
A Greedy Approach to Concurrent Processing of
Frequent Itemset Queries

Pawel Boinski, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 2, 60-965 Poznan, Poland
{pawel.boinski,marek,mzakrz}@cs.put.poznan.pl

Abstract. We consider the problem of concurrent execution of multiple
frequent itemset queries. If such data mining queries operate on overlapping
parts of the database, then their overall I/O cost can be reduced by integrating
their dataset scans. The integration requires that data structures of many data
mining queries are present in memory at the same time. If the memory size is
not sufficient to hold all the data mining queries, then the queries must be
scheduled into multiple phases of loading and processing. Since finding the
optimal assignment of queries to phases is infeasible for large batches of
queries due to the size of the search space, heuristic algorithms have to be
applied. In this paper we formulate the problem of assigning the queries to
phases as a particular case of hypergraph partitioning. To solve the problem, we
propose and experimentally evaluate two greedy optimization algorithms.

1 Introduction

Multiple Query Optimization (MQO) [16] is a database research area that focuses on
optimizing sets of queries together by executing their common expressions only once
in order to save query execution time. Many exhaustive and heuristic algorithms have
been proposed for traditional MQO. A specific type of a database query is a Data
Mining Query (DMQ) [10], which describes a data mining task. It defines constraints
on the data to be mined and constraints on the patterns to be discovered. Existing data
mining systems execute DMQs serially and do not try to share any common
expressions between different DMQs.

DMQs can be processed in batches, executed during low user activity time. If
source datasets of the batched queries overlap, serial execution will result in reading
certain parts of the database more times than necessary. If I/O steps of batched DMQs
were integrated, then it would be possible to decrease the overall execution cost and
time of the whole batch. One of the methods to process batches of DMQs is Common
Counting, focused on frequent itemset discovery queries [1]. It is based on Apriori
algorithm [3] and it integrates the steps of candidate support counting – all candidate
hash trees for multiple DMQs are loaded into memory and the database is scanned
only once. Basic Common Counting [17] assumes that all DMQs fit in memory,
which is not the common case, at least for initial Apriori iterations. If the memory can

hold only a subset of all DMQs, then it is necessary to partition/schedule the DMQs
into subsets called phases. The best query scheduling algorithms proposed so far are:
CCAgglomerative [19] and its extension called CCAgglomerativeNoise [6]. In this
paper we propose and experimentally evaluate two new greedy optimization
algorithms: CCGreedy and CCSemiGreedy. CCGreedy implements a pure greedy
strategy, and CCSemiGreedy is its extension following a semi-greedy heuristics [9].

2 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (see e.g. [16]), however very little work has been done on optimizing sets of
data mining queries. To the best of our knowledge, apart from the Common Counting
method discussed in this paper, the only other multiple data mining query processing
scheme is Mine Merge, presented in one of our previous papers [18].

As an introduction to multiple data mining query optimization, we can regard
techniques of reusing results of previous queries to answer a new query [5][7][11]
[14]. As we have shown in [15], these methods can be used to optimize processing of
batches of data mining queries after appropriate ordering of the queries. However,
such an approach is applicable just in a small fraction of cases that Common Counting
can successfully handle.

Hypergraph partitioning has been extensively studied particularly in the domain of
VLSI design [4]. In data mining context it has been proposed as a clustering technique
in [13]. Many formulations of the hypergraph partitioning problem have been
considered, differing in partitioning constraints and objectives (see e.g. [4] or [12]).
Our formulation differs from typical approaches because we do not have any balance
constraint on the sizes of resulting partitions, only a strict upper bound on the on the
sum of weights of vertices in a partition, reflecting the memory limit.

3 Background

3.1 Basic Definitions

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β),
where R is a relation, a is a set-valued attribute of R, Σ is a condition involving the
attributes of R, Φ is a condition involving discovered itemsets, and β is the minimum
support threshold. The result of dmq is a set of itemsets discovered in πaσΣR,
satisfying Φ, and having support ≥ β (π and σ denote projection and selection).
Elementary data selection predicates. The set S={s1, s2 ,..., sk} of data selection
predicates over the relation R is a set of elementary data selection predicates for a set
of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u, v we have
σsuR∩σsvR=∅ and for each dmqi there exist integers a, b, ..., m such that
σΣiR=σsaR∪σsbR∪..∪σsmR.

3.2 Review of Common Counting

Common Counting is so far the best algorithm for multiple-query optimization in
frequent itemset mining. It consists in concurrent execution of a set of frequent
itemset queries using the Apriori algorithm and integrating their dataset scans. The
algorithm iteratively generates and counts candidates for all the data mining queries,
storing candidates generated for each query in a separate hash-tree structure. For each
distinct data selection formula, its corresponding database partition is scanned once
per iteration, and candidates for all the queries referring to that partition are counted.

Basic Common Counting assumes that memory is unlimited and therefore the
candidate hash-trees for all queries can completely fit in memory. If, however, the
memory is limited, Common Counting execution must be divided into multiple
phases, so that in each phase only a subset of queries is processed. In general, many
assignments of queries to phases are possible, differing in the reduction of I/O costs.
The task of assigning queries to phases in a way minimizing the overall I/O cost is
called query scheduling.

Since the sizes of candidate hash-trees change between Apriori iterations, the
scheduling has to be performed at the beginning of every Apriori iteration. A
scheduling algorithm requires that sizes of candidate hash-trees are known in
advance. Therefore, in each iteration of Common Counting, we first generate all the
candidate hash-trees, measure their sizes, save them to disk, schedule the data mining
queries, and then load the hash-trees from disk when they are needed. The exhaustive
search for an optimal assignment of queries to Common Counting phases is
inapplicable for large batches of queries due to the size of the search space (expressed
by a Bell number). Therefore, several scheduling heuristics have been proposed.

4 Frequent Itemset Query Scheduling by Hypergraph Partitioning

4.1 Data Sharing Hypergraph

A set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} can be modeled as a
weighted hypergraph whose vertices represent queries and hyperedges represent
elementary data selection predicates. A hyperedge in the hypergraph corresponds to a
database partition and connects the queries whose source datasets share that partition.

Formally, a data sharing hypergraph for the set of data mining queries DMQ =
{dmq1, dmq2, ..., dmqn} and its corresponding set of elementary data selection
predicates S={s1, s2 ,..., sk} is a hypergraph DSG=(V,E), where V=DMQ, E=S, and a
vertex dmqi∈DMQ is incident with an hyperedge sj∈S iff σsjR ⊆σΣiR. Each vertex
dmqi has an associated weight w(dmqi) representing the amount of memory consumed
by data structures of the query dmqi. Each hyperedge sj has an associated weight w(sj)
representing the size of the database partition returned by the elementary data
selection predicate sj.

Note that the above definition of a data sharing hypergraph allows hyperedges
incident with only one vertex in order to represent database partitions read by only
one query.

Example. Given three frequent itemset queries operating on the relation R1 = (a1, a2):
dmq1=(R1, “a2”, “5<a1<20”, ∅, 3%), dmq2=(R1, “a2”, “10<a1<30”, ∅, 5%),
dmq3=(R1, “a2”, “15<a1<40”, ∅, 4%). The set of elementary data selection predicates
for the set of frequent itemset queries DMQ={dmq1, dmq2, dmq3} is S={“5<a1<10”,
“10<a1<15”, “15<a1<20”, “20<a1<30”, “30<a1<40”}. The data sharing hypergraph
for DMQ is shown in Fig. 1.

dmq1

dmq2

dmq3

5<a1<10

10<a1<15 20<a1<30

30<a1<40

Data selection
predicate hyperedge

Frequent
itemset query
vertex

15<a1<20

Fig. 1. Example data sharing hypergraph

4.2 Hypergraph Partitioning Problem Formulation

The goal of query scheduling for Common Counting is assigning queries to phases
fitting into main memory in a way minimizing the overall I/O cost. Each of the phases
returned by the scheduling algorithm is a set of frequent itemset queries for which a
data sharing hypergraph can be constructed. Thus, query scheduling for Common
Counting can be interpreted as a particular case of hypergraph partitioning.

After partitioning, elementary data selection predicates corresponding to database
partitions shared by queries that have been assigned to different phases will be
represented as hyperedges in more then one resulting hypergraph. In other words, a
hyperedge that is cut by the partitioning will be partitioned into a number of
hyperedges connecting subsets of vertices previously connected by the original
hyperedge. One of the possible partitionings of the data sharing hypergraph from Fig.
1, representing scheduling into two phases is shown in Fig. 2. Hyperedges that have
been cut (partitioned) are presented in bold.

dmq1
dmq3

5<a1<10

10<a1<15

15<a1<20
15<a1<20

20<a1<30

30<a1<40

20<a1<30 dmq2

Fig. 2. Example partitioning of the data sharing hypergraph from Fig. 1

In terms of hypergraph partitioning, the goal of query scheduling for Common
Counting can be stated as follows:

Problem Statement. Given a data sharing hypergraph for the set of frequent itemsets
queries DSG = (V,E) and the amount of available main memory MEMSIZE, the goal
is to partition the vertices of the hypergraph into k disjoint subsets V1, V2, …, Vk, and
their corresponding data sharing hypergraphs DSG1 = (V1,E1), DSG2 = (V2,E2), …,
DSGk = (Vk,Ek) such that

∑
∈=

≤∀
xi Vdmq

i
kx

MEMSIZEdmqw)(
..1

minimizing

∑ ∑
= ∈kx Es

j

xj

sw
..1

)(.

In the above formulation, the partitioning constraint has the form of an upper bound
on the sum of weights of vertices in each partition, reflecting the amount of available
memory, while the partitioning objective is to minimize the total sum of weights of
hyperedges across all the partitions, representing the overall I/O cost of the Common
Counting iteration. It should be noted that the number of resulting partitions (i.e.
Common Counting phases) is not known a priori, and there is no lower bound on the
sum of weights of vertices in each partition. Informally, the latter means that we do
not require that the resulting partitions are of similar sizes.

According to the classification from [12], the partitioning objective in our problem
formulation is equivalent to minimizing the k-1 metric, where the goal is to minimize
the size of the hyperedge cut to which each cut hyperedge contributes k-1 times its
weight.

Our hypergraph partitioning problem is NP-hard since if we consider only
hypergraphs with hyperedges connecting exactly two vertices, its decision version
will restrict itself to the classic graph partitioning problem formulation from [8]
(proof of NP-completeness by restriction). Taking that into account, for large number
of vertices (frequent itemset queries) heuristic approaches have to be applied to solve
the problem, resulting in possibly suboptimal solutions.

5 Greedy Approach to Query Scheduling

We propose to solve the hypergraph partitioning problem representing query
scheduling for Common Counting by starting with each query in a separate partition
and then iteratively merging pairs of partitions, greedily choosing the two partitions
whose merging results in greater improvement of the partitioning objective and at the
same time does not violate the partitioning constraint. This leads to the CCGreedy
algorithm presented in Fig. 3. To represent the gain in the partitioning objective for all
pairs of partitions the algorithm maintains a gain graph GG=(V, E), which is a fully
connected graph whose nodes represent partitions and each edge weight represents the
gain thanks to merging a pair of partitions connected by the edge. The gain is
computed as the difference between the values of partitioning objectives after and
before merging a given pair of queries. Limited by space we omit the formal
description of initial gain graph generation.

CCGreedy(GG=(V,E)):
begin

while (true) begin
 sort E in desc. order with respect to ei.gain, ignore edges with zero gains
 newPartition = ∅
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 newPartition = vx ∪ vy
 V = V \ {vx, vy}; V = V ∪ {newPartition}; E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}, compute newEdge.gain
 E = E ∪ {newEdge}
 end
 break
 end if
 end
 if newPartition = ∅ then break end if
end
return V

end

Fig. 3. CCGreedy algorithm

An obvious problem with greedy algorithms like CCGreedy is that the locally optimal
choice in each operation may not lead to the globally optimal solution. To increase the
chances of finding the optimal partitioning we modify CCGreedy by applying a semi-
greedy strategy to it. The result is the CCSemiGreedy algorithm depicted in Fig.4.

CCSemiGreedy(GG=(V,E), RCLLen):
begin
 while (true) begin
 sort E in desc. order wrt. ei.gain,
 ignore edges with zero gains
 newPartition = ∅
 RCL = genRCL(GG, RCLLen)
 if length(RCL) = 0 then break end if
 randomly choose ei = {vx, vy} from RCL
 newPartition = vx ∪ vy
 V = V \ {vx, vy}; V = V ∪ {newPartition}; E = E \ ei
 for each v in V do begin
 newEdge = {v, newPartition}
 compute newEdge.gain
 E = E ∪ {newEdge}
 end
 end
 return V
end

function genRCL(GG=(V,E), RCLLen):
begin
 RCL = nil
 for each ei = {vx, vy} in E do
 if (treesize(ei) ≤ MEMSIZE) then
 RCL = append(RCL, ei)
 if length(RCL) = RCLLen then
 break
 end if
 end if
 end
 return RCL
end

Fig. 4. CCSemiGreedy algorithm

CCSemiGreedy differs from CCGreedy in the step of choosing the partitions to
merge. CCSemiGreedy uses restricted candidate list (RCL) which is returned by the
function genRCL. This procedure iterates over the gain graph and checks if hash trees
of all the queries from a given pair of partitions fit together in memory. If this
condition is satisfied, the current edge is added to the RCL. Generation of the RCL is
stopped when the list reaches the length of RCLLen (set by a user). In CCSemiGreedy
we check the length of the RCL. If it is zero, there is no possible merge, otherwise an
edge (for partition merging) is chosen randomly from the RCL. Other steps of the
CCSemiGreedy algorithm are the same as those described for CCGreedy algorithm.

In practice, CCSemiGreedy should be applied to query scheduling in the following
way: Firstly, an initial schedule should be generated with CCGreedy. Then,
CCSemiGreedy should be executed a user-defined number of times. In the end, the
best of the generated schedules should be used for Common Counting.

6 Experimental Evaluation

We implemented our algorithms in C# and conducted experiments on a PC with Intel
Pentium IV 2.53GHz processor and 512MB of RAM, running Windows XP.

In the first series of experiments, we performed simulations to determine influence
of CCSemiGreedy parameters (RCL length and number of attempts) on its
effectiveness. We simulated batches of data mining queries by randomly generating
the database predicate and size of the candidate tree for each query. Size of available
memory was randomly generated in such way that at least every single query could fit
into memory. Series of simulations consisted of 500 iterations to get average values
and were applied to batches of queries ranging from 3 to 50 queries per batch.

Figure 5 presents the influence of chosen RCL length on the number of disk blocks
read by CCSemiGreedy. The experiments indicate that the length of the RCL should
be very small but greater than 2 items. Best results were obtained for 3 to 6 items. For
further experiments we have chosen the length of RCL equal to 3.

2200

2250

2300

2350

2400

2450

2500

2550

0 5 10 15 20 25 30 35 40 45

RCL length

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad

CCSemiGreedy attempts=50

Fig. 5. Influence of the RCL length on the overall accuracy of CCSemiGreedy

Figure 6 presents influence of the second parameter of CCSemiGreedy, which is the
number of attempts to generate schedule. It is obvious that more attempts generally
will result in better schedules but at the expense of increasing the scheduling time.

Results indicate that after more than fifty attempts there is no significant improvement
in the quality of the schedule.

2260

2280

2300

2320

2340

2360

2380

0 50 100 150 200

Attempts

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad CCSemiGreedy RCLLen=3

Fig. 6. Influence of the number of attempts on the overall accuracy of CCSemiGreedy

In the second series of experiments we compared CCGreedy and CCSemiGreedy
scheduling algorithms with previously proposed CCAgglomerative and
CCAgglomerativeNoise in terms of effectiveness (quality of generated schedules) and
efficiency (scheduling times). These experiments were performed on a synthetic
dataset generated with GEN [2]. The dataset had the following characteristics:
number of transactions = 500000, average number of items in a transaction = 4,
number of different items = 10000, number of patterns = 1000. The data resided in a
local PostgreSQL database. We randomly generated batches of 5 to 30 queries,
operating on subsets of the test database.

0,89

0,91

0,93

0,95

0,97

0,99

1,01

0 5 10 15 20 25 30 35
Number of queries

N
u

m
b

er
 o

f
d

at
a

b
lo

ck
s

re
ad

 (
re

la
ti

ve
)

CCAgglomerative
CCGreedy

CCAgglomerativeNoise attempts=150 noise=3
CCSemiGreedy attempts=50 RCLLen=3

Fig. 7. Amounts of data read by different schedules

Figure 7 presents how the accuracy of the scheduling algorithms changes with the
number of queries. To improve readability of the chart, we present relative amount of
data blocks read by schedules generated by CCGreedy, CCSemiGreedy and
CCAgglomerativeNoise wrt. CCAgglomerative. CCAgglomerativeNoise iteratively
tries to improve the schedule generated by CCAgglomerative in a similar way as
CCSemiGreedy extends CCGreedy. We used the optimal value (3%) of the noise
parameter of CCAgglomerativeNoise, determined in similar simulations to those
carried for CCSemiGreedy. The number of attempts (150) for CCAgglomerativeNoise

was chosen in such way that both CCSemiGreedy and CCAgglomerativeNoise
algorithms had equal time to generate the schedule.

Experiments were performed for three values of the main memory limit (90, 120
and 150kB) and for four levels of the average overlapping of datasets read by queries
in the set (20%, 40%, 60%, 80%). Due to limited space we present results that are
averages taken over all the conducted experiments. Results show that the most
effective schedules are generated by CCSemiGreedy and are about 5% better than
those generated by CCAgglomerative. For CCAgglomerativeNoise and CCGreedy the
measured improvement over CCAgglomerative was 2% and 1% respectively.

0,001

0,01

0,1

1

10

100

1000

10000

0 5 10 15 20 25 30 35
Number of queries

S
ch

ed
u

le
 t

im
e

[m
s]

CCAgglomerative
CCGreedy

CCAgglomerativeNoise attempts=50 noise=3
CCSemiGreedy attempts=50 RCLLen=3

Fig. 8. Scheduling times (logarithmic scale)

Figure 8 presents scheduling times for the considered algorithms. This time for
CCSemiGreedy and CCAgglomerativeNoise numbers of attempts were fixed at the
same level (50). Execution times of CCAgglomerative and CCGreedy are negligible,
with CCGreedy requiring at most twice as much time as CCAgglomerative. Execution
times of CCSemiGreedy are up to three times longer than those of
CCAgglomerativeNoise and the gap increases with the number of queries.

The results of our experiments show that CCGreedy is more effective than
CCAgglomerative, and properly parameterized CCSemiGreedy generates better
schedules than CCAgglomerativeNoise, which makes it the best scheduling algorithm
for Common Counting. The execution times of the new algorithms are longer but in
typical situations the increase in scheduling time will be dominated by the reduction
of the time spent on disk operations thanks to better schedules.

7 Summary

In this paper we considered the problem of concurrent execution of frequent itemset
queries. We introduced two new heuristic query scheduling algorithms for the
Common Counting method: CCGreedy and CCSemiGreedy. Our experiments show
that the new algorithms offer a significant improvement in accuracy over the existing
solutions while providing acceptable scheduling times.

CCGreedy and CCSemiGreedy assume that the set of data mining queries to
execute is static. However, in a real system, new queries may arrive while the other
queries are being executed. In the future we plan to extend our approach to allow for
dynamic scheduling of arriving queries.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd KDD Conference (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Alpert C.J., Kahng A.B.: Recent Directions in Netlist Partitioning: A Survey. Integration:
The VLSI Journal 19 (1995)

5. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

6. Boinski P., Jozwiak K., Wojciechowski M., Zakrzewicz M.: Improving Quality of
Agglomerative Scheduling in Concurrent Processing of Frequent Itemset Queries. Proc. of
the International IIS: IIPWM'06 Conference (2006)

7. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

8. Garey M.R., Johnson D.S.: Computers and Intractability. A Guide to the Theory of NP-
Completeness. WH Freeman and Company (1979)

9. Hart J.P., Shogan A.W.: Semi-greedy Heuristics: An Empirical Study. Operations Research
Letters, Vol. 6 (1987)

10. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

11. Jeudy B., Boulicaut J-F.: Using Condensed Representations for Interactive Association Rule
Mining. Proceedings of the 6th PKDD Conference (2002)

12. Karypis G.: Multilevel Hypergraph Partitioning. In: Cong J., Shinnerl J. (eds.): Multilevel
Optimization Methods for VLSI, Kluwer Academic Publishers (2002)

13. Karypis G., Han E., Kumar V.: Chameleon: A Hierarchical Clustering Algorithm Using
Dynamic Modeling. IEEE Computer, Vol. 32, No. 8 (1999)

14. Meo R.: Optimization of a Language for Data Mining. Proc. of the ACM Symposium on
Applied Computing - Data Mining Track (2003)

15. Morzy M., Wojciechowski M., Zakrzewicz M.: Optimizing a Sequence of Frequent Pattern
Queries. Proc. of the 7th DaWaK Conference (2005)

16. Sellis T.: Multiple Query Optimization. ACM Transactions on Database Systems, Vol. 13,
No. 1 (1988)

17. Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

18. Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining
Query Processing. Proc. of the 8th ADBIS Conference (2004)

19. Wojciechowski M., Zakrzewicz M.: On Multiple Query Optimization in Data Mining. Proc.
of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2005)

