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Abstract. In this paper we address the problem of processing of batches of 
frequent itemset queries using the Apriori algorithm. The best solution of this 
problem proposed so far is Common Counting, which consists in concurrent 
execution of the queries using Apriori with the integration of scans of the parts 
of the database shared among the queries. In this paper we propose a new 
method – Common Candidate Tree, offering a more tight integration of the 
concurrently processed queries by sharing memory data structures, i.e., 
candidate hash trees. The experiments show that Common Candidate Tree 
outperforms Common Counting in terms of execution time. Moreover, thanks 
to smaller memory consumption, Common Candidate Tree can be applied to 
larger batches of queries. 

1   Introduction 

Discovery of frequent patterns is a very important data mining problem with 
numerous practical applications. The most prominent class of frequent patterns are 
frequent itemsets [1], i.e., subsets frequently occurring in a collection of sets of items 
(called transactions). Frequent itemsets are typically used to generate association 
rules. However, since generation of rules is a rather straightforward task, the focus of 
researchers has been mostly on optimizing the frequent itemset discovery step.  

Many frequent itemset mining algorithms have been developed. The two most 
prominent classes of algorithms are determined by a strategy of traversing the pattern 
search space. Level-wise algorithms, represented by the classic Apriori algorithm [3], 
follow the breadth-first strategy, whereas pattern-growth methods, among which FP-
growth [9] is the best known, perform the depth-first search.  

Apriori starts with discovering frequent itemsets of size 1, and then iteratively 
generates candidates (i.e., potentially frequent itemsets) from previously found 
smaller frequent itemsets and counts their occurrences in a database scan. To improve 
efficiency of testing which candidates are contained in a transaction read from the 
database, the candidates are stored in a hash tree in main memory. The number of 



Apriori iterations, and consequently the number of database scans, depends on the 
size of the largest frequent itemset to be discovered. 

FP-growth, similarly to Apriori, also builds larger frequent itemsets from smaller 
ones but instead of candidate generation and testing, it exploits the idea of database 
projections. Projections are determined by frequent itemsets found so far, and patterns 
are grown by discovering items frequent in their projections. To facilitate efficient 
projections, FP-growth transforms a database into an FP-tree, which is a highly 
compact data structure, designed to be stored in main memory. Only two database 
scans are needed to build an FP-tree, and then actual mining is performed on the FP-
tree, with no furthers scans of the original database.  

FP-growth has been found more efficient than Apriori for low support thresholds 
and/or dense datasets (i.e., datasets containing numerous and long frequent itemsets). 
However, in real life, datasets having different characteristics are being analyzed, and 
there is no single algorithm best in all cases. 

Frequent itemset mining is often regarded as advanced database querying where a 
user specifies the source dataset, the minimum support threshold, and optionally 
pattern constraints within a given constraint model [10]. A significant amount of 
research on efficient processing of frequent itemset queries has been done in recent 
years, focusing mainly on constraint handling (see [17] for an overview) and reusing 
results of previous queries [5][8][14][15].  

Recently, a new problem of optimizing processing of sets of frequent itemset 
queries has been considered, bringing the concept of multiple-query optimization to 
the domain of frequent itemset mining. The idea was to process the queries 
concurrently rather than sequentially and exploit the overlapping of queries’ source 
datasets. Sets of frequent itemset queries available for concurrent processing may 
arise in data mining systems operating in a batch mode or be collected within a given 
time window in multi-user interactive data mining environments. A motivating 
example from the domain of market basket analysis could be a set of queries 
discovering frequent itemsets from the overlapping parts of a database table 
containing customer transaction data from overlapping time periods. 

So far, the best method of processing batches of frequent itemset queries is 
Common Counting, which consists in concurrent execution of the queries with the 
integration of scans of parts of the database shared among the queries. Common 
Counting has been originally designed for Apriori, in case of which dataset scans 
required to count candidates were integrated [21]. Later, the method was adapted to 
work with FP-growth, reducing the number of disk blocks read during the phase of 
building FP-trees for a batch of queries [20]. 

The Common Counting method, which optimizes only database scans, definitely 
does not exploit all optimization possibilities. Further integration of operations 
performed by concurrently processed frequent itemset queries requires techniques 
dedicated to particular mining algorithms, or at least families of algorithms. In this 
paper we propose a new method of processing of batches of frequent itemset queries 
using the Apriori algorithm, called Common Candidate Tree, which integrates 
processing of batches of queries more tightly than Common Counting by integrating 
memory data structures of the queries. Experiments show that Common Candidate 
Tree is more efficient than Common Counting. Moreover, due to better utilization of 
main memory, it is also applicable to larger batches of queries. 



2   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (see [19] for an overview). The idea was to identify common subexpressions 
(selections, projections, joins, etc.) and construct a global execution plan minimizing 
the overall processing time by executing the common subexpressions only once for 
the set of queries [4][11]. Many heuristic algorithms for multiple-query optimization 
in database systems were proposed (e.g., [18]). Data mining queries could also benefit 
from the general strategy of identifying and sharing common computations. However, 
due to their different nature they require novel multiple-query processing methods. 

To the best of our knowledge, apart from the problem considered in this paper, 
multiple-query optimization for frequent pattern queries has been considered only in 
the context of frequent pattern mining on multiple datasets [13]. The idea was to 
reduce the common computations appearing in different complex queries, each of 
which compared the support of patterns in several disjoint datasets. This is 
fundamentally different from our problem, where each query refers to only one 
dataset and the queries’ datasets overlap.  

Earlier, the need for multiple-query optimization has been postulated in the 
somewhat related research area of inductive logic programming, where a technique 
based on similar ideas as Common Counting has been proposed, consisting in 
combining similar queries into query packs [6]. 

As an introduction to multiple-data-mining-query optimization, we can regard 
techniques of reusing intermediate or final results of previous queries to answer a new 
query. Methods falling into that category that have been studied in the context of 
frequent itemset discovery are: incremental mining [8], caching intermediate query 
results [16], and reusing materialized complete [5][14][15] or condensed [12] results 
of previous queries provided that syntactic differences between the queries satisfy 
certain conditions.  

3   Multiple-Query Optimization for Frequent Itemset Queries  

3.1   Basic Definitions and Problem Statement  

Frequent itemset query. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, 
minsup), where R is a database relation, a is a set-valued attribute of R, Σ is a 
condition involving the attributes of R called data selection predicate, Φ is a 
condition involving discovered itemsets called pattern constraint, and minsup is the 
minimum support threshold. The result of dmq is a set of itemsets discovered in 
πaσΣR, satisfying Φ, and having support ≥ minsup (π and σ denote relational 
projection and selection operations respectively). 

Example. Given the database relation R1(a1, a2), where a2 is a set-valued attribute 
and a1 is of integer type. The frequent itemset query dmq1 = (R1, "a2", "a1>5", 
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-
valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3% 
and size less than 4 are discovered in the collection of records having a1>5. 



 
Elementary data selection predicates. The set of elementary data selection 
predicates for a set of frequent itemset queries DMQ = {dmq1, dmq2, ..., dmqn} is the 
smallest set S={s1, s2 ,..., sk} of data selection predicates over the relation R such that 
for each u, v (u ≠ v) we have σsuR∩σsvR =∅ and for each dmqi there exist integers a, 
b, ..., m such that σΣiR=σsaR∪σsbR∪..∪σsmR. The set of elementary data selection 
predicates represents the partitioning of the database determined by overlapping of 
queries’ datasets. 

Example. Given the relation R1=(a1, a2) and three data mining queries: dmq1=(R1, 
"a2", "5≤a1<20", ∅, 3%), dmq2=(R1, "a2", "0≤a1<15", ∅, 5%), dmq3=(R1, "a2", 
"5≤a1<15 or 30≤a1<40", ∅, 4%). The set of elementary data selection predicates is 
then S={s1="0≤a1<5", s2="5≤a1<15", s3="15≤a1<20", s4="30≤a1<40"}.  

 
Problem Statement. Given a set of frequent itemset queries DMQ = {dmq1, dmq2, ..., 
dmqn}, the problem of multiple-query optimization of DMQ consists in generating an 
algorithm to execute DMQ that minimizes the overall processing time. 

3.2   Common Counting 

Common Counting consists in concurrent execution of a set of frequent itemset 
queries using Apriori and integrating scans of shared parts of the database. The 
pseudo-code of Common Counting is presented in Fig. 1. It is assumed that minsupi 
thresholds are expressed as absolute numbers of transactions1. 

 
Input: DMQ = {dmq1, dmq2, ..., dmqn}, where dmqi = (R, a, Σi, Φi, minsupi) 
(1) for (i=1; i<=n; i++) 
(2)   C1

i = {all possible 1-itemsets} 
(3) for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin 
(4)    for each sj∈S do begin       
(5)       CC= {Ck

i : σsjR⊆σΣiR } 
(6)       if CC≠ ∅ then count(CC, σsjR);  end 
(7)    for (i=1; i<=n; i++) do begin 
(8)      Fk

i = {C ∈ Ck
i | C.counter ≥ minsupi }; 

(9)      Ck+1
i = generate_candidates(Fk

i); end 
(10) end 
(11) for (i=1; i<=n; i++) do   Answeri = σΦi UkFk

i; 

 

Fig. 1. Common Counting 

Common Counting iteratively generates and counts candidates for all frequent itemset 
queries. In the first iteration, for all the queries, the set of candidates is the set of all 
possible items (lines 1-2). The candidates of the size2 k (k>1) are generated from 

                        
1 Typically, users specify the support threshold for the query in percents. In that case the 

relative threshold is converted to an absolute number of transactions during the first scan of 
the database performed by the algorithm. 

2 The size of an itemset is the number of items in it. 



frequent itemsets of size k-1, separately for each query (lines 7-9). Generation of 
candidates (represented in the pseudo-code by the generate_candidates() function) is 
performed exactly as in the original Apriori algorithm [3]. The candidates generated 
for each query are stored in a separate hash tree implemented as in [3]. The iterative 
process of candidate generation and counting ends when for all the queries no further 
candidates can be generated (the condition in line 3). 

Occurrences of candidates for all the queries are counted during one integrated 
database scan in the following manner: For each elementary data selection predicate, 
the transactions from its corresponding database partition are read one by one. For 
each transaction the candidates of the queries referring to the database partition being 
read are considered, and the counters of candidates contained in the transaction are 
incremented (lines 4-6). The inclusion test is performed by confronting the transaction 
with hash trees of all the queries referring to the database partition containing the 
transaction. Candidate counting is represented in the pseudo-code as the count() 
function. It should be noted that if a given elementary data selection predicate is 
shared by several queries, then during each candidate counting phase its 
corresponding database partition is read only once.  

Common Counting does not handle pattern constraints Φ, but allows to use 
constraint handling techniques proposed for Apriori, based on modifications of the 
candidate generation procedure, and then filtering the discovered frequent itemsets in 
a post-processing phase for those constraints that cannot be handled within Apriori. 

4   Common Candidate Tree 

Common Counting optimizes scans of the parts of the database shared among the 
queries, performing other operations of the Apriori algorithm separately for each 
query. Aiming at the increase of computation sharing between the concurrently 
processed queries, we introduce a new method: Common Candidate Tree, based on 
the concept of using one shared hash tree structure to store candidates of all the 
queries. The proposed solution preserves the integration of scans of shared database 
regions, and additionally allows to integrate the testing of the inclusion of candidates 
in a transaction retrieved from the database.  

The structure of a hash tree in the Common Candidate Tree method stays 
unchanged compared to Common Counting and the original Apriori. In order to allow 
the queries to share one hash tree, it is only necessary to extend the structure of a 
candidate so that instead of having a single counter, a candidate will be assigned a 
vector of counters (counters[]) – one counter per query. Moreover, each candidate 
will have a vector of Boolean flags (fromQuery[]) to indicate which queries generated 
a given candidate. The flags will be set during merging the candidate sets generated 
by the queries into one integrated set of candidates that then will be stored in a 
common hash tree. 

The pseudo-code of Common Candidate Tree is depicted in Fig. 2. The difference 
between the new method and Common Counting is that in Common Candidate Tree 
an integrated candidate set is being counted instead of separate candidate sets as in 
Common Counting (lines 1 and 9). The new approach has two significant advantages. 



Firstly, in typical situations, where the queries share many common candidates, 
Common Candidate Tree should require less memory as it stores each candidate only 
once, no matter how many queries generated it. Secondly, due to the elimination of 
duplicated candidates, Common Candidate Tree reduces the number of inclusion tests 
between candidates and transactions. Candidate generation and selection of frequent 
itemsets (by comparing candidate support with the minimum support threshold) are 
still performed separately for each query (lines 6-8). In the phase of counting 
candidate occurrences, during the scan of a given database partition only these 
candidates are taken into account that have been generated by at least one of the 
queries referring to that partition, and if a candidate is included in a transaction only 
counters for such queries are incremented (lines 3-5). 

 
Input: DMQ = {dmq1, dmq2, ..., dmqn}, where dmqi = (R, a, Σi, Φi, minsupi) 
(1) C1 = {all possible 1-itemsets} 
(2) for (k=1; Ck ≠ ∅; k++) do begin 
(3)    for each sj∈S do begin       
(4)       CC= { C ∈ Ck

 : ∃i C.fromQuery[i] = true ∧σsjR⊆σΣiR } 
(5)       if CC≠ ∅ then count(CC, σsjR);  end 
(6)    for (i=1; i<=n; i++) do begin 
(7)      Fk

i = {C ∈ Ck | C.counters[i] ≥ minsupi }; 
(8)      Ck+1

i = generate_candidates(Fk
i); end 

(9)    Ck+1 = Ck+1
1 ∪ Ck+1

2 ∪..∪ Ck+1
n 

(10) end 
(11) for (i=1; i<=n; i++) do   Answeri = σΦi UkFk

i; 

 

Fig. 2. Common Candidate Tree 

As for importance of Common Candidate Tree as a new method of processing batches 
of frequents itemset queries, it should be stressed again that possible performance 
improvement due to tighter integration of computations is not its only advantage over 
Common Counting. A serious problem with Common Counting, limiting its 
applicability to large batches of queries, is the necessity of having hash trees of many 
queries present in main memory at the same time. This problem was previously 
solved by dividing the original set of queries into disjoint subsets and running 
Common Counting separately for each of the query subsets [7][22]. Common 
Candidate Tree uses a single hash tree, having unmodified structure of internal nodes, 
and only extends the structure of candidates with extra counters and flags, which 
should increase its applicability with no need for dividing the query set .  

Similarly to Common Counting, Common Candidate Tree does not handle pattern 
constraints Φ, but allows to use constraint handling techniques proposed for Apriori, 
since the candidate generation procedure used by Apriori is not modified by Common 
Candidate Tree. 

5   Experimental Results 

In order to evaluate performance and memory consumption of Common Candidate 
Tree we performed a series of experiments on a synthetic dataset generated with GEN 



[2]. Limited by space, we only report the results obtained on one dataset3, generated 
using the following GEN settings: number of transactions = 1000000, average number 
of items in a transaction = 8, number of different items = 1000, number of patterns = 
1500, average pattern length = 4. The dataset was stored in a flat file on a local disk. 
The size of this dataset was 97 MB. In experiments we compared Common Candidate 
Tree with Common Counting, which is the best method so far, and sequential 
execution as the natural reference point for multiple-query processing and 
optimization techniques. The experiments were conducted on a PC with Athlon 
1700+ processor and 512 MB of main memory, running Microsoft Windows XP.  

In the experiments we varied the number of queries in a batch, the minimum 
support threshold, and the level of overlapping between the queries’ datasets. For 
each query, its source dataset was a list of 500000 subsequent transactions from the 
generated dataset. Although neither of the methods requires this, in all the 
experiments all the queries to be concurrently processed used the same support 
threshold, so as to make the potential influence of the support threshold and the 
difference in performance between the tested methods easier to observe4.  

In the first series of experiments we tested the effect of the level of overlapping 
between the queries’ datasets on execution times of Common Counting (CC) and 
Common Candidate Tree (CCT), compared to sequential processing (SEQ). At the 
same time, in order to compare main memory consumption of the CC and CCT 
methods we measured the size of hash trees (tree nodes + candidates). The 
experiments were performed for the case of two overlapping queries and two 
minimum support thresholds: 2% and 0.7%. The thresholds were adjusted so that they 
resulted in significantly different numbers of Apriori iterations (2 iterations for 2% 
and 7-8 iterations for 0.7%). 
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Fig. 3. Execution times for two queries and different levels of overlapping  
with minsup=2% (left) and minsup=0.7% (right) 

                        
3 We repeated all the experiments on a smaller dataset having different characteristics obtaining 

similar results as for relative performance and memory consumption of the tested methods. 
4 The greater the difference in minimum support thresholds among the queries forming a batch, 

the greater the difference in number of Apriori iterations among the queries can be expected.  
Both Common Counting and Common Candidate Tree reduce the processing time of only 
those iterations in which at least 2 queries are still being processed.  



Figure 3 presents execution times of the compared methods for different levels of 
overlapping for the case of two queries. The execution times of CC and CCT decrease 
linearly with the increase of the level of overlapping, with CCT significantly 
outperforming CC. Relative differences between the tested methods are similar for 
both minimum support thresholds used. 

Figure 4 shows average sums of hash tree sizes for CC and CCT (computed as the 
sum of sizes of hash trees of all the queries from all iterations divided by the number 
of iterations). For the case of two queries CCT reduced average memory consumption 
by 33% do 40% compared to CC. Differences in memory consumption of both 
algorithms for different levels of overlapping, observed for the support threshold of 
0.7%, were due to different characteristics of different regions of the generated 
dataset. 
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Fig. 4. Average sums of hash tree sizes for two queries and different levels of overlapping  
with minsup=2% (left) and minsup=0.7% (right) 

The goal of the second series of experiments was to evaluate scalability of CC and 
CCT with respect to the number of concurrently executed queries. In general, it is 
hard to compare the performance of the considered methods for different numbers of 
queries in a batch because the more queries the more overlapping configurations 
possible. Therefore, in order to assess the influence of the number of queries on their 
performance we “benchmarked” the methods on sets of identical queries (the level of 
overlapping was always 100%).  
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Fig. 5. Execution times for 2-5 identical queries  
with minsup=2% (left) and minsup=0.7% (right) 



Figure 5 shows how the execution time of a batch of queries increases with the 
number of queries forming it. The execution time of CCT increases insignificantly 
with the increase of the number of queries, whereas the execution time of CC grows 
almost as rapidly as in the case of sequential execution of the queries. 

Figure 6 presents average sums of sizes of hash trees built by CC and CCT for 
batches of 2 to 5 queries. With the increase of the number of queries the amount of 
main memory consumed by CCT grows significantly slower than in case of CC. The 
above experiment clearly indicates that CCT is applicable for larger batches of 
queries than CC, even taking into account the fact that the experiment favored CCT 
(since the queries forming a batch were identical, addition of another query resulted in 
the addition of another hash tree for CC, and only in the increase of the size of the 
vectors assigned to candidates in case of CCT). 
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Fig. 6. Average sums of hash tree sizes for 2-5 identical queries  
with minsup=2% (left) and minsup=0.7% (right) 

6   Conclusions 

In the paper we proposed a new method of concurrent execution of the set of frequent 
itemset queries using the Apriori algorithm. The new method is called Common 
Candidate Tree because it utilizes a common hash tree structure for all the 
concurrently executed queries. The experiments show that in comparison with the 
previously proposed Common Counting method, Common Candidate Tree is much 
more efficient, scales better with respect to the number of queries, and consumes a 
smaller amount of main memory. 

Currently we are working on a method analogous to the one presented in this 
paper, designed for FP-growth, aiming at the integration of FP-trees of the 
concurrently executed queries. In the future we plan to investigate further possibilities 
of computation sharing between the concurrently processed queries, going beyond 
sharing disk accesses and memory data structures. 



References 

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in 
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993) 

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data 
Mining System. Proc. of the 2nd KDD Conference (1996) 

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th 
Int’l Conf. on Very Large Data Bases (1994) 

4. Alsabbagh J.R., Raghavan V.V.: Analysis of common subexpression exploitation models in 
multiple-query processing. Proc. of the 10th ICDE Conference (1994) 

5. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st 
DaWaK Conference (1999) 

6. Blockeel H., Dehaspe L., Demoen B., Janssens G., Ramon J., Vandecasteele H.: Improving 
the Efficiency of Inductive Logic Programming Through the Use of Query Packs. Journal of 
Artificial Intelligence Research, Vol. 16 (2002) 

7. Boinski P., Wojciechowski M., Zakrzewicz M.: A Greedy Approach to Concurrent 
Processing of Frequent Itemset Queries. Proc. of the 8th DaWaK Conference (2006) 

8. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in 
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996) 

9. Han J., Pei J., Yin Y.: Mining frequent patterns without candidate generation. Proc. of the 
2000 ACM SIGMOD Conf. on Management of Data (2000) 

10.Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. 
Communications of the ACM, Vol. 39, No. 11 (1996) 

11.Jarke M.: Common subexpression isolation in multiple query optimization. Query 
Processing in Database Systems, Kim W., Reiner D.S. (Eds.), Springer (1985) 

12.Jeudy B., Boulicaut J-F.: Using condensed representations for interactive association rule 
mining. Proceedings of the 6th PKDD Conference (2002) 

13.Jin R., Sinha K., Agrawal G.: Simultaneous Optimization of Complex Mining Tasks with a 
Knowledgeable Cache. Proc. of the 11th KDD Conference (2005) 

14.Meo R.: Optimization of a Language for Data Mining. Proc. of the ACM Symposium on 
Applied Computing - Data Mining Track (2003) 

15.Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views. 
Proceedings of the 4th PKDD Conference (2000) 

16.Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery 
of Association Rules. Proc. of the 5th KDD Conference (1999) 

17.Pei J., Han J.: Can We Push More Constraints into Frequent Pattern Mining? Proceedings of 
the 6th KDD Conference (2000) 

18.Roy P., Seshadri S., Sundarshan S., Bhobe S.: Efficient and Extensible Algorithms for Multi 
Query Optimization. ACM SIGMOD Intl. Conference on Management of Data (2000) 

19.Sellis T.: Multiple-query optimization. ACM Transactions on Database Systems, Vol. 13, 
No. 1 (1988) 

20.Wojciechowski M., Galecki K., Gawronek K.: Concurrent Processing of Frequent Itemset 
Queries Using FP-Growth Algorithm. Proceedings of the 1st ADMKD Workshop (2005) 

21.Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for 
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003) 

22.Wojciechowski M., Zakrzewicz M.: On Multiple Query Optimization in Data Mining. Proc. 
of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2005) 

23.Zheng Z., Kohavi R., Mason L.: Real world performance of association rule algorithms. 
Proc. of the 7th KDD Conference (2001) 


