6 
p7 
p11 

1, 2, 3 
1, 2, 3, 4 
1, 2, 3, 6 
1, 2, 3, 7 
1, 2, 3, 4, 6 
1, 2, 3, 4, 7 
1, 2, 3, 6, 7 
8, 9, 10 

 

 cahij cb cc cd ce cf cg ck 
cahij x 0.75 0.75 0.75 0.6 0.6 0.6 0 
cb 0.75 x 0.6 0.6 0.8 0.8 0.5 0 
cc 0.75 0.6 x 0.6 0.8 0.5 0.8 0 
cd 0.75 0.6 0.6 x 0.5 0.8 0.8 0 
ce 0.6 0.8 0.8 0.5 x 0.66 0.66 0 
cf 0.6 0.8 0.5 0.8 0.66 x 0.66 0 
cg 0.6 0.5 0.8 0.8 0.66 0.66 x 0 
ck 0 0 0 0 0 0 0 x 

Cluster Description Sequences 
cahij 
cbce 
cd 
cf 
cg 
ck 

p1,  p8,  p9,  p10  
p2,  p3,  p5  
p4 
p6 
p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6 
1, 2, 3, 7 
1, 2, 3, 4, 7 
1, 2, 3, 6, 7 
8, 9, 10 

 

 cahij cbce cd cf cg ck 
cahij x 0.6 0.75 0.6 0.6 0 
cbce 0.6 x 0.5 0.66 0.66 0 
cd 0.75 0.5 x 0.8 0.8 0 
cf 0.6 0.66 0.8 x 0.66 0 
cg 0.6 0.66 0.8 0.66 x 0 
ck 0 0 0 0 0 x 

 

Cluster Description Sequences 
cahij 
cbce 
cdf 
cg 
ck 

p1,  p8,  p9,  p10
p2,  p3,  p5 
p4,  p6 
p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6 
1, 2, 3, 4, 7 
1, 2, 3, 6, 7 
8, 9, 10 

 

 cahij cbce cdf cg ck 
cahij x 0.6 0.6 0.6 0 
cbce 0.6 x 0.66 0.66 0 
cdf 0.6 0.66 x 0.66 0 
cg 0.6 0.66 0.66 x 0 
ck 0 0 0 0 x 

 

Cluster Description Sequences 
cahij 
cbcdef 
cg 
ck 

p1,  p8,  p9,  p10 
p2,  p3,  p4,  p5,  p6 
p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6, 7 
1, 2, 3, 6, 7 
8, 9, 10 

 cahij cbcdef cg ck 
cahij x 0.5 0.6 0 
cbcdef 0.5 x 0.83 0 

cg 0.6 0.83 x 0 
ck 0 0 0 x 
 

Cluster Description Sequences 
cahij 
cbcdefg 
ck 

p1,  p8,  p9,  p10 
p2, p3, p4, p6, p5, p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6, 7 
8, 9, 10 

 

 cahij cbcdefg ck 
cahij x 0.5 0 

cbcdefg 0.5 x 0 
ck 0 0 x 

Cluster  Description Sequences 
cahij 
cbe 
cc 
cd 
cf  
cg 
ck 

p1,  p8,  p9,  p10  
p2,  p5 
p3 
p4 
p6 
p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6 
1, 2, 3, 6 
1, 2, 3, 7 
1, 2, 3, 4, 7 
1, 2, 3, 6, 7 
8, 9, 10 

 

 cahij cbe cc cd cf cg ck 
cahij x 0.6 0.75 0.75 0.6 0.6 0 
cbe 0.6 x 0.8 0.5 0.66 0.66 0 
cc 0.75 0.8 x 0.6 0.5 0.8 0 
cd 0.75 0.5 0.6 x 0.8 0.8 0 
cf 0.6 0.66 0.5 0.8 x 0.66 0 
cg 0.6 0.66 0.8 0.8 0.66 x 0 
ck 0 0 0 0 0 0 x 



The results of the seventh and eighth iterations are presented in Figures 13 and 14. 
After the eighth iteration, the requested number of clusters is reached and the Merge 
Phase ends. Figure 15 presents final clustering results. 

 
Cluster  Description Customer Sequences 
1 
2 
3 

p1,  p8,  p9,  p10 
p2, p3, p4, p6, p5, p7 
p11 

1, 2, 3 
1, 2, 3, 4, 6, 7 
8, 9, 10 

Fig. 15. Discovered clusters 

The algorithm found three clusters, two of which overlap (the content of one of 
them even includes the content of the other, but their descriptions do not imply that). 
Data sequence of the customer 5 is not contained in any cluster because it did not 
support any frequent pattern, which is a consequence of the fact that the customer did 
not follow any typical buying pattern. 

5 Experimental results 

To assess the performance and results of our clustering algorithm, we performed 
several experiments on a PC with Pentium II 300 MHz processor and 128 MB of main 
memory, cooperating with Oracle 8.1.5 relational database management system on 
another PC with Pentium II 300 MHz processor and 128 MB of main memory. 
Experimental data sets were created by synthetic data generator GEN from Quest 
project [2]. GEN generates textual data files containing sets of numerical items.  

Fig. 16. Execution time for different 
database sizes 

Fig. 17. Execution time for different 
number of resulting clusters 

 
Figure 16 shows the performance of the clustering algorithm for different database 
sizes expressed as the number of sequences in the database. In the experiment, for all 
the database sizes the data distribution was the same, which resulted in the same set of 
patterns used for clustering. The support threshold for sequential patterns was set to 
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4%. The algorithm scales linearly with the number of source sequences, which makes 
it suitable for large databases. The key factor is that the number of frequent patterns 
(equal to the number of initial clusters in our approach) does not depend on the 
database size but on the data distribution only. The execution time depends linearly on 
the number of input sequences, because the number of sequences supporting a given 
frequent pattern (for the same support threshold) grows linearly as the number of 
sequences in the database increases. 

Figure 17 illustrates the influence of the number of requested clusters on the 
execution time of our algorithm. In the experiment the database contained 1000 
sequences and the support threshold for sequential patterns was set to 4%. We observe 
that the execution time depends almost linearly on the number of iterations of the 
algorithm (each iteration merges one pair of clusters). We could expect the execution 
time of subsequent iterations to decrease, because the number of clusters reduces. 
However, we should notice that the size of clusters in fact increases, and it 
compensates the above feature. 

We have also evaluated the quality of results produced by our heuristic algorithm. 
Using our implementation of a combinatory algorithm to find the ideal clustering, we 
compared the ideal solution with the heuristic one and we computed the quantity of 
incorrectly clustered sequences. Due to NP-complexity of the combinatory algorithm 
we were able to perform the test for a small number of initial clusters only (10-15). 
However, the test showed that our heuristic algorithm correctly clusters c.a. 91% of 
database sequences, what seems to be a very good result.  

6 Concluding remarks 

We considered the problem of clustering sequential data in large databases. Due to 
the limitations of the existing clustering methods, we introduced the new algorithm, 
which uses frequent patterns to generate both clustering model and cluster contents. 
The algorithm iteratively merges smaller, similar clusters until the requested number of 
clusters is reached. In the absence of a well-defined metric space, we propose the inter-
cluster similarity measure based on co-occurrence to be used in cluster merging.  

An important feature of the algorithm is that it does not only divide the source 
sequences into clusters but also delivers a classification model that can be used to 
classify future data. Since the model is formed by a set of frequent patterns to be 
contained, the classification of a new sequence simply consists in checking if it 
contains any of the clusters’ descriptions. If the new sequence contains patterns from 
different clusters, then it belongs to many clusters with different membership 
probabilities. 



References 

1. Agrawal R., Faloutsos C., Swami A.: Efficient Similarity Search in Sequence 
Databases. In: Lomet D.B., ed. Foundations of Data Organization and Algorithms, 
4th International Conf., Proceedings. Springer, Chicago, Illinois (1993), 69-84. 

2. Agrawal, R.; Mehta, M.; Shafer, J.; Srikant, R.; Arning, A.; Bollinger, T.:  The 
Quest Data Mining System. In: Simoudis E., Han J., Fayyad U.M., eds. 
Proceedings of the Second International Conference on Knowledge Discovery and 
Data Mining. AAAI Press, Portland, Oregon (1996), 244-249. 

3. Agrawal R., Srikant R.: Mining Sequential Patterns. In: Yu P.S., Chen A.L.P., eds. 
Proceedings of the Eleventh International Conference on Data Engineering.. IEEE 
Computer Society, Taipei, Taiwan (1995), 3-14. 

4. Broder A., Glassman S., Manasse M., Zweig G.: Syntactic clustering of the Web. 
Computer Networks and ISDN Systems 29, Proceedings of the Sixth International 
World Wide Web Conference (1997), 1157-1166. 

5. Ester M., Kriegel H-P., Sander J., Xu X.: A Density-Based Algorithm for 
Discovering Clusters in Large Spatial Databases with Noise. In: Simoudis E., Han 
J., Fayyad U.M., eds. Proceedings of the 2nd International Conf. on Knowledge 
Discovery and Data Mining. AAAI Press, Portland, Oregon (1996), 226-231. 

6. Ester M., Kriegel H-P., Xu X.: A Database Interface for Clustering in Large 
Spatial Databases. In: Fayyad U.M., Uthurusamy R., eds. Proceedings of the First 
International Conference on Knowledge Discovery and Data Mining. AAAI Press, 
Montreal, Canada (1995), 94-99. 

7. Fisher D.H.: Knowledge acquisition via incremental conceptual clustering. 
Machine Learning 2 (1987) 139-172. 

8. Ganti V., Gehrke J., Ramakrishnan R.: CACTUS-Clustering Categorical Data 
Using Summaries. In: Proceedings of the Fifth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. ACM, San Diego, 
California (1999), 73-83. 

9. Gibson D., Kleinberg J.M., Raghavan P.: Clustering Categorical Data: An 
Approach Based on Dynamical Systems. In: Gupta A., Shmueli O., Widom J., eds. 
Proceedings of 24th International Conference on Very Large Data Bases. Morgan 
Kaufmann, New York City, New York (1998), 311-322. 

10. Guha S., Rastogi R., Shim K.: CURE: An Efficient Clustering Algorithm for Large 
Databases. In: Haas L.M., Tiwary A., eds. Proceedings ACM SIGMOD 
International Conference on Management of Data. ACM Press, Seattle, 
Washington (1998), 73-84. 

11. Guha S., Rastogi R., Shim K.: ROCK: A Robust Clustering Algorithm for 
Categorical Attributes. In: Proceedings of the 15th International Conference on 
Data Engineering. IEEE Computer Society Press, Sydney, Australia (1999), 512-
521. 

12. Hartigan J.A.: Clustering Algorithms. John Wiley & Sons, New York, 1975. 
13. Han E., Karypis G., Kumar V., Mobasher B.: Clustering based on association rules 

hypergraphs. In: Proccedings of SIGMOD’97 Workshop on Research Issues in 
Data Mining and Knowledge Discovery. (1997). 



14. Han E., Karypis G., Kumar V., Mobasher B.: Hypergraph Based Clustering in 
High-Dimensional Data Sets: A summary of Results. Bulletin of the IEEE 
Computer Society Technical Committee on Data Engineering, 21 (1998),  no. 1 
15-22.  

15. Jain A.K., Dubes R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood 
Cliffs, New Jersey, 1988. 

16. Ketterlin A.: Clustering Sequences of Complex Objects. In: Heckerman D., 
Mannila H., Pregibon D., eds. Proceedings of the Third International Conference 
on Knowledge Discovery and Data Mining. AAAI Press, Newport Beach, 
California (1997), 215-218. 

17. Krogh A., Brown M., I. Mian S., Sjölander K., Haussler D.: Hidden Markov 
Models in Computational Biology: Applications to Protein Modeling. Journal of 
Molecular Biology 235 (1994), no. 5 1501-1531. 

18. Kaufman L., Rousseeuw P.: Finding Groups in Data. John Wiley & Sons, New 
York, 1989. 

19. Lesh N., Zaki M.J., Ogihara M.: Mining Features for Sequence Classification. In: 
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. ACM, San Diego, California (1999), 342-346. 

20. Mannila H., Toivonen H.: Discovering generalized episodes using minimal 
occurrences. In: Simoudis E., Han J., Fayyad U.M., eds. Proceedings of the 
Second International Conference on Knowledge Discovery and Data Mining. 
AAAI Press, Portland, Oregon (1996), 146-151. 

21. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in 
sequences. In: Fayyad U.M., Uthurusamy R., eds. Proceedings of the First 
International Conference on Knowledge Discovery and Data Mining. AAAI Press, 
Montreal, Canada (1995), 210-215. 

22. Ng R.T., Han J.: Efficient and effective clustering methods for spatial data mining. 
In: Bocca J.B., Jarke M., Zaniolo C., eds. Proceedings of the 20th International 
Conference on Very Large Data Bases. Morgan Kaufmann, Santiago de Chile, 
Chile (1994), 144-155. 

23. Ramkumar G. D., Swami A.: Clustering Data without Distance Functions. Bulletin 
of the IEEE Computer Society Technical Committee on Data Engineering 21 
(1998) no. 1 9-14. 

24. Smyth P.: Clustering sequences with hidden Markov models. In: Mozer M.C., 
Jordan M.I., Petsche T., eds. Advances in Neural Information Processing 9. MIT 
Press (1997), 648. 

25. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and 
Performance Improvements. In: Apers P.M.G., Bouzeghoub M., Gardarin G., eds. 
Advances in Database Technology, 5th International Conference on Extending 
Database Technology, Proceedings. Springer, Avignon, France (1996), 3-17. 

26. Sankoff D., Kruskal J.B., eds.: Time warps, string edits, and macromolecules: the 
theory and practice of sequence comparison. Addison-Wesley, Reading, 
Massachusetts, 1983. 

27. Zhang T., Ramakrishnan R., Livny M.: Birch: An efficient data clustering method 
for very large databases. In: Jagadish H.V., Mumick I.S., eds. Proceedings of the 
1996 ACM SIGMOD International Conference on Management of Data. ACM 
Press,  Montreal, Canada (1996), 103-114. 


