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Abstract. Discovery of sequential patterns is an important data mining problem 
with numerous applications. Sequential patterns are subsequences frequently 
occurring in a database of sequences of sets of items. In a basic scenario, the 
goal of sequential pattern mining is discovery of all patterns whose frequency 
exceeds a user-specified frequency threshold. The problem with such an 
approach is a huge number of sequential patterns which are likely to be returned 
for reasonable frequency thresholds. One possible solution to this problem is 
excluding the patterns which do not provide significantly more information than 
some other patterns in the result set. Two approaches falling into that category 
have been studied in the context of sequential patterns: discovery of maximal 
patterns and closed patterns. Unfortunately, the set of maximal patterns may not 
contain many important patterns with high frequency, and discovery of closed 
patterns may not reduce the number of resulting patterns for sparse datasets. 
Therefore, in this paper we propose and experimentally evaluate the minimum 
improvement criterion to be used in the post-processing phase to reduce the 
number of sequential patterns returned to the user. Our method is an adaptation 
of one of the methods previously proposed for association rules. 

1   Introduction 

Sequential pattern mining [3] is an important data mining problem with numerous 
applications including analysis of retail data, data registered during scientific 
experiments, Web server logs, etc. Informally, sequential patterns are subsequences 
frequently occurring in a database of sequences of sets of items. The most common 
frequency measure is support, expressed as a number or percentage of data sequences 
containing a given pattern. In a basic scenario, the goal of sequential pattern mining is 
discovery of all patterns whose support exceeds a user-specified minimum support 
threshold. Several algorithms have been proposed for this task, e.g., AprioriAll [3], 
GSP [11], and PrefixSpan [9]. An obvious problem with such an approach is a huge 
number of sequential patterns which are likely to be returned as mining results, 
especially for low support thresholds. Unfortunately, in order to be able to discover 
non-trivial, interesting, or even surprising patterns, typically a user will have to 
choose a minimum support value that will lead to a large collection of patterns 
difficult to comprehend.  



In general, there are two strategies to cope with the above problem. One is to allow 
a user to specify constraints on discovered patterns referring to their structure, e.g., 
the presence of certain items [5][7][13]. However, relying on constraint-based mining 
as a means of reducing the size of the mining result has two disadvantages. Firstly, a 
user may not have any requirements on the pattern structure. Secondly, as pointed out 
in [8], mining with constraints reduces the possibility of reusing the mining results by 
other users. 

The second strategy to reduce the number of frequent patterns presented to the user 
is excluding the patterns which do not provide significantly more information than 
some other patterns in the result set. Two approaches falling into that category have 
been studied in the context of sequential patterns: discovery of maximal sequential 
patterns [3] and closed sequential patterns [14]. Maximal sequential patterns are 
frequent patterns that are not a subsequence of any other sequential pattern. Pruning 
non-maximal patterns was proposed as a post-processing step already together with 
the first sequential pattern mining algorithm AprioriAll in [3]. Unfortunately, it was 
immediately observed that the set of maximal patterns may not contain many 
important patterns having high support. As a result, some patterns that could have an 
impact on decision making might not be presented to the user.  

A clearly better solution is discovery of closed sequential patterns. A sequential 
pattern is a closed sequential pattern if it is not a subsequence of any other sequential 
pattern having exactly the same support. Closed patterns have the following 
advantages: (1) they form a so-called condensed representation of all frequent 
patterns, i.e., all frequent patterns with their supports can be generated if necessary 
from closed patterns, so only closed patterns have to be stored; (2) they can be 
generated directly from the database, which is typically faster than mining all frequent 
patterns, and then pruning the set of discovered patterns in a post-processing phase. 
Nevertheless, the level of reduction of the number of returned patterns thanks to 
mining only closed patterns depends strongly on the nature of the dataset and may not 
be noticeable for sparse datasets. 

To address the limitations of previously proposed methods, in this paper we 
propose and experimentally evaluate the minimum improvement criterion to be used 
in the post-processing phase to reduce the number of sequential patterns returned to 
the user. The idea is to require that for a sequential pattern to be included in the result 
set, its support should be greater than the support of all its super-sequences present in 
the result set by more than the user-specified minimum improvement threshold. For 
extreme minimum improvement threshold values the method results in mining closed 
and maximal sequential patterns. Our method is an adaptation of one of the methods 
previously proposed for association rules, in the context of which the problem of 
reducing the size of the generated pattern set has been studied much more intensively. 

The paper is organized as follows. Section 2 describes related work. In Section 3 
we review basic definitions regarding sequential pattern mining, including maximal 
and closed sequential patterns, and the definitions regarding association rules which 
are relevant for our discussion. In Section 4 we introduce our improvement measure 
for sequential patterns, and present the pruning algorithm exploiting the criterion. 
Section 5 presents experimental results regarding the effectiveness and performance 
of the proposed method. Section 6 contains concluding remarks. 



2   Related Work 

To the best of our knowledge, only two methods of reducing the number of 
discovered sequential patterns by pruning the patterns that do not provide 
significantly more information than some other patterns have been proposed so far. 
These methods are discovery of maximal sequential patterns [3] and closed sequential 
patterns [14]. 

Much more work on reducing the size of data mining results has been done in the 
context of the related problem of discovery of frequent itemsets and association 
rules [1]. In [12] the authors introduced the concept of a rule cover for association 
rules. The idea was to discover the set of rules covering all the data in the database 
and prune the remaining rules. As this method loses the completeness of association 
rule mining, it was not studied further in other works.  

Another solution was proposed in [4], where pruning was performed according to 
the value of the minimum improvement threshold specified by a user. Improvement 
provided by a rule was defined as the minimum difference between its confidence and 
the confidence of any of its proper sub-rules, where a proper sub-rule is a 
simplification of the rule formed by removing one or more items from its antecedent.  

Recently, two interesting approaches aiming at reduction of the size of the 
collection of discovered frequent patterns have been proposed as generalizations of 
the concept of closed frequent itemsets [6]. [10] proposed g-closed itemsets that could 
be used to derive all frequent itemsets and their supports within the error equal to a 
user-specified tolerance factor. The number of g-closed itemsets is typically 
significantly smaller than the number of closed itemsets, and for the tolerance of zero 
the output is exactly the set of frequent closed itemsets. G-closed itemsets can be 
discovered in a post-processing phase or directly from the database using one of the 
two algorithms proposed by the authors. 

In [8] it was observed that very often users do not need exact support values of 
discovered patterns and they would be satisfied with approximations. The paper 
introduced the concept of condensed frequent pattern bases, which are collections of 
patterns that can be used to generate all frequent patterns with a guaranteed error on 
their support. The major motivation was reduction of the number of mined, stored, 
and analyzed patterns. The paper also proposed efficient algorithms for mining 
condensed frequent pattern bases offering a satisfactory compression ratio directly 
from the database. In two particular cases the proposed approach reduces to mining 
maximal and closed patterns respectively. 

A study of previous research on frequent patterns clearly shows that novel 
solutions are typically introduced in the context of frequent itemsets or association 
rules, and then adapted for sequential patterns. As for the techniques of pruning the 
patterns that do not provide significantly more information than some other patterns, 
the research on sequential patterns is definitely a few steps behind frequent itemsets 
and association rules. This paper aims at lessening this gap by redefining the 
improvement measure from [4] in the context of sequential patterns, and verifying its 
usefulness for filtering uninteresting sequential patterns. 



3   Basic Definitions 

3.1   Sequential Patterns 

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of 
items. A sequence is an ordered list of itemsets. A sequence s is denoted as <S1 S2 ... 
Sn>, where Si is an itemset (Si ⊆ L). Si is called an element of the sequence and 
denoted as (x1 x2 ... xm), where xk is an item. The size of a sequence is the number of 
items in the sequence. The length of a sequence is the number of elements in the 
sequence.  

A sequence α = <A1 A2 ... An> is called a subsequence of another sequence β = <B1 

B2 ... Bm> (and β a super-sequence of α), denoted as α ⊑ β, if there exist integers 
i1 < i2 < ... < in such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin.  

A sequence database D is a set of tuples [sid, s], where sid is a sequence identifier 
and s is a sequence. We say that a tuple [sid, s] contains a sequence α if α is a 

subsequence of s (α ⊑ s). The support of a sequence α in a sequence database D 
(denoted as sup(α)) is the number of tuples in D that contain α. A sequence α is 
called a (frequent) sequential pattern in a sequence database D if its support in D is 
above the user-specified threshold minsup.  

A sequential pattern α is maximal if there exists no sequential pattern β (β ≠ α) 
such that α is a subsequence of β. 

A sequential pattern α is closed if there exists no sequential pattern β (β ≠ α) such 
that α is a subsequence of β and sup(β) = sup(α). 

3.2   Association Rules 

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of 
items. An association rule is an expression of the form X→Y, where X and Y are 
itemsets (X⊂L, Y⊂L) such that X∩Y=∅. X is called an antecedent and Y a consequent 
of the rule X→Y. 

A transaction database TD is a set of tuples [tid, T], where tid is a transaction 
identifier and T is an itemset (T⊆L). We say that a tuple [tid, T] contains an itemset X 
if X⊆T. The support of an itemset X in a transaction database TD (denoted as sup(X)) 
is the number of tuples in TD that contain X. 

The support of an association rule X→Y in a transaction database TD (denoted as 
sup(X→Y)) is the support of X∪Y. The confidence of a rule X→Y (denoted as 
conf(X→Y)) is defined as sup(A∪B) / sup(A). The improvement of a rule X→Y 
(denoted as imp(X→Y)) is defined as min(∀X’ ⊂ X, conf(X → Y) – conf(X’ →Y)). 



4   Pruning Discovered Sequential Patterns According to the 
Minimum Improvement Threshold  

In this section we formally define the improvement measure for sequential patterns as 
an adaptation of the measure proposed in [4] for association rules, and then we 
propose an algorithm that can be used to filter uninteresting patterns from the set of 
discovered patterns. Our approach aims at providing a post-processing mechanism 
that will allow a user to interactively adjust the number of presented patterns by 
hiding the patterns that do not carry significantly more information than some other 
patterns. 

4.1   Improvement Measure for Sequential Patterns 

The definition of the improvement measure for association rules is not directly 
applicable to sequential patterns as it refers to confidence of rules, which is not 
defined for sequential patterns. However, we claim that improvement can be 
redefined for sequential patterns in a way preserving its general idea, i.e., capturing 
the difference in some pattern interestingness measure between a pattern and its sub- 
and super-patterns.  

As the support is the most important and typically the only evaluated measure of 
sequential patterns’ interestingness, we define our improvement measure for 
sequential patterns in terms of differences in pattern support: 
 

imp(α) = min(∀α’ | α⊑α’ ∧ α≠α’, sup(α) – sup(α’)) 
 
The above formula says that the improvement provided by a given sequential pattern 
is the minimum difference between its support and the support of any proper super-
sequence of the pattern. According to the definition, a high value of the improvement 
measure means that adding any items to the pattern would result in significant 
decrease in support.  

 
Example 1. Let us consider a sequential pattern α = 〈(3)(4 5)〉 having the support 
sup(α) = 1000. Let us assume that its only proper frequent super-sequences are β = 
〈(3 6)(4 5)〉 and γ = 〈(3)(4 5)(7)〉 with the following supports: sup(β) = 900, sup(γ) = 
950. According to our definition, in this case: imp(α) = 50. 

4.2   Pruning Algorithm 

The improvement measure can be used to filter the collection of discovered sequential 
patterns. The assumption is that a pattern being a subsequence of another sequential 
pattern is interesting only if its support is significantly higher than the support of that 
second pattern.  

Obviously, improvement should be evaluated and tested only for non-maximal 
patterns for the following two reasons. Firstly, to calculate the pattern improvement 



we need to know the support of its most frequent super-sequence, and for maximal 
patterns this will not be provided in the set of frequent patterns. Secondly, maximal 
patterns should be presented to the user regardless of their improvement values 
because their super-sequences cannot be considered more interesting since they are 
not even frequent.  

The minimum improvement threshold (minimp) for non-maximal patterns should 
be a parameter set by a user1 and only patterns whose improvement is greater than 
minimp should be returned. Such an approach will not miss many interesting patterns 
that could be filtered out when mining maximal patterns, and typically should be 
more selective than mining closed patterns. In fact, for minimp=0 the set of presented 
sequential patterns will be exactly the set of closed sequential patterns, and for 
minimp=∞ only maximal patterns will be retained. 

According to the definition of the improvement measure, for a specified minimp 
threshold, a sequential pattern α will be considered uninteresting if it has at least one 
frequent super-sequence β such that sup(β) ≥ sup(α) - minimp. To illustrate a possible 
problem with such a direct application of the pattern improvement measure, let us 
analyze the following example. 

 
Example 2. Consider three sequential patterns α = 〈(3)〉, β = 〈(3)(4)〉, and γ = 
〈(3)(4)(5)〉 with the following supports: sup(α) = 1000, sup(β) = 950, sup(γ) = 900. 
Assume that β is the only proper frequent super-sequence of α and γ is the only 
proper frequent super-sequence of β. Thus, imp(α) = 50, imp(β) = 50, and imp(γ) will 
not be evaluated as γ is a maximal pattern. If we prune the collection of patterns using 
minimp = 60, only γ will be presented to the user. 

 
Notice that in the above example, β would be removed because of γ and α would be 
removed because of β. The point is that a user would not see α despite the fact that in 
the set of presented patterns there were no super-sequences of α with the support 
greater than or equal to sup(α) - minimp. This may or may not be what a user actually 
expects. To address the above problem, we propose a pruning algorithm that will hide 
a pattern which does not satisfy the minimum improvement criterion only if at least 
one of its super-sequences that make it uninteresting is guaranteed to be included in 
the set of presented patterns. 

The pruning algorithm is depicted in Fig. 1. The algorithm takes a set of frequent 
patterns FP and the minimum improvement threshold minimp as input, and returns the 
set of interesting patterns to be presented PP. The assumption is that the pattern sets 
FP and PP will be partitioned into subsets containing patterns of a given size, denoted 
as FPi and PPi respectively. 

The algorithm achieves its goal by analyzing each sequential pattern after all its 
super-sequences have been tested (line 1). Each of the patterns is compared only with 
larger patterns that have already been included in the set of patterns to be presented 
(line 5). The effect of the whole procedure is as if pattern improvement used for 
filtering was evaluated taking into account only patterns guaranteed to be retained. 

                        
1 Similarly to the minimum support threshold, minimp can be expressed as a number or 

percentage of sequences in the database. 



Conceptually, the difference in supports should be compared with minimp only if a 
subsequence relation between the patterns holds. However, since the improvement 
test is computationally simpler than the subsequence test (linear complexity wrt. 
pattern length), we propose to first perform the improvement test for all considered 
pairs of patterns, and the subsequence test only if the improvement indicates the 
possibility of pruning (line 6).  
 

 1. for i := max(∀s | s∈FP, size(s)) downto 1 do 
 2.   PPi := FPi; 
 3.   forall p in FPi do 

 4.     for j := i+1 to max(∀s | s∈FP, size(s)) do 
 5.       forall q in PPj do 

 6.           if sup(p) ≤ sup(q) + minimp and p ⊑ q then 
 7.             PPi := PPi \ {p} 
 8.           endif 
 9.       endfor 
10.     endfor 
11.   endfor 
12. endfor 

Fig. 1. Pruning algorithm  

The algorithm performs two nested loops over the collection of patterns. Thus, its 
complexity with respect to the number of patterns is O(n2). 

5   Experimental Results 

In order to evaluate effectiveness and efficiency of the proposed sequential pattern 
filtering method, we performed several experiments using two different synthetic 
datasets generated with GEN [2]. The first dataset (denoted as GEN1) was generated 
using the following parameter values: number of customers = 1000, average number 
of transactions per customer = 8, average number of items in transaction = 1, number 
of different items = 100, number of patterns = 500, average maximal pattern length = 
4, number of itemsets = 60, average maximal itemset length = 1. For the second 
dataset (denoted as GEN2) the following parameter values were used: number of 
customers = 1000, average number of transactions per customer = 8, average number 
of items in transaction = 4, number of different items = 100, number of patterns = 
500, average maximal pattern length = 8, number of itemsets = 60, average maximal 
itemset length = 4.  

The first generated dataset (GEN1) was a sparse dataset. For the generation of 
GEN2, the parameters were adjusted in order to generate a more dense dataset, i.e., 
containing patterns with more items, with small differences in support between 
patterns and their sub-patterns. 

The experiments were conducted on a PC with AMD Athlon 1.5 GHz processor. 
For sequential pattern discovery we used our own implementation of the GSP 



algorithm from [11]. Our post-processing pattern filtering procedure was tested on 
pattern collections stored in main memory. 

In the first series of experiments we counted the number of removed sequential 
patterns by the post-processing procedure for different values of the minimum 
improvement threshold (minimp). The minimum support threshold for sequential 
pattern discovery was set to 1% in case of GEN1 dataset, and 10% for GEN2 dataset. 
Figures 2 and 3 show the number of removed patterns as a function of minimp for 
GEN1 and GEN2 datasets respectively (minimp is expressed as the percentage of the 
total number of sequences in the source dataset).  

 

 

Fig. 2. Number of removed patterns (GEN1 dataset) 

 

Fig. 3. Number of removed patterns (GEN2 dataset) 

The charts show that for both datasets the number of removed patterns changed 
similarly with the increase of minimp, which proves that our method is useful for 



different kinds of datasets. However, for minimp = 0, which corresponds to mining 
closed sequential patterns, there were only about 3% of patterns removed for GEN1, 
and as many as 67% for GEN2. This was due to different characteristics of the two 
datasets. Pruning non-closed patterns is known to result in significant reduction of the 
pattern set for dense datasets (such as GEN2) but is not satisfactory for sparse datasets 
(such as GEN1).  

Nevertheless, starting with minimp=0, even with a slight increase of minimp the 
number of removed patterns grew very rapidly in case for both datasets. Then, at 
certain point, the number of pruned patterns stabilized and further increase of minimp 
did not increase the number of removed patterns significantly. This was due to the 
fact that for a certain value of minimp, only maximal patterns and a small number of 
very short patterns with a particularly high support are retained. The difference 
between a number of closed and maximal sequential patterns was about 30% of the 
total number of frequent patterns for both datasets, which proves that the space for 
adjusting the number of presented patterns using minimp is large. 

The values of minimp for which a certain level of pruning was achieved were 
different for GEN1 and GEN2 datasets. Obviously, the effect of pruning for a given 
minimp threshold depends on the characteristics of a particular sequential pattern 
collection, which are the consequence of the characteristics of the source dataset and 
the minimum support threshold chosen for sequential pattern mining. 

 

 

Fig. 4. Execution times (GEN1 dataset)  

To evaluate performance of the proposed pattern filtering method, in the second series 
of experiments we measured the execution time for different number of frequent 
patterns and various minimp thresholds. The collections of sequential patterns were 
generated from the GEN1 dataset using different minimum support thresholds varying 
from 0.6% to 10%. Figure 4 presents the execution times of the pruning procedure for 
different numbers of discovered sequential patterns. Each of the presented execution 
times is an average over a series of executions for a number of different values of 
minimp. 



The chart confirms that processing time of the pruning procedure is proportional to 
the square of the number of patterns, and shows that even for a few thousands of 
discovered patterns the procedures completes in a fraction of a second which makes it 
appropriate for interactive use. Comparing the time needed to filter the patterns 
according to minimp using our algorithm to the time needed to discover the patterns 
using GSP (not reported here) for dataset GEN1 and minimum support thresholds 
varying from 0.6% to 10%, we observed that the execution time of our pruning 
procedure was always less than 1% of the execution time of GSP. 

6   Concluding Remarks 

In this paper we addressed the problem of reducing the number of discovered 
sequential patterns presented to the user. The paper has two following contributions. 
Firstly, we defined a new measure of sequential patterns’ interestingness, called 
improvement, as an adaptation of an analogous measure previously proposed for 
association rules. Secondly, we discussed possible strategies of using the new 
improvement measure to prune the collection of discovered sequential patterns, and 
proposed a post-processing algorithm, which handles selection of closed and maximal 
sequential patterns as two extreme cases.  

The experiments show that the proposed method can significantly reduce the 
number of sequential patterns, according to user’s needs, and offers satisfactory 
efficiency to be used in interactive data mining environments. 

In the paper, we have not considered integration of pruning according to the 
minimum improvement threshold into sequential pattern mining algorithms. We 
strongly believe that the proposed pruning criterion is best suited for post-processing, 
allowing a user to interactively adjust the number of presented patterns from the set of 
discovered patterns. 
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