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Abstract. We consider the problem of concurrent execution of multiple 
frequent itemset queries. If such data mining queries operate on overlapping 
parts of the database, then their overall I/O cost can be reduced by integrating 
their dataset scans. The integration requires that data structures of many data 
mining queries are present in memory at the same time. If the memory size is 
not sufficient to hold all the data mining queries, then the queries must be 
scheduled into multiple phases of loading and processing. Since finding the 
optimal assignment of queries to phases is infeasible for large batches of 
queries due to the size of the search space, heuristic algorithms have to be 
applied. In this paper we formulate the problem of assigning the queries to 
phases as a particular case of hypergraph partitioning. To solve the problem, we 
propose and experimentally evaluate two greedy optimization algorithms.  

1   Introduction 

Multiple Query Optimization (MQO) [16] is a database research area that focuses on 
optimizing sets of queries together by executing their common expressions only once 
in order to save query execution time. Many exhaustive and heuristic algorithms have 
been proposed for traditional MQO. A specific type of a database query is a Data 
Mining Query (DMQ) [10], which describes a data mining task. It defines constraints 
on the data to be mined and constraints on the patterns to be discovered. Existing data 
mining systems execute DMQs serially and do not try to share any common 
expressions between different DMQs. 

DMQs can be processed in batches, executed during low user activity time. If 
source datasets of the batched queries overlap, serial execution will result in reading 
certain parts of the database more times than necessary. If I/O steps of batched DMQs 
were integrated, then it would be possible to decrease the overall execution cost and 
time of the whole batch. One of the methods to process batches of DMQs is Common 
Counting, focused on frequent itemset discovery queries [1]. It is based on Apriori 
algorithm [3] and it integrates the steps of candidate support counting – all candidate 
hash trees for multiple DMQs are loaded into memory and the database is scanned 
only once. Basic Common Counting [17] assumes that all DMQs fit in memory, 
which is not the common case, at least for initial Apriori iterations. If the memory can 



hold only a subset of all DMQs, then it is necessary to partition/schedule the DMQs 
into subsets called phases. The best query scheduling algorithms proposed so far are: 
CCAgglomerative [19] and its extension called CCAgglomerativeNoise [6]. In this 
paper we propose and experimentally evaluate two new greedy optimization 
algorithms: CCGreedy and CCSemiGreedy. CCGreedy implements a pure greedy 
strategy, and CCSemiGreedy is its extension following a semi-greedy heuristics [9]. 

2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (see e.g. [16]), however very little work has been done on optimizing sets of 
data mining queries. To the best of our knowledge, apart from the Common Counting 
method discussed in this paper, the only other multiple data mining query processing 
scheme is Mine Merge, presented in one of our previous papers [18].  

As an introduction to multiple data mining query optimization, we can regard 
techniques of reusing results of previous queries to answer a new query [5][7][11] 
[14]. As we have shown in [15], these methods can be used to optimize processing of 
batches of data mining queries after appropriate ordering of the queries. However, 
such an approach is applicable just in a small fraction of cases that Common Counting 
can successfully handle.  

Hypergraph partitioning has been extensively studied particularly in the domain of 
VLSI design [4]. In data mining context it has been proposed as a clustering technique 
in [13]. Many formulations of the hypergraph partitioning problem have been 
considered, differing in partitioning constraints and objectives (see e.g. [4] or [12]). 
Our formulation differs from typical approaches because we do not have any balance 
constraint on the sizes of resulting partitions, only a strict upper bound on the on the 
sum of weights of vertices in a partition, reflecting the memory limit.  

3   Background 

3.1   Basic Definitions  

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β), 
where R is a relation, a is a set-valued attribute of R, Σ is a condition involving the 
attributes of R, Φ is a condition involving discovered itemsets, and β is the minimum 
support threshold. The result of dmq is a set of itemsets discovered in πaσΣR, 
satisfying Φ, and having support ≥ β (π and σ denote projection and selection). 
Elementary data selection predicates. The set S={s1, s2 ,..., sk} of data selection 
predicates over the relation R is a set of elementary data selection predicates for a set 
of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} if for all u, v we have 
σsuR∩σsvR=∅ and for each dmqi there exist integers a, b, ..., m such that 
σΣiR=σsaR∪σsbR∪..∪σsmR. 

 



3.2   Review of Common Counting  

Common Counting is so far the best algorithm for multiple-query optimization in 
frequent itemset mining. It consists in concurrent execution of a set of frequent 
itemset queries using the Apriori algorithm and integrating their dataset scans. The 
algorithm iteratively generates and counts candidates for all the data mining queries, 
storing candidates generated for each query in a separate hash-tree structure. For each 
distinct data selection formula, its corresponding database partition is scanned once 
per iteration, and candidates for all the queries referring to that partition are counted. 

Basic Common Counting assumes that memory is unlimited and therefore the 
candidate hash-trees for all queries can completely fit in memory. If, however, the 
memory is limited, Common Counting execution must be divided into multiple 
phases, so that in each phase only a subset of queries is processed. In general, many 
assignments of queries to phases are possible, differing in the reduction of I/O costs. 
The task of assigning queries to phases in a way minimizing the overall I/O cost is 
called query scheduling.  

Since the sizes of candidate hash-trees change between Apriori iterations, the 
scheduling has to be performed at the beginning of every Apriori iteration. A 
scheduling algorithm requires that sizes of candidate hash-trees are known in 
advance. Therefore, in each iteration of Common Counting, we first generate all the 
candidate hash-trees, measure their sizes, save them to disk, schedule the data mining 
queries, and then load the hash-trees from disk when they are needed. The exhaustive 
search for an optimal assignment of queries to Common Counting phases is 
inapplicable for large batches of queries due to the size of the search space (expressed 
by a Bell number). Therefore, several scheduling heuristics have been proposed. 

4   Frequent Itemset Query Scheduling by Hypergraph Partitioning 

4.1   Data Sharing Hypergraph 

A set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} can be modeled as a 
weighted hypergraph whose vertices represent queries and hyperedges represent 
elementary data selection predicates. A hyperedge in the hypergraph corresponds to a 
database partition and connects the queries whose source datasets share that partition. 

Formally, a data sharing hypergraph for the set of data mining queries DMQ = 
{dmq1, dmq2, ..., dmqn} and its corresponding set of elementary data selection 
predicates S={s1, s2 ,..., sk} is a hypergraph DSG=(V,E), where V=DMQ, E=S, and a 
vertex dmqi∈DMQ is incident with an hyperedge sj∈S iff σsjR ⊆σΣiR. Each vertex 
dmqi has an associated weight w(dmqi) representing the amount of memory consumed 
by data structures of the query dmqi. Each hyperedge sj has an associated weight w(sj) 
representing the size of the database partition returned by the elementary data 
selection predicate sj. 

Note that the above definition of a data sharing hypergraph allows hyperedges 
incident with only one vertex in order to represent database partitions read by only 
one query. 



 
Example. Given three frequent itemset queries operating on the relation R1 = (a1, a2): 
dmq1=(R1, “a2”, “5<a1<20”, ∅, 3%), dmq2=(R1, “a2”, “10<a1<30”, ∅, 5%), 
dmq3=(R1, “a2”, “15<a1<40”, ∅, 4%). The set of elementary data selection predicates 
for the set of frequent itemset queries DMQ={dmq1, dmq2, dmq3} is S={“5<a1<10”, 
“10<a1<15”, “15<a1<20”, “20<a1<30”, “30<a1<40”}. The data sharing hypergraph 
for DMQ is shown in Fig. 1. 
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Fig. 1.  Example data sharing hypergraph 

4.2   Hypergraph Partitioning Problem Formulation 

The goal of query scheduling for Common Counting is assigning queries to phases 
fitting into main memory in a way minimizing the overall I/O cost. Each of the phases 
returned by the scheduling algorithm is a set of frequent itemset queries for which a 
data sharing hypergraph can be constructed. Thus, query scheduling for Common 
Counting can be interpreted as a particular case of hypergraph partitioning.  

After partitioning, elementary data selection predicates corresponding to database 
partitions shared by queries that have been assigned to different phases will be 
represented as hyperedges in more then one resulting hypergraph. In other words, a 
hyperedge that is cut by the partitioning will be partitioned into a number of 
hyperedges connecting subsets of vertices previously connected by the original 
hyperedge. One of the possible partitionings of the data sharing hypergraph from Fig. 
1, representing scheduling into two phases is shown in Fig. 2. Hyperedges that have 
been cut (partitioned) are presented in bold. 
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Fig. 2.  Example partitioning of the data sharing hypergraph from Fig. 1 

In terms of hypergraph partitioning, the goal of query scheduling for Common 
Counting can be stated as follows: 



 
Problem Statement. Given a data sharing hypergraph for the set of frequent itemsets 
queries DSG = (V,E) and the amount of available main memory MEMSIZE, the goal 
is to partition the vertices of the hypergraph into k disjoint subsets V1, V2, …, Vk, and 
their corresponding data sharing hypergraphs DSG1 = (V1,E1), DSG2 = (V2,E2), …, 
DSGk = (Vk,Ek) such that  
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In the above formulation, the partitioning constraint has the form of an upper bound 
on the sum of weights of vertices in each partition, reflecting the amount of available 
memory, while the partitioning objective is to minimize the total sum of weights of 
hyperedges across all the partitions, representing the overall I/O cost of the Common 
Counting iteration. It should be noted that the number of resulting partitions (i.e. 
Common Counting phases) is not known a priori, and there is no lower bound on the 
sum of weights of vertices in each partition. Informally, the latter means that we do 
not require that the resulting partitions are of similar sizes. 

According to the classification from [12], the partitioning objective in our problem 
formulation is equivalent to minimizing the k-1 metric, where the goal is to minimize 
the size of the hyperedge cut to which each cut hyperedge contributes k-1 times its 
weight. 

Our hypergraph partitioning problem is NP-hard since if we consider only 
hypergraphs with hyperedges connecting exactly two vertices, its decision version 
will restrict itself to the classic graph partitioning problem formulation from [8] 
(proof of NP-completeness by restriction). Taking that into account, for large number 
of vertices (frequent itemset queries) heuristic approaches have to be applied to solve 
the problem, resulting in possibly suboptimal solutions. 

5   Greedy Approach to Query Scheduling 

We propose to solve the hypergraph partitioning problem representing query 
scheduling for Common Counting by starting with each query in a separate partition 
and then iteratively merging pairs of partitions, greedily choosing the two partitions 
whose merging results in greater improvement of the partitioning objective and at the 
same time does not violate the partitioning constraint. This leads to the CCGreedy 
algorithm presented in Fig. 3. To represent the gain in the partitioning objective for all 
pairs of partitions the algorithm maintains a gain graph GG=(V, E), which is a fully 
connected graph whose nodes represent partitions and each edge weight represents the 
gain thanks to merging a pair of partitions connected by the edge. The gain is 
computed as the difference between the values of partitioning objectives after and 
before merging a given pair of queries. Limited by space we omit the formal 
description of initial gain graph generation. 



 
CCGreedy(GG=(V,E)): 
begin 

while (true) begin 
   sort E in desc. order with respect to ei.gain,  ignore edges with zero gains 
   newPartition =  ∅ 
  for each ei = {vx, vy} in E do  
    if (treesize(ei) ≤ MEMSIZE) then 
      newPartition = vx ∪ vy 
      V = V \ {vx, vy};        V = V ∪ {newPartition};        E = E \ ei 
      for each v in V do begin 
        newEdge = {v, newPartition}, compute newEdge.gain 
        E = E ∪ {newEdge} 
      end 
      break 
    end if 
  end 
  if newPartition = ∅ then break end if 
end 
return V 

end 

Fig. 3. CCGreedy algorithm 

An obvious problem with greedy algorithms like CCGreedy is that the locally optimal 
choice in each operation may not lead to the globally optimal solution. To increase the 
chances of finding the optimal partitioning we modify CCGreedy by applying a semi-
greedy strategy to it.  The result is the CCSemiGreedy algorithm depicted in Fig.4. 

 
CCSemiGreedy(GG=(V,E), RCLLen): 
begin 
  while (true) begin 
     sort E in desc. order wrt. ei.gain,  
     ignore edges with zero gains 
     newPartition =  ∅ 
    RCL = genRCL(GG, RCLLen) 
    if length(RCL) = 0 then break end if 
    randomly choose ei = {vx, vy} from RCL 
    newPartition = vx ∪ vy 
    V = V \ {vx, vy};  V = V ∪ {newPartition};   E = E \ ei 
    for each v in V do begin 
      newEdge = {v, newPartition} 
      compute newEdge.gain 
      E = E ∪ {newEdge} 
    end 
  end 
  return V 
end 

function genRCL(GG=(V,E), RCLLen): 
begin 
  RCL = nil 
  for each ei = {vx, vy}  in E do  
    if (treesize(ei) ≤ MEMSIZE) then 
      RCL = append(RCL, ei) 
      if length(RCL) = RCLLen then  
        break  
      end if 
    end if 
  end 
  return RCL 
end 

Fig. 4. CCSemiGreedy algorithm 



CCSemiGreedy differs from CCGreedy in the step of choosing the partitions to 
merge. CCSemiGreedy uses restricted candidate list (RCL) which is returned by the 
function genRCL. This procedure iterates over the gain graph and checks if hash trees 
of all the queries from a given pair of partitions fit together in memory. If this 
condition is satisfied, the current edge is added to the RCL. Generation of the RCL is 
stopped when the list reaches the length of RCLLen (set by a user). In CCSemiGreedy 
we check the length of the RCL. If it is zero, there is no possible merge, otherwise an 
edge (for partition merging) is chosen randomly from the RCL. Other steps of the 
CCSemiGreedy algorithm are the same as those described for CCGreedy algorithm. 

In practice, CCSemiGreedy should be applied to query scheduling in the following 
way: Firstly, an initial schedule should be generated with CCGreedy. Then, 
CCSemiGreedy should be executed a user-defined number of times. In the end, the 
best of the generated schedules should be used for Common Counting. 

6   Experimental Evaluation 

We implemented our algorithms in C# and conducted experiments on a PC with Intel 
Pentium IV 2.53GHz processor and 512MB of RAM, running Windows XP.  

In the first series of experiments, we performed simulations to determine influence 
of CCSemiGreedy parameters (RCL length and number of attempts) on its 
effectiveness. We simulated batches of data mining queries by randomly generating 
the database predicate and size of the candidate tree for each query. Size of available 
memory was randomly generated in such way that at least every single query could fit 
into memory. Series of simulations consisted of 500 iterations to get average values 
and were applied to batches of queries ranging from 3 to 50 queries per batch. 

Figure 5 presents the influence of chosen RCL length on the number of disk blocks 
read by CCSemiGreedy. The experiments indicate that the length of the RCL should 
be very small but greater than 2 items. Best results were obtained for 3 to 6 items. For 
further experiments we have chosen the length of RCL equal to 3. 
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Fig. 5. Influence of the RCL length on the overall accuracy of CCSemiGreedy 

Figure 6 presents influence of the second parameter of CCSemiGreedy, which is the 
number of attempts to generate schedule. It is obvious that more attempts generally 
will result in better schedules but at the expense of increasing the scheduling time. 



Results indicate that after more than fifty attempts there is no significant improvement 
in the quality of the schedule. 
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Fig. 6. Influence of the number of attempts on the overall accuracy of CCSemiGreedy 

In the second series of experiments we compared CCGreedy and CCSemiGreedy 
scheduling algorithms with previously proposed CCAgglomerative and 
CCAgglomerativeNoise in terms of effectiveness (quality of generated schedules) and 
efficiency (scheduling times). These experiments were performed on a synthetic 
dataset generated with GEN [2]. The dataset had the following characteristics: 
number of transactions = 500000, average number of items in a transaction = 4, 
number of different items = 10000, number of patterns = 1000. The data resided in a 
local PostgreSQL database. We randomly generated batches of 5 to 30 queries, 
operating on subsets of the test database. 
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Fig. 7. Amounts of data read by different schedules 

Figure 7 presents how the accuracy of the scheduling algorithms changes with the 
number of queries. To improve readability of the chart, we present relative amount of 
data blocks read by schedules generated by CCGreedy, CCSemiGreedy and 
CCAgglomerativeNoise wrt. CCAgglomerative. CCAgglomerativeNoise iteratively 
tries to improve the schedule generated by CCAgglomerative in a similar way as 
CCSemiGreedy extends CCGreedy. We used the optimal value (3%) of the noise 
parameter of CCAgglomerativeNoise, determined in similar simulations to those 
carried for CCSemiGreedy. The number of attempts (150) for CCAgglomerativeNoise 



was chosen in such way that both CCSemiGreedy and CCAgglomerativeNoise 
algorithms had equal time to generate the schedule. 

Experiments were performed for three values of the main memory limit (90, 120 
and 150kB) and for four levels of the average overlapping of datasets read by queries 
in the set (20%, 40%, 60%, 80%). Due to limited space we present results that are 
averages taken over all the conducted experiments. Results show that the most 
effective schedules are generated by CCSemiGreedy and are about 5% better than 
those generated by CCAgglomerative. For CCAgglomerativeNoise and CCGreedy the 
measured improvement over CCAgglomerative was 2% and 1% respectively. 
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Fig. 8. Scheduling times (logarithmic scale) 

Figure 8 presents scheduling times for the considered algorithms. This time for 
CCSemiGreedy and CCAgglomerativeNoise numbers of attempts were fixed at the 
same level (50). Execution times of CCAgglomerative and CCGreedy are negligible, 
with CCGreedy requiring at most twice as much time as CCAgglomerative. Execution 
times of CCSemiGreedy are up to three times longer than those of 
CCAgglomerativeNoise and the gap increases with the number of queries.  

The results of our experiments show that CCGreedy is more effective than 
CCAgglomerative, and properly parameterized CCSemiGreedy generates better 
schedules than CCAgglomerativeNoise, which makes it the best scheduling algorithm 
for Common Counting. The execution times of the new algorithms are longer but in 
typical situations the increase in scheduling time will be dominated by the reduction 
of the time spent on disk operations thanks to better schedules.  

7   Summary 

In this paper we considered the problem of concurrent execution of frequent itemset 
queries. We introduced two new heuristic query scheduling algorithms for the 
Common Counting method: CCGreedy and CCSemiGreedy. Our experiments show 
that the new algorithms offer a significant improvement in accuracy over the existing 
solutions while providing acceptable scheduling times.  



CCGreedy and CCSemiGreedy assume that the set of data mining queries to 
execute is static. However, in a real system, new queries may arrive while the other 
queries are being executed. In the future we plan to extend our approach to allow for 
dynamic scheduling of arriving queries. 
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