
1

METHODS FOR BATCH PROCESSING OF
DATA MINING QUERIES

Marek Wojciechowski and Maciej Zakrzewicz
Institute of Computing Science
Poznan University of Technology
ul. Piotrowo 3a
Poznan, Poland

Abstract: Data mining is a useful decision support technique, which can be used to find
trends and regularities in warehouses of corporate data. A serious problem of
its practical applications is long processing time required by data mining
algorithms. Current systems consume minutes or hours to answer single
requests, while typically batches of the requests are delivered the systems. In
this paper we present the problem of batch processing of data mining requests.
We introduce methods that analyze similarities between separate requests to
reduce the processing cost. We also perform a comparative performance
analysis of the proposed methods.

Key words: data mining, multiple query optimization

1. INTRODUCTION

Data mining, also referred to as database mining or knowledge discovery
in databases (KDD), aims at discovery of useful patterns from large
databases or warehouses [1][2][4][6][10][11][12]. Currently we are
observing the evolution of data mining environments from specialized tools
to multi-purpose data mining systems offering some level of integration with
existing database management systems. From a user’s point of view data
mining can be seen as advanced querying: a user specifies the source data set
and the requested class of patterns, the system chooses the right data mining
algorithm and returns discovered patterns to the user [3][5][7][8][9]. The

2 Marek Wojciechowski and Maciej Zakrzewicz

most serious problem concerning data mining queries is a long response
time. Current systems consume minutes or hours to answer single queries.

Data mining applications typically execute data mining queries during
nights, when system activity is low. Sets of data mining queries are
scheduled and then automatically evaluated by a data mining system. It is
possible that the data mining queries delivered to the system are somehow
similar, eg. their source data sets overlap. Unfortunately, none of the
proposed data mining algorithms tried to employ such similarity of data
mining requests to reduce their processing cost.

In this paper we present the problem of batch processing of data mining
queries. We describe and analyze three methods of executing batches of data
mining queries in a more efficient way. We illustrate our methods with many
examples expressed in MineSQL, which is a declarative, multi-purpose SQL-
like language for interactive and iterative data mining in relational databases,
developed by us over the last couple of years [8][9].

1.1 Basic Definitions

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items.
Let a non-empty set of items T be called an itemset. Let D be a set of
variable length itemsets, where each itemset T⊆L. We say that an itemset T
supports an item x∈L if x is in T. We say that an itemset T supports an
itemset X⊆L if T supports every item in the set X. The support of the itemset
X is the percentage of T in D that support X. The problem of mining frequent
itemsets in D consists in discovering all itemsets whose support is above a
user-defined support threshold.

Apriori algorithm. Apriori is an example of a level-wise algorithm for
association discovery. It makes multiple passes over the input data to
determine all frequent itemsets. Let Lk denote the set of frequent itemsets of
size k and let Ck denote the set of candidate itemsets of size k. Before making
the k-th pass, Apriori generates Ck using Lk-1. Its candidate generation
process ensures that all subsets of size k-1 of Ck are all members of the set
Lk-1. In the k-th pass, it then counts the support for all the itemsets in Ck. At
the end of the pass all itemsets in Ck with a support greater than or equal to
the minimum support form the set of frequent itemsets Lk. Figure 1 provides
the pseudocode for the general level-wise algorithm, and its Apriori
implementation. The subset(t, k) function gives all the subsets of size k in the
set t.

This method of pruning the Ck set using Lk-1 results in a much more
efficient support counting phase for Apriori when compared to the earlier
algorithms. In addition, the usage of a hash-tree data structure for storing the
candidates provides a very efficient support-counting process.

Methods for Batch Processing of Data Mining Queries 3

C1 = {all 1-itemsets from D}
for (k=1; Ck ≠ ∅; k++)
 count(Ck, D);
 Lk = {c ∈ Ck | c.count ≥ minsup};
 Ck+1 = generate_candidates(Lk);
Answer = UkLk;

L1 = {frequent 1-itemsets}
for (k = 2; Lk-1 ≠ ∅; k++)
 Ck = generate_candidates(Lk-1);
 forall tuples t ∈ D
 Ct=Ck ∩ subset(t, k);
 forall candidates c ∈ Ct
 c.count++;
 Lk = {c ∈ Ck | c.count ≥ minsup}
Answer = UkLk;

Figure -1. Level-wise algorithm for association discovery and its Apriori implementation

1.2 MineSQL Data Mining Query Language

MineSQL is a SQL language extension we presented in [9] as a tool to
formulate data mining queries. The main MineSQL statement is MINE,
designed to discover frequent patterns from a result of a SELECT query. The
discovered patterns may be filtered by means of user-defined conditions. We
also introduced new datatypes to allow to store itemsets in database
relations: SET OF CHAR, SET OF INTEGER, etc., the SET() grouping
function, as well as the CONTAINS operator used to determine if one set of
items contains another set of items. In [8][13] we extended MineSQL with
data mining materialized views and sequential pattern processing operators.

The following example statements illustrate MineSQL capabilities to
create a database relation to hold sets of integers and to discover all frequent
itemsets with support greater than 10 in the first 100 tuples of the relation.

create table mysets
(i integer,
 s set of integer)

mine itemset
from (select s
 from mysets
 where i<=100)
where support(itemset) > 10

The next example illustrates MineSQL capabilities to store results of a
data mining query:

create table mypatterns
(s set of integer)

insert into mypatterns
mine itemset
from (select s
 from mysets
 where i<=100)
where support(itemset) > 10

2. PRELIMINARIES AND PROBLEM STATEMENT

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ),
where R is a relation, a is an attribute of R, Σ is a condition involving the
attributes of the relation R, Φ is a condition involving discovered patterns.

4 Marek Wojciechowski and Maciej Zakrzewicz

The result of the data mining query is a set of patterns discovered in πaσΣ
and satisfying Φ.

Example. Given the relation R1 shown in Fig. 1a, the result of the data
mining query DMQ1=(R1, “iset”, “id>5 AND id<10”, “minsup ≥ 3”) is
shown in Fig. 1b.

mine itemset from (select items from R1 where id>5 and id<10)
where support(itemset)>=3;

R1: id iset

1 a,b,c
4 a,c
6 d,f,g
7 f,g,k,m
8 e,f,g
15 a,f

Figure -2a Example relation R1

result of DMQ1:

{f}
{g}

{f,g}

Figure -2b DMQ1 query result

Problem statement. Given a set S = {DMQ1, DMQ2, …, DMQn} of data
mining queries, where DMQi = (Ri, ai, Σi, Φi) and ∀i ∃j≠i σΣi (Ri) ∩ σΣj (Rj) ≠
∅, the goal is to minimize the I/O cost and the CPU cost of executing S.

2.1 Motivating example

Consider a relation Sales(uad, basket, time) to store purchases made by
users of an internet shop. Since data sets of this kind tend to be very large,
there is a need for automated analysis of their contents. Assume a shop
manager is interested in finding sets of products that were frequently co-
occurring in the users’ purchases. The shop manager plans to create two
reports: one showing the frequent sets that appeared in more than 350
purchases in Jan 2002 and one showing the frequent sets that appeared in
more than 20 purchases made by clients from France. Two required data
mining queries are shown below.

DMQA
mine itemset
from (select basket from sales
 where time between ’01-01-02’
 and ’01-31-02’)
where support(itemset) > 350

DMQB
mine itemset
from (select basket
 from sales
 where uad like ‘%.fr’)
where support(itemset) > 20

If the size of the Sales relation is very large, each of the above data
mining queries can take a significant amount of time to execute. Part of this
time will be spent on reading the Sales relation from disk in order to count
occurrences of candidate itemsets. Notice that the sets of bloks to be read by
the two data mining queries may overlap. If we try to merge the processing
of the two data mining queries, we can reduce redundancy resulting from
this overlapping. In the remaining of this paper we will use this example to
illustrate particular methods.

Methods for Batch Processing of Data Mining Queries 5

3. MODEL OF A LEVEL-WISE ASSOCIATION

DISCOVERY ALGORITHM

In order to describe methods for batch processing of data mining queries,
we first need to introduce a notation to express steps of a level-wise
association discovery algorithm. We decided to use the extended relational
algebra to model the level-wise algorithm processing in the following way.
Each candidate counting step is represented as a relational join, followed by
grouping and selection operations. Figure 3 shows the SQL query and the
relational algebra graph for the candidate counting step; C(s) is the
candidates relation, R(s) is the database relation. The candidate generation
step is represented as a simple relational join. Figure 4 shows the SQL query
and the relational algebra graph for this case.

select c.s, count(r.s)
from c, r
where r.s contains c.s
group by c.s
having count(r.s)>=minsup

R C

C.s ⊆ R.s

γ C.s, COUNT(R.s)

σ COUNT(R.s)≥minsup

Figure -3. Candidate counting-pruning step modeled with relational algebra

select union(l1.s, l2.s) as cand
from l l1, l l2
where size(difference(l1.s,l2.s)) = 1
group by cand
having count(*) = k*(k-1)/2

|L1.s - L2.s| = 1

π L1.s ∪L2.s

L L

γ L1.s ∪L2.s, COUNT(*)

σ COUNT(*) = k(k-1)/2

Figure -4. Candidate generation step for Ck modeled with relational algebra

In order to analyze the general cost model of the level-wise association
discovery algorithm, we make the following assumptions: (1) the size of the
database is much larger than the size of all candidate itemsets, (2) the size of
all candidate itemsets is larger than the memory size, and (3) frequent
itemsets fit in memory. The notation we use is given in Table 1.

6 Marek Wojciechowski and Maciej Zakrzewicz

Table 1. Notation used in cost models
M main memory size (blocks)
|D| number of itemsets in the database
||D|| size of the database (blocks)
|Ci| number of candidate itemsets for step I
||Ci|| size of all candidate itemsets for step i (blocks), ||Ci||<<||D||, ||Ci||<M
|Li| number of frequent itemsets for step i, |Li|<|Ci|
||Li|| size of all frequent itemsets for step i (blocks), ||Li||<M

The cost of performing the general level-wise association discovery

algorithm is as follows:
1. Candidate counting-pruning. Candidate itemsets must be read from

disk in portions equal to the available memory size. For each portion, the
database must be scanned to join itemsets from Ci with itemsets from D.
Next, the candidate itemsets with support greater or equal to minsup
become frequent itemsets and must be written to disk. The I/O cost of a
single iteration i is the following:

i
i

iOI LD
M
C

C ++=/cost

The dominant part of the CPU cost is join condition verification. For the
simplicity, we assume the cost of comparing two itemsets does not
depend on their sizes and equals 1. Thus, the CPU cost of a single
iteration i is the following:

DCiCPU =cost

2. Candidate generation. Frequent itemsets from the previous iteration
must be read from disk, joined in memory, and saved as new candidate
itemsets. The I/O cost of a single iteration i is the following:

1/cost ++= iiOI CL
The CPU cost of this phase of the algorithm is the following:

iiCPU LL=cost
Therefore, if K is the number of iterations, the overall cost of the level-

wise algorithm is as follows:

∑
=

+

+++=

K

i
ii

i
iOI CLD

M
C

C
1

1/ 2cost

()∑
=

+ +=
K

i
iiCPU LDC

1

2
1cost

Methods for Batch Processing of Data Mining Queries 7

4. METHODS FOR BATCH PROCESSING OF DATA

MINING QUERIES

In this Section we present three methods for processing batches of data
mining queries. The first one represents a trivial approach, where we execute
each DMQ separately. We call this method Sequential Processing. The
second method, called Common Counting, integrates the counting phase of
the level-wise algorithm to reduce I/O. The third method, called Mine
Merge, splits DMQs into a new set of disjoint DMQs. Their results are used
to answer the original queries.

4.1 Sequential Processing

In the Sequential Processing method, each DMQ is executed separately.
We do not try to benefit from using common disk blocks by two separate
data mining queries. Figure 5 gives the model and pseudocode for this
method (Ci

A means Ci generated for DMQA
, etc.). The cost of this method is

equal to the sum of independent execution of each of the queries:

∑

∑

=
+

=
+

+++

+

+++=

B

A

K

i

B
i

B
i

B
B
iB

i

K

i

A
i

A
i

A
A

iA
iOI

CLD
M

C
C

CLD
M

C
C

1
1

1
1/

2

2cost

∑∑
=

+
=

+

 ++

 +=

BA K

i

B
i

BB
i

K

i

A
i

AA
iCPU LDCLDC

1

2

1
1

2

1cost

4.2 Common Counting

When two or more different DMQs count their candidate itemsets in the
same part of the database, the common part of their counting steps is
integrated and requires only one scan of the involved part of the database. A
model of a single step of the Common Counting algorithm and its procedural
implementation are shown in Fig 6.

Example. Using the original database selection conditions, we construct
three separate dataset definitions:

1. select basket from sales
where time between ’01-01-02’ and ’01-31-02’
 and NOT uad like ‘%.fr’

2. select basket from sales
where time between ’01-01-02’ and ’01-31-02’
 and uad like ‘%.fr’

8 Marek Wojciechowski and Maciej Zakrzewicz

DA CA

C.s ⊆ D.s

γ C.s, COUNT(D.s)

σ COUNT(D.s)≥minsup

|C1.s - C2.s| = 1

π C1.s ∪C2.s

γ C1.s ∪C2.s, COUNT(*)

σ COUNT(*) = k(k-1)/2

DB CB

C.s ⊆ D.s

γ C.s, COUNT(D.s)

σ COUNT(D.s)≥minsup

|C1.s - C2.s| = 1

π C1.s ∪C2.s

γ C1.s ∪C2.s, COUNT(*)

σ COUNT(*) = k(k-1)/2

π C.s π C.s

LA LB

C1
A = {all 1-itemsets from DA}

for (k=1; Ck
A ∪ Ck

B ≠ ∅; k++)
 count(Ck

A, DA);
 Lk

A = {c ∈ Ck
A | c.count ≥ minsupA};

 Ck+1
A = generate_candidates(Lk

A);
AnswerA = UkLk

A;

C1

B = {all 1-itemsets from DB}
for (k=1; Ck

B ≠ ∅; k++)
 count(Ck

B, DB);
 Lk

B = {c ∈ Ck
B | c.count ≥ minsupB};

 Ck+1
B = generate_candidates(Lk

B);
AnswerB = UkLk

B;

Figure -5 Model of the Sequential Processing method

DA-DB CA

C.s ⊆ D.s

γ C.s, COUNT(D.s)

π C1.s , C1.COUNT(D.s)+ L2.COUNT(D.s)

π C.s

|C1.s - C2.s| = 1

π C1.s ∪C2.s

DA∩DB CA∪CB

C.s ⊆ D.s

γ C.s, COUNT(D.s)

DB-DACB

C.s ⊆ D.s

γ C.s, COUNT(D.s)

C1.s = C2.s C1.s = C2.s

π C1.s , C1.COUNT(D.s)+ C2.COUNT(D.s)

σ COUNT(D.s)≥minsupA σ COUNT(D.s)≥minsupA

π C.s

|C1.s - C2.s| = 1

π C1.s ∪C2.s

LA
 LB

C1
A = {all 1-itemsets from DA}

C1
B = {all 1-itemsets from DB}

for (k=1; Ck
A ∪ Ck

A ≠ ∅; k++)
if Ck

A ≠ ∅ count(Ck
A, DA - DB);

 if Ck
B ≠ ∅ count(Ck

B, DB - DA);
 count(Ck

A ∪ Ck
B, DA ∩ DA);

 Lk
A = {c ∈ Ck

A | c.count ≥ minsupA};
 Lk

B = {c ∈ Ck
B | c.count ≥ minsupB};

 Ck+1
A = generate_candidates(Lk

A);
 Ck+1

B = generate_candidates(Lk
B);

AnswerA = UkLk
A;

AnswerB = UkLk
B;

Figure -6. Model of the Common Counting method

Methods for Batch Processing of Data Mining Queries 9

3. select basket

from sales
where NOT time between ’01-01-02’
 and ’01-31-02’
 and uad like ‘%.fr’

Next, we scan the first query’s result in order to count DMQA candidate
itemsets, then we scan the second query’s result in order to count both
DMQA and DMQB candidate itemsets, finally we scan the third query’s result
in order to count DMQB candidate itemsets. Notice that none of the database
blocks nedeed to be read twice, if the candidate itemsets fit in memory.
 Let us analyze the cost of this method. Candidate itemsets of DMQA must
be read, joined with DA-DB, counted, and saved to disk. Also, candidate
itemsets of DMQB must be read, joined with DB-DA, counted, and saved to
disk. Next, all candidates of DMQA and DMQB must be read, joined with
DA∩ DB, counted, and saved to disk. The candidate itemsets with support
greater or equal to, respectively, minsupA or minsupB, become frequent
itemsets and are written to disk. In order to generate new candidate itemsets,
all frequent itemsets must be read from disk and new candidate itemsets
must be written to disk. Therefore, the I/O cost of this method is the
following:

∑
=

++

++++∩

+
+

−++−+

=
),max(

1

11

/

22

33

cost
BA KK

i
B
i

A
i

B
i

A
i

BA
B
i

A
i

AB
B
iB

i
BA

A
iA

i

OI

CCLLDD
M

CC

DD
M

C
CDD

M

C
C

Similarly, the CPU cost is as follows:

()()∑

∑∑

=
++

=
+

=
+

∩+

+

 +−+

 +−=

),max(

1
11

1

2

1
1

2

1cost

BA

BA

KK

i

ABB
i

A
i

K

i

B
i

ABB
i

K

i

A
i

BAA
iCPU

DDCC

LDDCLDDC

4.3 Mine Merge

This method employs the property that an itemset which is frequent in a
whole data set, must also be frequent in at least one portion of it [4,13]. In
the Mine Merge method, each pair of overlapping DMQs is divided into
three separate DMQs. Next, the new DMQs are executed sequentially. The
results of the new DMQs are candidates to determine the results of the
original DMQs. Therefore, an additional counting step is needed to finally
answer the original DMQs. The pseudocode of the method and a model of
the additional step are given in Fig. 7.

10 Marek Wojciechowski and Maciej Zakrzewicz

DA U LA-B ∪ U LA∩B

L.s ⊆ D.s

γ L.s, COUNT(D.s)

σ COUNT(D.s)≥minsup

DB U LB-A ∪ U LA∩B

L.s ⊆ D.s

γ L.s, COUNT(D.s)

σ COUNT(D.s)≥minsup

C1
A-B = {all 1-itemsets from DA - DB }

for (k=1; Ck
A-B ≠ ∅; k++)

count(Ck
A-B, DA - DB);

 Lk
A-B = {c ∈ Ck

A-B | c.count ≥ minsupA};
 Ck+1

A-B = generate_candidates(Lk
A-B);

AnswerA-B = UkLk
A-B;

C1

B-A = {all 1-itemsets from DB - DA }
for (k=1; Ck

 B-A ≠ ∅; k++)
count(Ck

 B-A, DB – DA);
 Lk

 B-A = {c ∈ Ck
 B-A | c.count ≥ minsupB};

 Ck+1
 B-A = generate_candidates(Lk

 B-A);
AnswerB-A = UkLk

B-A;

C1

A∩B = {all 1-itemsets from DA ∩ DB }
for (k=1; Ck

 A∩B ≠ ∅; k++)
count(Ck

 A∩B, DA ∩ DB);
 Lk

 A∩B =
 {c ∈ Ck

 A∩B | c.count ≥ min(minsupA , minsupB)};
 Ck+1

 A∩B = generate_candidates(Lk
 A∩B);

Answer A∩B = UkLk
 A∩B;

count(AnswerA-B ∪ Answer A∩B, DA);
AnswerA =
 {c ∈ AnswerA-B ∪ Answer A∩B | c.count ≥ minsupA);

count(AnswerB-A ∪ Answer A∩B, DB);
AnswerB =
 {c ∈ AnswerB-A ∪ Answer A∩B | c.count ≥ minsupB);

Figure –7. Model of the Mine Merge method

Example. Using the original database selection conditions, we construct

three new data mining queries. Assume the intermediate results are written
to the relation Intermediate(label,itemset).

DMQ1:
insert into intermediate mine ‘DMQ1’, itemset
from (select basket from sales
 where time between ’01-01-02’ and ’01-31-02’
 and NOT uad like ‘%.fr’)
where support(itemset)>350
DMQ2:
insert into intermediate mine ‘DMQ2’, itemset
from (select basket from sales

 where time between ’01-01-02’ and ’01-31-02’
 and uad like ‘%.fr’)

where support(itemset)>20
DMQ3:
insert into intermediate mine ‘DMQ3’, itemset
from (select basket from sales
 where NOT time between ’01-01-02’ and ’01-31-02’
 and uad like ‘%.fr’)
where support(itemset)>20

Methods for Batch Processing of Data Mining Queries 11

The above queries discover frequent itemsets in the three partitions of the
original data sets. In the next step, we have to merge the partitions and verify
the itemsets’ final supports:

1. select itemset
 from (select distinct itemset from intermediate) i,
 sales s
 where label in (‘DMQ1’,’DMQ2’)
 and s.itemset contains i.itemset
 group by i.itemset
 having count(*)>350;
2. select itemset
 from (select distinct itemset from intermediate) i,
 sales s
 where label in (‘DMQ2’,’DMQ3’)
 and s.itemset contains i.itemset
 group by i.itemset
 having count(*)>20;

The itemsets selected by the first Select query form the result of DMQA,
and the itemsets selected by the second Select query form the result of
DMQB.

Let us analyze the cost of this method. The I/O cost of executing the
three new data mining queries is the following:

∑

∑

∑

−

∩

−

=

−
+

−
−

−

=

∩
+

∩
∩

∩

=

−
+

−
−

−

++−+

+

++∩+

+

++−+=

AB

BA

BA

K

i

AB
i

AB
i

AB
AB

iAB
i

K

i

BA
i

BA
i

BA
BA

iBA
i

K

i

BA
i

BA
i

BA
BA

iBA
iOI

CLDD
M

C
C

CLDD
M

C
C

CLDD
M

C
C

1
1

1
1

1
1/

2

2

2cost

The I/O cost of verifying the discovered itemsets’ supports is the cost of
performing the join operation:

() ()
B

BAAB
A

BABA

OI D
M

LL
D

M

LL ∩−∩− ∪
+

∪
=

UU
/cost

The CPU cost of the complete method is the following:

BBAABABABA
K

i

AB
i

ABAB
i

K

i

BA
i

BABA
i

K

i

BA
i

BABA
iCPU

DLLDLLLDC

LDCLDC

AB

BABA

)()(

cost

1

2

1

1

2

1
1

2

1

∪−∪−

=

−−−
+

=

∩∩∩
+

=

−−−
+

∪+∪+

 +

+

 ++

 +=

∑

∑∑
−

∩−

UU

12 Marek Wojciechowski and Maciej Zakrzewicz

5. CONCLUSIONS

In this paper we have presented the problem of efficient executing
batches of data mining queries. We have built a relational algebra model for
a level-wise association discovery algorithm and we used this model to
describe our methods of executing batched data mining queries. For the three
described methods, we analyzed their performance in terms of I/O cost and
CPU cost.

REFERENCES

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

3. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996)

4. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules
in Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

5. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A.,
Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large
Relational Databases. Proc. of the 2nd KDD Conference (1996)

6. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

7. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

8. Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database
Management Systems. Proc. of the 2nd DaWaK Conference (2000)

9. Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97
Symposium (1997)

10. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive
Discovery of Association Rules. Proc. of the 5th KDD Conference (1999)

11.Thomas S., Bodagala S., Alsabti K., Ranka S.: An Efficient Algorithm for the Incremental
Updation of Association Rules in Large Databases. Proc. of the 3rd KDD Conference
(1997)

12.Toivonen H.: Sampling Large Databases for Association Rules. Proc. of the 22nd Int’l
Conference on Very Large Data Bases (1996)

13.Wojciechowski M., Zakrzewicz M.: Itemset Materializing for Fast Mining of Association
Rules. Proc. of the 2nd ADBIS Conference (1998)

