

DISTRIBUTING AND REPLICATING DATA
IN HOSPITAL INFORMATION SYSTEMS

Marek Wojciechowski

Institute of Computing Science
Poznan University of Technology

ul. Piotrowo 3a, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Abstract

Distributing and replicating data are techniques used
to improve performance and reliability of information
systems. This paper presents advantages and
disadvantages of distributed architectures that are
important in case of hospital systems.

In the paper, several issues that have to be addressed
when planning a distributed architecture for the hospital
information system are discussed. The particular
emphasis is laid on possible problems that might occur in
case of partial failure of a distributed hospital
information system.

1. Introduction
Centralized systems are in general easier to design, implement and manage than

distributed systems. But in some cases, it might be desirable to distribute data over
a computer network in order to improve performance and scalability of the system
or to move the data closer to end users. In a distributed database system [1][2],
some of the data might be replicated to guarantee access to critical data, reduce
network traffic and shorten the response time of the system. Distributing data and
replication are powerful techniques but they must be used carefully after
a thorough analysis of a designed system. In this paper advantages and
disadvantages of distributing and replicating data in hospital information systems
are presented with special emphasis on some potential problems that might occur
as a result of distribution or replication of the data.

2. Distributed vs. centralized database systems
In centralized database systems all the data is managed by one server. In case of

failure of the server there is no access to institution’s data and the whole
information system is paralyzed. Fortunately, if the server was administered

properly there should be possible to restore the state of the server from the
moment of failure. Even if the database management system does not guarantee
this there is always an option of going back to a consistent state of the database
from the most recent backup.

The issue of fault tolerance and recovery is much more complicated in case of
distributed database systems. A distributed database can be defined as a collection
of multiple, logically interrelated databases distributed over a computer network
[1] or a set of databases stored on multiple computers that typically appears to
applications as a single database [3]. In a distributed system a single server failure
does not have to affect the whole information system. Let us assume a hospital
whose all organization units have their own database servers managing their data.
If one of the servers crashes only one organization unit will lose access to its data.
Other organization units will suffer only partial loss of functionality due to
inaccessibility of one remote server and its data. But still from a single
organization unit’s point of view the risk of the loss of all functionality is not less
than in case of a centralized system with additional possibilities of partial failures.
Moreover, if a company or institution relies on one server it will probably
improve its fault tolerance by using such techniques as disk or server mirroring,
which might be too expensive in case of a multi-server environment.

It is no surprise that recovery complicates in a distributed system. Restoring the
state of a single server after its failure from the most recent backup might not be
enough because data on the restored server may be inconsistent with other servers.
A distributed database management system must offer options that guarantee that
results of all committed transactions will be restored after a server failure. For
instance, Oracle gives an option of archiving redo logs which together with
regularly made backups enable the administrator to restore a transaction consistent
state of a database from the moment of failure.

Centralized systems are easy to design, manage and maintain but in some cases
distributed systems may be more suitable. There are two most important reasons
for using distributed database systems. The first is a geographic distribution of an
institution or organization for which the system is being designed. If an institution
consists of many organization units which are not connected by a stable and fast
Local Area Network (LAN), which might be true for some hospitals, it would be
irresponsible and inefficient to base the institution’s database system on one
server. Such a solution would lead to long response times and in case of unstable
network connection to possible problems with access to data. A much more
reasonable solution would be assigning a database server to each organization unit
to manage its data and organizing the system in such a way that the servers
cooperate with each other to enable access to remote data.

The second reason why it might be advisable to distribute the data over several
servers is a need of increasing the processing power of the system. Hospitals, like
other large institutions, process huge volumes of data, which even a powerful
server might not be able to deal with efficiently. For big organizations, companies,
or hospitals data distribution might be the only way to improve performance of the
information system.

Additionally, distributed database systems offer better scalability than
centralized systems. Besides the possibility of upgrading a single server (vertical
scalability) there is an option of adding a new server to the system (horizontal
scalability). Another advantage of distributed database systems, which may be
important in case of a hospital information system is site autonomy (each
organization unit has its own server managing its data and may decide which data
should be made accessible for other organization units).

The biggest disadvantage of a distributed system is a possibility of losing an
access to remote data in case of a remote server or network failure. Consequences
of such failures are minimized by means of replication.

3. Replication
In distributed database systems replication is used to guarantee access to remote

data by providing their local copies. It might also shorten response times of access
to such data in case of a system where network connections are slow. A database
management system offering replication must guarantee that changes to one of the
replicas will be propagated to all other replicas so that they are consistent with
each other. This can be done synchronously (if a transaction modifies one of the
replicas modifications must be propagated to other replicas in the same
transaction) or asynchronously (a transaction modifying one of the replicas ends
and the system guarantees that modifications will be propagated to other replicas
later). Asynchronous replication in case of inaccessibility of one of the replicas
might lead to temporal inconsistency, which must be taken into account when
replication is used in such critical applications like hospital information systems.
On the other hand, synchronous replication is difficult to be used in practice
because it will not allow to modify a replicated object if any of its replicas is
inaccessible.

There are various replication models. Propagation of changes (synchronous or
asynchronous) can be possible only in one direction (one master replica and many
so-called read-only snapshots [3]) or in many directions (changes are possible for
all replicas). The second option is more powerful but requires more sophisticated
mechanisms and can be more expensive (as in case of Oracle Server [3]).

Replicas can replicate the whole table or a subset of it. In Oracle Server
a snapshot can be based on any SQL query but propagation of changes (refreshing
a snapshot) is much more effective in case of simple queries (access to one table,
projection and simple selection).

4. Potential problems connected with data distribution and
replication in hospital information systems

Distribution and replication of data in a hospital information system may lead to
a complicated implementation of the system and, what is more important, to some
dangerous behavior of the system in case of failure.

The first problem is to assure that all organization units use the same catalog
data (lists of diseases, medical tests, doctors, etc.). This can be done by means of

one master copy and a set of read-only snapshots or by multi-way replication. The
first solution leads to remote updates in case of modifying a catalog from many
units in a hospital. The second requires more expensive versions of database
management systems. In addition, if modifications have to be applied to one
selected master copy, they will be impossible to perform when the master copy is
inaccessible.

Another problem is connected with patient’s case history and results of medical
tests. A patient can move from one ward to another. His case history would be
distributed and should be replicated to guarantee an access to the whole of it. It
would be desirable if one ward replicated from other organization units only data
concerning its patients. Unfortunately there are no techniques of doing it
efficiently. Selective replicas would have to be based on complex queries and
therefore could not be refreshed incrementally. To allow fast incremental
refreshing of replicas containing patients’ case histories, all the data should be
replicated on each server. Enabling modifications of patient’s records generated in
other organization units raises the same dilemma as in case of catalog data.

Probably the most dangerous problems can be caused by using asynchronous
replication to propagate information. If results of medical tests are propagated by
means of asynchronous replication, it is possible that an invalid result entered into
the database by mistake will propagate but information about canceling it will not
because of a network connection failure, which can lead to a wrong decision by a
doctor.

5. Conclusions
Distributed database systems are suitable for large institutions, which consist of

many organization units, and therefore seem to be a good solution for hospital
information systems. Replication of some data is necessary in a distributed system
to guarantee access to data from remote servers and improve performance.
Replication is especially effective in case of data generated in one organization
unit and only read by other units. Nevertheless, asynchronous replication, which
seems to be the only practical solution, must be used thoroughly because it can
hide a network or server failure preventing the access to the most up-to-date
information.

 References
 [1] M. T. Özsu, P. Valduriez, Principles of Distributed Database Systems,

Prentice-Hall, 1991.
 [2] S. Ceri, G. Pelagatti, Distributed Databases Principles and Systems, McGraw–

Hill Book Company, 1984.
 [3] Oracle8 Server Documentation, Oracle Corporation, 1997.

