
Dataset Filtering Techniques in
Constraint-Based Frequent Pattern Mining

Marek Wojciechowski and Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Maciej.Zakrzewicz@cs.put.poznan.pl

Abstract. Many data mining techniques consist in discovering patterns
frequently occurring in the source dataset. Typically, the goal is to dis-
cover all the patterns whose frequency in the dataset exceeds a user-
specified threshold. However, very often users want to restrict the set of
patterns to be discovered by adding extra constraints on the structure of
patterns. Data mining systems should be able to exploit such constraints
to speed-up the mining process. In this paper, we focus on improving the
efficiency of constraint-based frequent pattern mining by using dataset
filtering techniques. Dataset filtering conceptually transforms a given
data mining task into an equivalent one operating on a smaller dataset.
We present transformation rules for various classes of patterns: itemsets,
association rules, and sequential patterns, and discuss implementation
issues regarding integration of dataset filtering with well-known pattern
discovery algorithms.

1 Introduction

Many data mining techniques consist in discovering patterns frequently occurring
in the source dataset. The two most prominent classes of patterns are frequent
itemsets [1] and sequential patterns [3]. Informally, frequent itemsets are subsets
frequently occurring in a collection of sets of items, and sequential patterns are
the most frequently occurring subsequences in sequences of sets of items. Fre-
quent itemsets themselves provide useful information on the correlations between
items in the database. Nevertheless, discovered frequent itemsets are very often
treated only as the basis for association rule generation [1]. Frequent itemsets,
association rules, and sequential patterns were introduced in the context of mar-
ket basket analysis but their applications also include fraud detection, analysis
of telecommunication systems, medical records, web server logs, etc.

Typically, in frequent pattern mining the goal is to discover all patterns
whose frequency (called support) in the source dataset exceeds a user-specified
threshold. If frequent patterns discovered are to be used to generate rules, the
minimum accepted confidence of a rule also has to be specified. Additionally, in
sequential pattern discovery several time constraints have been proposed to be

used when deciding if a given pattern is contained in a given sequence from the
source dataset [10]. Since it was shown that derivation of rules from patterns is a
straightforward task, the research focused mainly on improving the efficiency of
algorithms discovering all patterns whose support in the source dataset exceeds
a user-specified threshold.

However, it has been observed that users are very often interested in patterns
that satisfy more sophisticated criteria, for example concerning size, length, or
contents of patterns. Data mining tasks involving the specification of various
types of constraints can be regarded as data mining queries [7]. It is obvious
that additional constraints regarding the structure of patterns can be verified
in a post-processing step, after all patterns exceeding a given minimum support
threshold have been discovered. Nevertheless, such a solution cannot be consid-
ered satisfactory since users providing advanced pattern selection criteria may
expect that the data mining system will exploit them in the mining process to
improve performance. In other words, the system should concentrate on pat-
terns that are interesting from the user’s point of view, rather than waste time
on discovering patterns the user has not asked for [5].

We claim that techniques applicable to constraint-driven pattern discovery
can be classified into the following groups:

1. post-processing (filtering out patterns that do not satisfy user-specified pat-
tern constraints after the actual discovery process);

2. pattern filtering (integration of pattern constraints into the actual mining
process in order to generate only patterns satisfying the constraints);

3. dataset filtering (restricting the source dataset to objects that can possibly
contain patterns that satisfy pattern constraints).

As the post-processing solution was considered unsatisfactory, the researchers
focused on incorporating pattern constraints into classic pattern discovery algo-
rithms. This led to the introduction of numerous constraint-based pattern dis-
covery methods (e.g. [4][11]), all of which fall into the second group according to
our classification. It should be noted that some of the methods from this class
generate a superset of the collection of patterns requested by user, which means
that a post-processing phase might still be required. Nevertheless, all these meth-
ods use pattern constraints to reduce the number of generated patterns, leading
to a smaller set of patterns to be verified in the post-processing step than in case
of classic algorithms.

In this paper we discuss an alternative approach to constraint-based pattern
discovery, called dataset filtering. Dataset filtering is based on the observation
that for some classes of pattern constraints, patterns satisfying them can only
be contained in objects satisfying the same or similar constraints. The key is-
sue in dataset filtering is derivation of filtering predicates to be applied to the
source dataset from pattern constraints specified by a user. Dataset filtering is
a general technique applicable to various types of patterns but for a particular
class of patterns and a given constraint model distinct derivation rules have to
provided. We focus on two types of patterns: frequent itemsets and sequential
patterns. We also discuss extensions required to handle association rules. We

assume a relatively simple constraint model with pattern constraints referring
to the size or length of patterns or to the presence of a certain subset or sub-
sequence. Nevertheless, we believe that types of constraints we consider are the
most intuitive and useful in practice.

Conceptually, dataset filtering transforms a given data mining task into an
equivalent one operating on a smaller dataset. Thus, it can be integrated with any
pattern discovery algorithm, possibly exploiting other constraint-based pattern
discovery techniques. In this paper we focus on the integration of dataset filtering
techniques within the Apriori framework. We discuss possible implementations
of dataset filtering within Apriori-like algorithms, evaluating their strengths and
weaknesses.

2 Background and Related Work

2.1 Frequent Itemsets and Association Rules

Let L = l1, l2, ..., lm be a set of literals, called items. An itemset X is a non-
empty set of items (X ⊆ L). The size of an itemset X is the number of items
in X. Let D be a set of variable size itemsets, where each itemset T in D has
a unique identifier and is called a transaction. We say that a transaction T
contains an item x ∈ L if x is in T . We say that a transaction T contains an
itemset X ⊆ L if T contains every item in the set X. The support of the itemset
X is the percentage of transactions in D that contain X. The problem of mining
frequent itemsets in D consists in discovering all itemsets whose support is above
a user-defined support threshold.

An association rule is an implication of the form X → Y , where X ⊆ L,
Y ⊆ L, X ∩ Y = ∅. We call X the body of a rule and Y the head of a rule.
The support of the rule X → Y in D is the support of the itemset X ∪ Y . The
confidence of the rule X → Y is the percentage of transactions in D containing
X that also contain Y . The problem of mining association rules in D consists in
discovering all association rules whose support and confidence are above user-
defined minimum support and minimum confidence thresholds.

2.2 Sequential Patterns

Let L = l1, l2, ..., lm be a set of literals called items. An itemset is a non-empty
set of items. A sequence is an ordered list of itemsets and is denoted as <
X1X2...Xn >, where Xi is an itemset (Xi ⊆ L). Xi is called an element of the
sequence. The size of a sequence is the number of items in the sequence. The
length of a sequence is the number of elements in the sequence.

We say that a sequence X =< X1X2...Xn > is a subsequence of a sequence
Y =< Y1Y2...Ym > if there exist integers i1 < i2 < ... < in such that X1 ⊆
Yi1 , X2 ⊆ Yi2 , ..., Xn ⊆ Yin

. We call < Yi1Yi2 ...Yin
> an occurrence of X in Y .

Given a sequence Y =< Y1Y2...Ym > and a subsequence X, X is a contiguous
subsequence of Y if any of the following conditions hold: 1) X is derived from Y

by dropping an item from either Y1 or Ym. 2) X is derived from Y by dropping
an item from an element Yi which has at least 2 items. 3) X is a contiguous
subsequence of X ′, and X ′ is a contiguous subsequence of Y .

Let D be a set of variable length sequences (called data-sequences), where for
each sequence S =< S1S2...Sn > , a timestamp is associated with each Si. With
no time constraints we say that a sequence X is contained in a data-sequence
S if X is a subsequence of S. We consider the following user-specified time
constraints while looking for occurrences of a given sequence in a given data-
sequence: minimal and maximal gap allowed between consecutive elements of
an occurrence of the sequence (called min-gap and max-gap), and time window
that allows a group of consecutive elements of a data-sequence to be merged
and treated as a single element as long as their timestamps are within the user-
specified window-size.

The support of a sequence < X1X2...Xn > in D is the fraction of data-
sequences in D that contain the sequence. A sequential pattern (also called a
frequent sequence) is a sequence whose support in D is above the user-specified
minimum support threshold.

2.3 Review of Classic Pattern Mining Algorithms

The majority of frequent itemset and sequential pattern discovery algorithms
fall into two classes: Apriori-like methods and pattern-growth methods. The first
group of methods is based on the Apriori algorithm for frequent itemset mining
[2]. Apriori relies on the property (called Apriori property) that an itemset can
only be frequent if all of its subsets are frequent. It leads to a level-wise proce-
dure. First, all possible 1-itemsets (itemsets containing 1 item) are counted in the
database to determine frequent 1-itemsets. Then, frequent 1-itemsets are com-
bined to form potentially frequent 2-itemsets, called candidate 2-itemsets. Can-
didate 2-itemsets are counted in the database to determine frequent 2-itemsets.
The procedure is continued until in a certain iteration none of the candidates
turns out to be frequent or the set of generated candidates is empty. Several ex-
tensions were added to improve the performance of Apriori (e.g. by reducing the
number of database passes). The algorithm also served as a basis for algorithms
discovering other types of patterns including sequential patterns.

The most prominent sequential pattern discovery algorithm from the Apri-
ori family is GSP, introduced in [10]. GSP exploits a variation of the Apriori
property: all contiguous subsequences of a frequent sequence also have to be fre-
quent. In each iteration, candidate sequences, are generated from the frequent
sequences found in the previous pass, and then verified in a database scan. It
should be noted that GSP (and its variants) is the only sequential pattern dis-
covery algorithm capable of handling time constraints (max-gap, min-gap, and
window-size).

Recently, a new family of pattern discovery algorithms, called pattern-growth
methods (see [6] for a review), has been developed for discovery of frequent
patterns. The methods project databases based on the currently discovered fre-
quent patterns and grow such patterns to longer ones in corresponding pro-

jected databases. Pattern-growth methods are supposed to perform better than
Apriori-like algorithms in case of low minimum support thresholds. Neverthe-
less, practical studies [12] show that for real datasets Apriori (or its variants)
might still be a more efficient solution. Moreover, in the context of sequential
patterns pattern-growth methods still do not offer full functionality of GSP, as
they do not handle time constraints.

2.4 Previous Work on Constraint-Based Pattern Mining

As we mentioned earlier the research on constraint-based pattern mining focused
on incorporating pattern constraints into classic pattern discovery algorithms,
especially in the context of frequent itemsets and association rules. Pattern con-
straints in frequent itemset and association rule mining were first discussed in
[11]. Constraints considered there had a form of a Boolean expression in the dis-
junctive normal form built from elementary predicates requiring that a certain
item is or is not present. The algorithms presented were Apriori variants using
sophisticated candidate generation techniques. Rule constraints were handled by
transforming them into itemset constraints. It was observed that after discov-
ering all itemsets that can be used to generate the rules of interest, one extra
scan of the dataset is required to count the supports of some subsets, required
to evaluate confidences of some rules, and not known since the subsets did not
satisfy the derived itemset constraints.

In [8], two interesting classes of itemset constraints were introduced: anti-
monotonicity and succinctness, and methods of handling constraints belonging
to these classes within the Apriori framework were presented. The methods
for succinct constraints again consisted in modifying the candidate generation
procedure. For anti-monotone constraints it was observed that in fact almost no
changes to Apriori are required to handle them. A constraint is anti-monotone
if the fact that an itemset satisfies it, implies that all of its subsets have to
satisfy the constraint too. The minimum support threshold is an example of an
anti-monotone constraint, and any extra constraints of that class can be used
together with it in candidate pruning.

In [9], constraint-based discovery of frequent itemsets was analyzed in the
context of pattern-growth methodology. In the paper, further classes of con-
straints were introduced, some of which could not be incorporated into the
Apriori framework.

On the other hand, very little work concerning constraint-driven sequential
pattern discovery has been done so far. In fact, only the algorithms from the
SPIRIT family [4] exploit pattern structure constraints in order to improve per-
formance. These algorithms can be seen as extensions of GSP using advanced
candidate generation and pruning techniques. In the SPIRIT framework, pattern
constraints are specified as regular expressions, which is an especially convenient
method if a user wants to significantly restrict the structure of patterns to be
discovered. It has been shown experimentally that pushing regular expression
constraints deep into the mining process can reduce processing time by more
than an order of magnitude.

3 Dataset Filtering in Constraint-Based Pattern Mining

In constraint-based pattern mining, we identify the following classes of con-
straints: database constraints, statistical constraints, pattern constraints, and
time constraints. Database constraints are used to specify the source dataset.
Statistical constraints are used to specify thresholds for the support and confi-
dence measures. Pattern constraints specify which of the frequent patterns are
interesting and should be returned by the query. Finally, time constraints used
in sequential pattern mining influence the process of checking whether a given
data-sequence contains a given pattern.

Basic formulations of pattern discovery problems do not consider pattern
constraints. We model pattern constraints as a conjunction of basic Boolean
predicates referring to pattern size or length (size constraints) or regarding the
presence of a certain subset or subsequence (item constraints).

It should be noted that not all pattern predicates support the dataset filter-
ing paradigm. For example, if a user is looking for frequent itemsets whose size
exceeds a given threshold, it is rather obvious that such itemsets can be con-
tained only in transactions whose size exceeds the same threshold. Thus, smaller
transactions can be excluded from the mining process, which should lead to per-
formance gains. On the other hand, if a user is interested in itemsets having the
size not exceeding a given threshold, dataset filtering is not applicable as such
itemsets can be contained in any transaction.

For each of the pattern predicates present in pattern constraints supporting
dataset filtering, the corresponding predicate on transactions or data-sequences
has to be derived. The resulting dataset filtering predicate is formed as a con-
junction of those derived predicates (recall that we consider pattern constraints
having the form of a conjunction of pattern predicates). The filtering predicate
is then used to discard objects in the source dataset that cannot contain the pat-
terns of interest. Below we identify pattern predicates in case of which dataset
filtering is applicable in the context of frequent itemsets, association rules and
sequential patterns. For each of the identified pattern predicates we provide a
corresponding predicate on source objects, to be used in dataset filtering. As we
will show, dataset filtering is rather straightforward in frequent itemset discov-
ery but becomes more complicated in sequential pattern mining thanks to time
constraints.

3.1 Dataset Filtering in Frequent Itemset Discovery

Let us consider the following predicate types that can appear in pattern con-
straints of a frequent itemset query:

– ρ(SG, α, itemset) - true if itemset size is greater than α, false otherwise;
– ρ(C, γ, itemset) - true if γ is a subset of the itemset, false otherwise;

Theorem 1. Itemsets of size greater than k cannot be contained in a transaction
whose size is not greater than k.

Proof. The proof is obvious since an itemset is contained in a transaction if it is
a subset of the set of items present in the transaction.

Theorem 2. Frequent itemsets, to be returned by a data mining query, contain-
ing a given subset can be supported only by transactions containing that subset.

Proof. An itemset is contained in a transaction if it is a subset of the set of items
present in the transaction. The transitivity of set inclusion relationship implies
that if an itemset having a given subset is contained in a given transaction, the
transaction also has to contain the subset.

According to the above theorems the following dataset filtering predicates are
applicable in frequent itemset mining:

– τ(SG, α, transaction) - true if the size of the transaction is greater than α,
false otherwise;

– τ(C, γ, transaction) - true if the transaction contains the set γ, false oth-
erwise;

For a frequent itemset query with pattern constraints, an appropriate dataset
filtering predicate is derived in the following way: For each of the pattern pred-
icates from the left column of Table 1 present in the query, the corresponding
transaction predicate from the right table column is added to the dataset filtering
predicate.

Table 1. Derivation rules for frequent itemset mining

Pattern predicate Transaction predicate

ρ(SG, α, itemset) τ(SG, α, transaction)
ρ(C, γ, itemset) τ(C, γ, transaction)

3.2 Dataset Filtering in Association Rule Discovery

Let us consider the following predicate types that can appear in pattern con-
straints of an association rule query:

– ρ(SG, α, rule) - true if the number of items in the rule is greater than α,
false otherwise;

– ρ(C, γ, rule) - true if all items from γ are present in the rule, false otherwise;
– ρ(SG, α, body(rule)) - true if the size of the rule’s body is greater than α,

false otherwise;
– ρ(C, γ, body(rule)) - true if γ is a subset of the rule’s body, false otherwise;
– ρ(SE, α, body(rule)) - true if the size of the rule’s body is α, false otherwise;

– ρ(E, γ, body(rule)) - true if the rule’s body is equal to γ, false otherwise;
– ρ(SG, α, head(rule)) - true if the size of the rule’s head is greater than α,

false otherwise;
– ρ(C, γ, head(rule)) - true if γ is a subset of the rule’s head, false otherwise;
– ρ(SE, α, head(rule)) - true if the size of the rule’s head is α, false otherwise;
– ρ(E, γ, head(rule)) - true if the rule’s head is equal to γ, false otherwise;

We observe that the rule predicates can be directly transformed into pred-
icates on itemsets that can be used to generate the rules having the desired
properties. All the items required in the rule, rule’s body, or rule’s head have
to appear in the frequent itemsets from which the rules are to be generated.
The size threshold on rules implies the same threshold on itemsets. However, if
a given size of the rule’s body or head is required, then the itemset must have
at least one more item (neither the head nor the body can be empty). Table 2
presents a corresponding itemset predicate for each of the rule predicates. (In
fact, if the predicates for both head and body are present, and at least one of
them is a size predicate, a more restrictive itemset size predicate can be derived.
We omit the details for the sake of simplicity.)

Table 2. Rule predicates and their corresponding itemset predicates

Rule predicate Itemset predicate

ρ(SG, α, rule) ρ(SG, α, itemset)
ρ(C, γ, rule) ρ(C, γ, itemset)
ρ(SG, α, body(rule)) ρ(SG, α + 1, itemset)
ρ(C, γ, body(rule)) ρ(C, γ, itemset)
ρ(SE, α, body(rule)) ρ(SG, α, itemset)
ρ(E, γ, body(rule)) ρ(C, γ, itemset)
ρ(SG, α, head(rule)) ρ(SG, α + 1, itemset)
ρ(C, γ, head(rule)) ρ(C, γ, itemset)
ρ(SE, α, head(rule)) ρ(SG, α, itemset)
ρ(E, γ, head(rule)) ρ(C, γ, itemset)

As the rule predicates implicate itemset predicates, there is no need to provide
separate derivation rules for dataset filtering predicates to be used in association
rule mining. It should be noted that while the collection of discovered frequent
itemsets supporting the constraints derived from the rule constraints is sufficient
to generate all the required rules, it may not contain all the itemsets needed to
evaluate confidences of the rules as certain subsets of those itemsets may not
satisfy pattern constraints. This problem is not specific to our dataset filtering
techniques, and has to be solved by an extra scan of the dataset. In that extra
scan, supports of itemsets whose support is needed but not known have to be
counted.

3.3 Dataset Filtering in Sequential Pattern Discovery

Let us consider the following predicate types that can appear in pattern con-
straints of a sequential pattern query:

– π(SG, α, pattern) - true if pattern size is greater than α, false otherwise;
– π(LG, α, pattern) - true if pattern length is greater than α, false otherwise;
– π(C, β, pattern) - true if β is a subsequence of the pattern, false otherwise;
– ρ(SG, α, patternn) - true if the size of the n-th element of the pattern is

greater than α, false otherwise;
– ρ(C, γ, patternn) - true if γ is a subset of the n-th element of the pattern,

false otherwise;

Theorem 3. Sequential patterns of size greater than k cannot be contained in
a data-sequence whose size is not greater than k.

Proof. The proof is obvious since an occurrence of a pattern in a sequence must
consist of the same number of items as the pattern.

Theorem 4. Sequential patterns of length greater than k, to be returned by a
data mining query, can be contained only in data-sequences which contain some
sequence of length k + 1 using max-gap, min-gap, and window-size specified in
the query.

Proof. Each sequential pattern of length greater than k has at least one contigu-
ous subsequence of length k + 1. If a data-sequence contains some sequence, it
contains every contiguous subsequence of that sequence. Thus, if a data-sequence
contains some sequence of length greater than k, it contains at least one sequence
of length k + 1.

Theorem 5. Sequential patterns, to be returned by a data mining query, con-
taining a given sequence can be contained only in data-sequences containing that
sequence using min-gap and window-size specified in the query, and max-gap of
+∞.

Proof. If a data-sequence contains some sequence using certain values of max-
gap, min-gap, and window-size, it also contains every contiguous subsequence
of the sequence, using the same time constraints. If max-gap is set to +∞, a
data-sequence containing some sequence contains all its subsequences.

Theorem 6. Sequential patterns, to be returned by a data mining query, whose
n-th element has the size greater than k can be contained only in data-sequences
which contain some 1-element sequence of size k + 1 using window-size specified
in the query.

Proof. Each 1-element subsequence of any sequence is its contiguous subsequence
(from the definition of a contiguous subsequence). If any element of a sequence
has the size greater than k, the sequence has at least one 1-element contiguous
subsequence of size k +1. If a data-sequence contains some sequence, it contains
every contiguous subsequence of that sequence. Thus, if a data-sequence contains
some sequence whose n-th element has the size greater than k, it has to contain
some 1-element sequence of size k + 1.

Theorem 7. Sequential patterns, to be returned by a data mining query, whose
n-th element contains a given set can be contained only in data-sequences which
contain a 1-element sequence having the set as the only element, using time
constraints specified in the query.

Proof. Each 1-element subsequence of any sequence is its contiguous subsequence
(from the definition of a contiguous subsequence). If any element of a sequence
contains a given set, a 1-element sequence formed by the set is a contiguous sub-
sequence of the sequence. If a data-sequence contains some sequence, it contains
every contiguous subsequence of that sequence. Thus, if a data-sequence con-
tains some sequence whose n-th element contains a given set, it has to contain
a 1-element sequence having the set as the only element.

According to the above theorems the following dataset filtering predicates are
applicable in sequential pattern mining:

– σ(SG, α, sequence) - true if the size of the data-sequence is greater than α,
false otherwise;

– σ(C, β, sequence, maxgap, mingap, window) - true if the data-sequence
contains the sequence forming the pattern β using given time constraints,
false otherwise;

– σ(CS, α, sequence, window) - true if there exists a 1-element sequence of
size α that is contained in the sequence with respect to the window-size
constraint, false otherwise;

– σ(CL, α, sequence, maxgap, mingap, window) - true if there exists a se-
quence of length α that is contained in the sequence with respect to the
max-gap, min-gap, and window-size constraints, false otherwise.

For a sequential pattern query with pattern constraints, an appropriate dataset
filtering predicate is derived in the following way: For each of the pattern pred-
icates from the left column of Table 3 present in the query, the corresponding
data-sequence predicate from the right table column is added to the dataset
filtering predicate.

Table 3. Derivation rules for sequential pattern mining

Pattern predicate Data-sequence predicate

π(SG, α, pattern) σ(SG, α, sequence)
π(LG, α, pattern) σ(CL, α + 1, sequence, max, min, win)
π(C, β, pattern) σ(C, β, sequence, +∞, min, win)
ρ(SG, α, patternn) σ(CS, α + 1, sequence, win)
ρ(C, γ, patternn) σ(C, < γ >, sequence, max, min, win)

In the above table, < γ > denotes a 1-element sequence having the set γ as its
only element, while max, min, and win represent values of max-gap, min-gap,
and window-size time constraints respectively.

4 Implementation Issues Regarding Dataset Filtering

If any pattern predicates supporting dataset filtering are present in the pattern
query specifying a certain pattern discovery task, the query can be transformed
into a query representing a discovery task on a potentially smaller dataset in the
following way. Firstly, database constraints of the query have to be extended by
adding the appropriate dataset filtering predicate to them (the filtering predicate
is derived according to the rules presented in the previous section). Secondly,
the minimum support threshold has to be adjusted to the size of the filtered
database. This step is necessary because the support of a pattern is expressed
as the percentage of objects (transactions or data-sequences) containing the
pattern. The theorems proved in the previous section guarantee that the number
of objects containing a given pattern in the original and filtered dataset will be
the same as long as the pattern satisfies pattern constraints. Thus, we have
the following relationship between the support of a pattern p (satisfying pattern
constraints) in the original and filtered datasets: supF (p) =| D | ∗sup(p)/ | DF |,
where supF (p) and sup(p) denote the support of the pattern p in the filtered and
original dataset respectively, and | DF | and | D | denote the number of objects
in the filtered and original dataset respectively. After the patterns frequent in the
filtered dataset have been discovered, their support has to be normalized with
respect to the number of objects in the original dataset according to the above
formula (the user specifies the support threshold as the percentage of objects in
the original dataset, and expects that the supports of discovered patterns will
be expressed in the same way).

Dataset filtering techniques can be combined with any frequent pattern dis-
covery algorithm since they conceptually lead to a transformed discovery task
guaranteed to return the same set of patterns as the original task. The trans-
formation of the source dataset (by filtering out objects that cannot contain
patterns of interest) and adjustment of the minimum support threshold can
be performed before the actual discovery process. However, in reality such ex-
plicit transformation might be impossible due to space limitations. Moreover, it
may not lead to the optimal solution because of one extra scan of the dataset
performed during the transformation. A natural solution to this problem is inte-
gration of dataset filtering techniques within pattern mining algorithms. Thus,
dataset filtering can be performed together with other operations in the first
scan of the dataset required by a given algorithm. Please note that if dataset
filtering is integrated within a pattern mining algorithm, the support conversions
discussed above are not necessary because the support can always refer to the
number of objects in the original dataset.

Regarding integration of dataset filtering within the Apriori framework, there
are two general implementation strategies possible. The filtered dataset can ei-
ther be physically materialized on disk during the first iteration or filtering can
be performed on-line in each iteration. The second option might be the only
solution if materialization of the filtered dataset is not possible due to space
limitations.

Below we present two algorithm frameworks following the two strategies. We
do not present separate solutions for frequent itemset and sequential pattern
discovery. Instead, we consider a general pattern discovery task in a collection
of objects. These objects are transactions or data-sequences depending on the
actual discovery task. Pattern constraints and dataset filtering predicates are
also different for frequent itemsets and sequential patterns. Additionally, in the
context of sequential patterns the containment relationship takes into account
time constraints specified by a user. The general algorithms presented below take
a collection D of objects, the minimum support threshold (and optionally time
constraints), and pattern constraints as input, and return all frequent patterns
in D satisfying all the provided constraints.

Algorithm 1 Apriori on materialized filtered dataset
begin

DF = dataset filtering predicate derived from pattern constraints;
scan D in order to:

1) evaluate minimum number of supporting
objects for a pattern to be called frequent (mincount)
2) find L1 (set of items contained in at
least mincount objects satisfying DF);
3) materialize the collection D′ of objects from D
satisfying DF ;

for (k = 2; Lk−1 6= ∅; k++) do
begin

Ck = apriori gen(Lk−1); /* generate new candidates */
if Ck = ∅ then break;
forall objects d ∈ D′ do

forall candidates c ∈ Ck do
if d contains c then

c.count ++;
end if;

Lk = { c ∈ Ck | c.count ≥ mincount};
end;
output patterns from ∪kLk satisfying pattern constraints;

end.

Algorithm 2 Apriori with on-line dataset filtering
begin

DF = dataset filtering predicate derived from pattern constraints;
scan D in order to:

1) evaluate minimum number of supporting
objects for a pattern to be called frequent (mincount)
2) find L1 (set of items contained in at
least mincount objects satisfying DF);

for (k = 2; Lk−1 6= ∅; k++) do

begin
Ck = apriori gen(Lk−1); /* generate new candidates */
if Ck = ∅ then break;
forall objects d ∈ D do

if d satisfies DF then
forall candidates c ∈ Ck do

if d contains c then
c.count ++;

end if;
end if;

Lk = { c ∈ Ck | c.count ≥ mincount};
end;
output patterns from ∪kLk satisfying pattern constraints;

end.

Both algorithms start with deriving dataset filtering predicates from pattern
constraints provided by a user. In the first approach these dataset filtering pred-
icates are used in the first scan of the source dataset to select and materialize
the collection of objects on which subsequent scans will be performed. All the
objects from the materialized filtered collection are then used in the candidate
verification phases. In the second approach dataset filtering predicates are used
in each scan of the source dataset and objects that do not satisfy them are ex-
cluded from the candidate verification process. When the discovery of sequential
patterns in the filtered dataset is finished, a post-processing step filtering out
patterns that do not satisfy user-specified pattern constraints is applied in both
approaches. This phase is required since dataset filtering itself, regardless of the
implementation details, does not guarantee that only patterns supporting pat-
tern constraints are to be discovered. It should be noted that the support of
patterns not satisfying user-specified pattern constraints, counted in the filtered
dataset, can be smaller than their actual support in the original dataset, but it
is not a problem since these patterns will not be returned to the user. More-
over, this is in fact a positive feature as it can reduce the number of generated
candidates not leading to patterns of user’s interest.

5 Performance Analysis

In order to evaluate performance gains offered by our dataset filtering techniques,
we performed several experiments on synthetic datasets. We measured perfor-
mance improvements thanks to dataset filtering applied to the Apriori algorithm
for frequent itemset mining, and GSP for sequential patterns. As we might have
expected, the performance gains depend on the selectivity of dataset filtering
predicates derived from pattern constraints (expressed as the percentage of ob-
jects in the dataset satisfying dataset filtering constraints). In general the lower
the selectivity factor the better, but the actual performance depends not only on
the selectivity but also on data distribution in the filtered dataset. We observed

that item constraints led to much better results (reducing the processing time 2
to 5 times) than size constraints (typically reducing the processing time by less
than 10%). This is due to the fact that the patterns are usually smaller in terms
of size or length than source objects, and therefore even restrictive constraints
on pattern size/length result in weak constraints on source objects. As a con-
sequence, if the actual task is discovery of association rules, and the only rule
constraints present are size constraints, the gains due to dataset filtering some-
times do not compensate the cost of an extra pass needed to evaluate confidences
of the rules.

Regarding the implementation strategies, for item constraints implementa-
tions involving materialization of the filtered dataset were more efficient than
their on-line counterparts (the filtered dataset was relatively small and the mate-
rialization cost was dominated by gains due to the smaller costs of dataset scans
in candidate verification phases). However, in case of size constraints rejecting
a very small number of source objects, materialization of the filtered dataset
sometimes lead to longer execution times than in case of the original algorithms.
The on-line dataset filtering implementations were in general more efficient than
the original algorithms even for size constraints (except for a situation, unlikely
in practice, when the size constraint did not reject any source objects).

In the experiments, we also observed that decreasing the minimum support
threshold or relaxing time constraints worked in favor of our dataset filtering
techniques, leading to bigger performance gains. This behavior can be explained
by the fact that since dataset filtering reduces the cost of candidate verification
phase, the more this phase contributes to the overall processing time, the more
significant relative performance gains are going to be. Decreasing the minimum
support threshold also led to slight performance improvement of implementa-
tions involving materialization of the filtered dataset in comparison to their
on-line counterparts. As the support threshold decreases, the maximal length of
a frequent patterns (and the number of iterations required by the algorithms)
increases. Materialization is performed in the first iteration and reduces the cost
of the second and subsequent iterations. Thus, the more iterations are required,
the better the cost of materialization is compensated.

6 Concluding Remarks

We have discussed application of dataset filtering techniques to efficient frequent
pattern mining in the presence of various pattern constraints. We identified the
types of pattern constraints in case of which dataset filtering is applicable in
the context of frequent itemsets, association rules, and sequential patterns. For
each of the pattern constraint types we provided an appropriate dataset filtering
predicate. Dataset filtering techniques can be applied to any frequent pattern dis-
covery algorithm since they conceptually lead to an equivalent data mining task
on a possibly smaller dataset. We focused on the implementation details con-
cerning integration of dataset filtering techniques within the Apriori framework.
Our experiments show that dataset filtering can result in significant performance

improvements, especially in case of pattern constrains involving the presence of
a certain subset or subsequence, which we believe are the most usuful ones.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of
Items in Large Databases. Proc. of the 1993 SIGMOD Conference (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of
the 20th VLDB Conference (1994)

3. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th ICDE Conf.
(1995)

4. Garofalakis M., Rastogi R., Shim K.: SPIRIT: Sequential Pattern Mining with
Regular Expression Constraints. Proceedings of 25th VLDB Conference (1999)

5. Han J., Lakshmanan L., Ng R.: Constraint-Based Multidimensional Data Mining.
IEEE Computer, Vol. 32, No. 8 (1999)

6. Han J., Pei J.: Mining Frequent Patterns by Pattern-Growth: Methodology and
Implications. SIGKDD Explorations, December 2000 (2000)

7. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Com-
munications of the ACM, Vol. 39, No. 11 (1996)

8. Ng R., Lakshmanan L., Han J., Pang A.: Exploratory Mining and Pruning Opti-
mizations of Constrained Association Rules. Proc. of the 1998 SIGMOD Conference
(1998)

9. Pei J., Han J., Lakshmanan L.: Mining Frequent Itemsets with Convertible Con-
straints. Proceedings of the 17th ICDE Conference (2001)

10. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. Proc. of the 5th EDBT Conference (1996)

11. Srikant R., Vu Q., Agrawal R.: Mining Association Rules with Item Constraints.
Proceedings of the 3rd KDD Conference (1997)

12. Zheng Z., Kohavi R., Mason L.: Real World Performance of Association Rule
Algorithms. Proc. of the 7th KDD Conference (2001)

