
Data Mining Support in Database Management
Systems

Tadeusz Morzy, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology, Poland
{morzy,marek,mzakrz}@cs.put.poznan.pl

Abstract. The most popular data mining techniques consist in searching data-
bases for frequently occurring patterns, e.g. association rules, sequential pat-
terns. We argue that in contrast to today's loosely-coupled tools, data mining
should be regarded as advanced database querying and supported by Database
Management Systems (DBMSs). In this paper we describe our research proto-
type system, which logically extends DBMS functionality, offering extensive
support for pattern discovery, storage and management. We focus on the system
architecture and novel SQL-based data mining query language, which serves as
the user interface to the system.

1 Introduction

The primary goal of data mining is to discover frequently occurring, previously un-
known, and interesting patterns from large databases [8]. The discovered patterns are
usually represented in the form of association rules or sequential patterns. The results
of data mining are mostly used to support decisions, observe trends, and plan market-
ing strategies. For example, the association rule "A & F -> D" states, that the purchase
of the products A and F is often associated with the purchase of the product D.

From the conceptual point of view, data mining can be perceived as advanced data-
base querying, since the resulting information in fact exists in the database, but it is
difficult to retrieve it. For this reason, there is a very promising idea of integrating
data mining methods with DBMSs [14][17], where users specify their problems by
means of data mining queries. This leads to the concept of on-line data mining, fully
supported by the DBMS architecture (similarly to OLAP).

We have built a research prototype system, called RD2, which logically extends
DBMS functionality and allows users to mine relational databases. Users or user ap-
plications communicate with RD2 by means of MineSQL language, used to express
data mining problems. MineSQL is a multipurpose, declarative language, based on
SQL, for discovering, storing and managing association rules and sequential patterns.
The novel ideas of data mining views and materialized views are also implemented in
RD2 and supported by MineSQL. In this paper we focus on MineSQL language and its
usage in the area of data mining.

1.1 Basic Definitions

Association rules
Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items T be
called an itemset. Let D be a set of variable length itemsets, where each itemset T⊆L.
We say that an itemset T supports an item x∈L if x is in T. We say that an itemset T
supports an itemset X⊆L if T supports every item in the set X.

An association rule is an implication of the form X→Y, where X⊂L, Y⊂L, X∩Y=∅.
Each rule has associated measures of its statistical significance and strength, called
support and confidence. The rule X→Y holds in the set D with support s if 100*s% of
itemsets in D support X∪Y. The rule X→Y has confidence c if 100*c% of itemsets in
D that support X also support Y.

Sequential patterns
Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of
items. A sequence is an ordered list of itemsets and is denoted as <X1 X2 ... Xn>, where
Xi is an itemset (Xi ⊆ L). Xi is called an element of the sequence. Let D be a set of
variable length sequences, where for each sequence S = <X1 X2 ... Xn>, a timestamp is
associated with each Xi.

With no time constraints we say that a sequence X = <X1 X2 ... Xn> is contained in a
sequence Y = <Y1 Y2 ... Ym> if there exist integers i1 < i2 < ... < in such that X1 ⊆ Yi1, X2

⊆ Yi2, ..., Xn ⊆ Yin. We call <Yi1, Yi2, ..., Yin > an occurrence of X in Y. We consider the
following user-specified time constraints while looking for occurrences of a given
sequence: minimal and maximal gap allowed between consecutive elements of an
occurrence of the sequence (called min-gap and max-gap), maximal duration (called
time window) of the occurrence and time tolerance, which represents the maximal
time distance between two itemsets to treat them as a single one.

A sequential pattern is a sequence whose statistical significance in D is above user-
specified threshold. We consider two alternative measures of statistical significance
for sequential patterns: support and number of occurrences. The support for the se-
quential pattern <X1 X2 ... Xn> in the set of sequences D is the percentage of sequences
in D that contain the sequential pattern. While counting the support it is not important
how many times a pattern occurs in a given data sequence. This makes support unsuit-
able when sequential patterns are mined over a single data sequence (|D| = 1). In such
case, the number of occurrences is more useful as a statistical measure.

Generalized patterns
In many applications, interesting patterns between items often occur at a relatively
high concept level. For example, besides discovering that “40% of customers who
purchase soda_03, also purchase potato_chips_12”, it could be informative to also
show that “100% of customers who purchase any of beverages also purchase po-
tato_chips_12”. Such association rules or sequential patterns utilize conceptual hier-
archy information and are called, respectively, generalized association rules and gen-
eralized sequential patterns.

A conceptual hierarchy, also called taxonomy, consists of a set of nodes organized
in a tree, where nodes in the tree represent values of an attribute, called concepts. The

generalized value of an attribute is the replacement of its value with its ancestor lo-
cated on a given level in the conceptual hierarchy. Conceptual hierarchies are pro-
vided by domain experts or users, or generated automatically.

1.2 Related Work

The problem of mining association rules was first introduced in [1] and an algorithm
called AIS was proposed. In [3], two new algorithms were presented, called Apriori
and AprioriTid that are fundamentally different from previous ones. In [6] a new algo-
rithm, called Max-Miner, was introduced to efficiently mine long association patterns.
In [5] an algorithm exploiting all user-specified statistical constraints (including
minimum support and confidence) was presented. In [10] and [15] the problem of
finding generalized (also called multiple-level) association rules based on a user-
defined taxonomy was addressed.

The problem of mining frequent patterns in a set of data sequences together with a
few mining algorithms was first introduced in [4]. The class of patterns considered
there, called sequential patterns, had a form of sequences of sets of items. The statisti-
cal significance of a pattern (called support) was measured as a percentage of data
sequences containing the pattern. In [16], the problem was generalized by adding
taxonomy on items and time constraints such as min-gap, max-gap and sliding window
(in this paper called tolerance).

Another formulation of the problem of mining frequently occurring patterns in se-
quential data was given in [13], where discovered patterns (called episodes) could
have different type of ordering: full (serial episodes), none (parallel episodes) or par-
tial and had to appear within a user-defined time window. The episodes were mined
over a single event sequence and their statistical significance was measured as a per-
centage of windows containing the episode (frequency) or as a number of occurrences.

In [11], the issue of integrating data mining with current database management sys-
tems was addressed and a concept of KDD queries was introduced. Several extensions
of SQL were presented to handle association rules queries [7][9][12]. In [12], storing
of discovered rules in a rulebase was discussed.

In recent years many data mining projects have been developed. Some of them re-
sulted in commercial products. The two particularly interesting data mining systems
are DBMiner [9] and IBM Intelligent Miner (which evolved from the Quest project
[2]). They are both multi-purpose data mining tools that can be used to discover vari-
ous frequently occurring patterns in data but they also offer support for high-level
tasks such as classification or clustering. Both tools have a graphical user interface
that can be used to select the source dataset, the desired data mining method and pa-
rameters required by the selected method. In addition, DBMiner offers a SQL-like data
mining query language (DMQL) that can be used to specify data mining tasks. Al-
though the systems currently available offer some level of integration with DBMSs,
they do not provide mechanisms for storage and management of data mining results.

2 RD2 Architecture

RD2 is a data mining system for relational databases, built initially on top of Oracle
database management system. RD2 discovers association rules and sequential patterns
in database tables, according to users' needs expressed in the form of data mining
queries. The system uses RD2 Network Adapter to communicate with user applica-
tions and RD2 Database Adapter to communicate with the database management sys-
tem. The RD2 system can work in 2-tier architecture, residing on the database com-
puter, as well as in 3-tier architecture, when residing on a separate computer. Figure 1
gives an overview of RD2 system architecture.

Network Adapter

MineSQL Parser

Database
Management

SystemDatabase Adapter

Network Adapter

User Application Association Rules
Miner

Sequential
Patterns Miner

Snapshot
Refresher

RD2 Client RD2 Server

Fig. 1. RD2 Architecture Fig. 2. RD2 FrontEnd application

RD2 Network Adapter is a module for network communication between a client
application and RD2 server. It uses TCP/IP protocol to transmit data mining queries
generated by the client application to the server and to transmit the discovered asso-
ciation rules or sequential patterns from the server back to the client application. RD2
Network Adapter contains the programmer’s interface (RD2 API), which is used by
client applications, cooperating with RD2. Advanced users can also use a tool, called
RD2 FrontEnd, which is an RD2 application for ad-hoc data mining. Users can exe-
cute their data mining queries and watch the results on the screen (see Figure 2).

RD2 Database Adapter provides transparent access to various database manage-
ment systems. Primarily implemented on Oracle DBMS (using Oracle Call Interface),
RD2 architecture is independent on the DBMS vendor. RD2 Database Adapter trans-
lates its API calls into native DBMS functions. The adapter can communicate with
both local and remote DBMSs.

The client application requests are expressed in the form of MineSQL data mining
queries. RD2 MineSQL Parser is used for syntactic and semantic analysis of the
queries. It builds the parse tree for a query and then calls the appropriate query proc-
essing procedures.

Association Rules Miner is a module for discovering all association rules which
satisfy user-specified predicates. The association rules are discovered from the data-
base accessed via Database Adapter while the predicates are extracted from MineSQL
queries by MineSQL Parser. Our own constraints-driven algorithm for association
rules discovery is used to perform the task.

Sequential Patterns Miner is a module for discovering all sequential patterns
which satisfy user-specified predicates. The sequential patterns are discovered from
the database accessed via Database Adapter while the predicates are extracted from
MineSQL queries by MineSQL Parser.

RD2 Snapshot Refresher is an independent module responsible for updating ma-
terialized views defined on data mining queries. It re-executes the view queries in
regular time intervals and stores the refreshed view contents in the database.

3 MineSQL Data Mining Query Language

MineSQL is a declarative language for expressing data mining problems. It is a SQL-
based interface between client applications and RD2 system. MineSQL plays similar
role to data mining applications as SQL does to database applications. MineSQL is
declarative - the client application is separated from the data mining algorithm being
used. Any modifications and improvements done to the algorithm do not influence the
applications. MineSQL follows the syntax philosophy of SQL language – data mining
queries can be combined with SQL queries, i.e. SQL results can be mined and
MineSQL results can be queried. Thus, existing database applications can be easily
modified to use RD2 data mining. MineSQL is also multipurpose – it can be used for
different types of frequent patterns: association rules, sequential patterns, generalized
association rules, and generalized sequential patterns. MineSQL also supports storage
of the discovered patterns in the database – both association rules and sequential pat-
terns can be stored in database tables similarly to alphanumeric data. Repetitive data
mining tasks can be optimized by means of data mining views and materialized views.

3.1 New SQL Data Types

MineSQL language defines a set of new SQL data types, which are used to store and
manage association rules, sequential patterns, itemsets and itemset sequences. The
new data types can be used for table column definitions or as program variable types.

The SET OF data types family is used to represent sets of items, e.g. a shopping
cart contents. SET OF NUMBER data type represents a set of numeric items, SET OF
CHAR represents a set of character items, etc. Below we give an example of a state-
ment, which creates a new table to store basket contents.

CREATE TABLE SHOPPING (ID NUMBER, BASKET SET OF CHAR);

In order to convert single item values into a SET OF value, we use a new SQL group
function called SET. Below we give an example of a SQL query, which returns the
SET OF values from normalized market baskets.

SELECT SET(ITEM)
FROM PURCHASED_ITEMS GROUP BY T_ID;

SET(ITEM)
A
A,C,D

PURCHASED_ITEMS:

T_ID ITEM
1 A
2 A
2 C
2 D

We define the following SQL functions and operators for the SET OF data types:
ITEM(x,i) - the i-th item value of the set x (lexicographical ordering presumed),
SIZE(x) - the number of items in the set x, s CONTAINS q - TRUE if the set s contains
the set q, s UNION q - the union of the sets s and q, s MINUS q - the difference of the
sets s and q, s INTERSECT q - the intersection of the sets s and q.

The RULE OF data types family is used to represent association rules, containing
body, head, support and confidence values. RULE OF NUMBER data type represents
association rules on numeric values (e.g. "1 & 3 -> 5"), RULE OF CHAR data type
represents association rules on character values (e.g. "beer & diapers -> chips”), etc.
The following statement creates a new table to store association rules.

CREATE TABLE MYRULES (ID NUMBER, AR RULE OF CHAR);

A user can insert an association rule into the table manually, using a new SQL function
called TO_RULE, e.g.:

INSERT INTO MYRULES (ID,AR) VALUES(15, TO_RULE('A,D','B,C',0.8,0.1));

SELECT * FROM MYRULES;

ID AR
15 A & D -> B & C (0.8;0.1)

We also define a set of the following SQL functions and operators that operate on
rules: BODY(x) - the SET OF value representing the body of the rule x, HEAD(x) - the
SET OF value representing the head of the rule x, SUPPORT(x) - support of the rule x,
CONFIDENCE(x) - confidence of the rule x, s [NOT] SATISFIES x - TRUE if the set
s satisfies the rule x, s [NOT] VIOLATES x - TRUE if the set s violates the rule x.

The following example query displays all sets from PURCHASED_ITEMS table,
which violate the association rule "A & D -> B & C & G".

SELECT SET(ITEM)
FROM PURCHASED_ITEMS GROUP BY T_ID
HAVING SET(ITEM) VIOLATES TO_RULE('A,D','B,C,G',0.8,0.1);

The SEQUENCE OF data types family is used to represent sequences of sets of items,
e.g. histories of customers’ purchases. Sequences are ordered collections of (time-
stamp, value) pairs, where timestamp is usually of date and time type and value can be
a set of elements of any type. For example, SEQUENCE OF CHAR INDEX BY DATE
data type represents a sequence of sets of character items ordered according to time-
stamps of date type. Below we give an example of a statement, which creates a new
table to store purchase histories.

CREATE TABLE SHOPPING_HIST
(CUST_ID NUMBER, HIST SEQUENCE OF CHAR INDEX BY DATE);

In order to convert a collection of (timestamp, value) pairs into a SEQUENCE OF
value, we use a new SQL group function called SEQUENCE. The example below
shows a query returning the SEQUENCE OF values from normalized market baskets.

SELECT SEQUENCE(T_TIME, ITEM)
FROM CUST_TRANSACTIONS GROUP BY C_ID;

SEQUENCE(T_TIME, ITEM)
<Feb 20,2000;(A)> <Feb 21,2000;(D)>
<Feb 20,2000;(B,D)> <Feb 22,2000;(A)>

CUST_TRANSACTIONS:

T_TIME C_ID ITEM
Feb 20, 2000 10 A
Feb 20, 2000 20 B
Feb 20, 2000 20 D
Feb 21, 2000 10 D
Feb 22, 2000 20 A

A user can insert a sequence into the table manually, using a new SQL function called
TO_SEQUENCE. The following example presents the appropriate INSERT statement
and the resulting contents of SHOPPING_HIST.

INSERT INTO SHOPPING_HIST (CUST_ID, HIST)
VALUES (51, TO_SEQUENCE('<Feb 20,2000;(A)> <Feb 21,2000;(D,F)>'));

We also define a set of the following SQL functions and operators that operate on
sequences: ELEMENT(x,i) - the i-th element value of the sequence x, LENGTH(x) -
the number of elements in the sequence x, SIZE(x) - the number of items in the se-
quence x, s CONTAINS t - TRUE if the sequence s contains the sequence t, s CON-
TAINS t MAXGAP x - TRUE if the sequence s contains the sequence or pattern t and
the interval between adjacent matching elements in s is not greater than x, s CON-
TAINS t MINGAP x - TRUE if the sequence s contains the sequence or pattern t and
the interval between adjacent matching elements in s is not less than x, s CONTAINS t
WINDOW x - TRUE if the sequence s contains the sequence or pattern t within the
time window of x, s CONTAINS t TOLERANCE x - TRUE if the sequence s contains
the sequence or pattern t with the tolerance of x.

The PATTERN OF data types family is used to represent sequential patterns and
their statistical significance (support or number of occurrences). PATTERN OF CHAR
data type represents patterns on character values (e.g. "<(TV) (VCR) (DVD)>"),
PATTERN OF NUMBER data type represents patterns on numeric values (e.g. "<(10
20 30) (40 50)>"), etc. Below we give an example of a statement, which creates a new
table to store sequential patterns.

CREATE TABLE MYPATTERNS(ID NUMBER,SP PATTERN OF NUMBER);

A user can insert a sequential pattern into the table manually, using the new SQL func-
tion called TO_PATTERN. The following example presents the appropriate INSERT
statement and the resulting contents of MYPATTERNS.

INSERT INTO MYPATTERNS (ID, SP)
VALUES (15, TO_PATTERN('<(10 20) (30)>',0.3, null));

We also define a set of the following SQL functions and operators that operate on
sequential patterns: ELEMENT(x,i) - the i-th element of the pattern x, LENGTH(x) -
the number of elements in the pattern x, SIZE(x) - the number of items in the pattern x,
SUPPORT(x) - support of the pattern x, OCCURRENCES(x) - number of occurrences
of the pattern x, p CONTAINS s - TRUE if the pattern p contains the sequence s.

The following query displays all patterns from MYPATTERNS, which contain the
subsequence <(10)(30)> (notice the dynamic sequence creation in the example).

SELECT SP FROM MYPATTERNS
WHERE SP CONTAINS TO_SEQUENCE('<1;(10)><2;(30)>');

3.2 Mining Association Rules

The central statement of the MineSQL language is MINE. MINE is used to discover
association rules or sequential patterns from the database. MINE also specifies a set of
predicates to be satisfied by the returned rules or patterns. In order to discover asso-
ciation rules we use the following syntax of MINE statement.

MINE rule_expression [, rule_expression…] FOR column [, column …]
FROM {table|(query)} WHERE rule_predicate [AND rule_predicate…];

where: rule_expression is the keyword RULE or a function operating on RULE
(RULE represents a single association rule being discovered), column is the name of
the table column or query column of the type SET OF, containing itemsets to be
mined; when specifying multiple columns, then the itemsets are combined (columns
must be of the same data type), table is the name of a table containing the itemsets to
be mined, query is the SQL subquery, returning the itemsets to be mined,
rule_predicate is a Boolean predicate on a function which operates on RULE, to be
satisfied by returned association rules.

The following MINE statement uses the PURCHASED_ITEMS table to discover all
association rules, whose support is greater than 0.1 and confidence is greater that 0.3.
We display the whole association rules, their bodies and supports.

MINE RULE, BODY(RULE), SUPPORT(RULE)
FOR X FROM (SELECT SET(ITEM) AS X

FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(RULE)>0.1 AND CONFIDENCE(RULE)>0.3;

3.3 Mining Sequential Patterns

In order to discover sequential patterns we use the following syntax of MINE state-
ment.

MINE patt_expression [, patt_expression…]
[WINDOW window][MAXGAP maxgap][MINGAP mingap][TOLERANCE tolerance]
FOR column FROM {table|(query)}
WHERE patt_predicate [AND patt_predicate…];

where: patt_expression – the keyword PATTERN or a function operating on PAT-
TERN (PATTERN represents a single sequential pattern being discovered), window is
the time window size, maxgap is the maximal gap allowed between consecutive ele-
ments of an occurrence of the sequence, mingap is the minimal gap allowed between
consecutive elements of an occurrence of the sequence, tolerance is the time tolerance
value for pattern elements, column is the name of the table column or query column of
the type SEQUENCE OF, containing sequences to be mined, table is the name of a
table containing the sequences to be mined, query is the SQL subquery, returning the
sequences to be mined, patt_predicate is a Boolean predicate on a function which
operates on PATTERN, to be satisfied by returned sequential patterns.

The following MINE statement uses the CUST_TRANSACTIONS table to discover
all sequential patterns, whose support is greater than 0.1. We display the patterns and
their supports.

MINE PATTERN, SUPPORT(PATTERN)
FOR X FROM (SELECT SEQUENCE(T_TIME, ITEM) AS X

FROM CUST_TRANSACTIONS GROUP BY C_ID)
WHERE SUPPORT(PATTERN)>0.1;

3.4 Using Views and Materialized Views

Relational databases provide users with a possibility of creating views and material-
ized views. A view is a virtual table presenting the results of the SQL query hidden in
the definition of the view. Views are used mainly to simplify access to frequently used
data sets that are results of complex queries. When a users selects data from a view, its
defining query has to be executed but the user does not have to be familiar with its
syntax.

Since data mining tasks are repetitive in nature and the syntax of data mining que-
ries may be complicated, we propose to extend the usage of views to handle both SQL
queries and MineSQL queries. The following statement creates the view presenting the
results of one of the data mining tasks discussed earlier.

CREATE VIEW BASKET_RULES
AS MINE RULE, BODY(RULE), SUPPORT(RULE)
FOR X FROM (SELECT SET(ITEM) AS X

FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(RULE)>0.1;

Any SQL query concerning the view presented above involves performing the data
mining task according to the data mining query that defines the view. This guarantees
access to up-to-date patterns but leads to long response times, since data mining algo-
rithms are time consuming. In database systems it is possible to create materialized
views that materialize the results of the defining query to shorten response times. Of
course, data presented by a materialized view may become invalid as the source data
changes. One of the solutions minimizing effects of this problem is periodic refreshing
of materialized views.

We introduce materialized data mining views with the option of automatic periodic
refreshing. A materialized data mining view is a database object containing patterns
(association rules or sequential patterns) discovered as a result of a data mining query.
It contains rules and patterns that were valid at a certain point of time. Materialized
data mining views can be used for further selective analysis of discovered patterns
with no need to re-run mining algorithms. Using materialized views is easier than
creating a table with columns of type RULE OF or PATTERN OF and filling it with
results of a data mining query. Moreover, materialized views offer additional func-
tionality, because they can be automatically refreshed according to a user-defined time
interval. This might be useful when a user is interested in a set of rules or sequential
patterns, whose specification does not change in time, but always wants to have access
to relatively recent information.

To create a materialized data mining view we use the following syntax.
CREATE MATERIALIZED VIEW view_name
[REFRESH time_interval] AS mine_statement

In the above syntax view_name is the name of a materialized view, time_interval de-
notes the time interval between two consecutive refreshes of the view (in days), and
mine_statement denotes any variation of the MINE statement. The REFRESH clause is
optional since a user might not want a view to be refreshed automatically.

3.5 Taxonomies and Generalized Patterns

In order to discover generalized association rules and generalized sequential patterns,
MineSQL allows users to define conceptual hierarchies. A conceptual hierarchy, or a
taxonomy, is a persistent database object created by means of a CREATE TAXON-
OMY and INSERT statements. The following example illustrates a conceptual hierar-
chy (called MY_TAX) and the statements for its definition.

A B C D

G1 G2

R
CREATE TAXONOMY MY_TAX OF CHAR;
INSERT INTO MY_TAX NODE 'R';
INSERT INTO MY_TAX NODE 'G1' REFERENCES 'R';
INSERT INTO MY_TAX NODE 'G2' REFERENCES 'R';
INSERT INTO MY_TAX NODE 'A' REFERENCES 'G1';
INSERT INTO MY_TAX NODE 'B' REFERENCES 'G1';
INSERT INTO MY_TAX NODE 'C' REFERENCES 'G2';
INSERT INTO MY_TAX NODE 'D' REFERENCES 'G2';

After a conceptual hierarchy has been created, MINE statements can be extended to
use it. Additional keyword USING is used to specify the name of a conceptual hierar-
chy to be used for the associated attribute. The following example data mining query
discovers all generalized association rules between values of the attribute ITEM in the
database table PURCHASED_ITEMS, grouped by the T_ID attribute. Values of the
attribute ITEMS are generalized by means of the conceptual hierarchy called
MY_TAX.

MINE RULE FOR ITEMS USING MY_TAX
FROM (SELECT SET(ITEM) AS ITEMS

FROM PURCHASED_ITEMS GROUP BY T_ID)
WHERE SUPPORT(RULE)>0.3

Conceptual hierarchies also influence previously presented set, rule, sequence, and
sequential pattern operators: s CONTAINS q USING c - TRUE if the set s contains the
set q according to the conceptual hierarchy c, s [NOT] SATISFIES x USING c - TRUE
if the set s satisfies the rule x according to the conceptual hierarchy c, s [NOT] VIO-
LATES x USING c - TRUE if the set s violates the rule x according to the conceptual
hierarchy c, s CONTAINS t USING c - TRUE if the sequence s contains the sequence t
according to the conceptual hierarchy c, p CONTAINS s USING c - TRUE if the pat-
tern p contains the sequence s according to the conceptual hierarchy c.

4 Concluding Remarks

In the paper we have presented our research prototype system, which logically extends
DBMS functionality to mine relational databases. We introduced a data mining query
language, called MineSQL, which supports pattern discovery, storage and manage-
ment in relational environment. A number of illustrative examples for various
MineSQL statements have been presented.

In the future we plan to extend the results of our research along the following lines:
1. DBMS support for data mining in object-oriented databases, focused on using in-
heritance hierarchies as taxonomies and mining of polymorphic collections, 2. Re-

search on data mining query optimization methods, focused on materialized views
group refreshing and physical data structures, 3. Study whether other data mining
methods should be supported by MineSQL, e.g. data classification, clustering.

Bibliography

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the ACM SIGMOD Conference on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data Min-
ing System. Proc. of the 2nd KDD Conference (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’l Conference on
Data Engineering (1995)

5. Bayardo R. J., Agrawal R., Gunopulos D.: Constraint-Based Rule Mining in Large, Dense
Databases. Proc. of the 15th Int’l Conference on Data Engineering (1999)

6. Bayardo R. J.: Efficiently Mining Long Patterns from Databases. Proc. of the ACM SIG-
MOD International Conference on Management of Data (1998)

7. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996)

8. Fayyad U., Piatetsky-Shapiro G., Smyth P.: The KDD Process for Extracting Useful Knowl-
edge from Volumes of Data. Communications of the ACM, Vol. 39, No. 11 (1996)

9. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A., Stefano-
vic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large Rela-
tional Databases. Proc. of the 2nd KDD Conference (1996)

10.Han J., Fu Y.: Discovery of Multiple-Level Association Rules from Large Databases. Proc.
of the 21st Int’l Conf. on Very Large Data Bases (1995)

11.Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Communica-
tions of the ACM, Vol. 39, No. 11 (1996)

12.Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd KDD Conference (1996)

13.Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences. Proc.
of the 1st KDD Conference (1995)

14.Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. Proc. of the 1st ADBIS
Conference (1997)

15.Srikant R., Agrawal R.: Mining Generalized Association Rules. Proc. of the 21st Int’l Conf.
on Very Large Data Bases (1995)

16.Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. Proc. of the 5th Int’l Conf. on Extending Database Technology (1996)

17.Wojciechowski M.: Mining Various Patterns in Sequential Data in an SQL-like Manner.
Proc. of the 3rd ADBIS Conference (1999)

