
Pruning Discovered Sequential Patterns Using
Minimum Improvement Threshold

Stanislaw Prinke, Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Berdychowo, 60-965 Poznan, Poland
{marek,mzakrz}@cs.put.poznan.pl

Abstract. Discovery of sequential patterns is an important data mining problem
with numerous applications. Sequential patterns are subsequences frequently
occurring in a database of sequences of sets of items. In a basic scenario, the
goal of sequential pattern mining is discovery of all patterns whose frequency
exceeds a user-specified frequency threshold. The problem with such an
approach is a huge number of sequential patterns which are likely to be returned
for reasonable frequency thresholds. One possible solution to this problem is
excluding the patterns which do not provide significantly more information than
some other patterns in the result set. Two approaches falling into that category
have been studied in the context of sequential patterns: discovery of maximal
patterns and closed patterns. Unfortunately, the set of maximal patterns may not
contain many important patterns with high frequency, and discovery of closed
patterns may not reduce the number of resulting patterns for sparse datasets.
Therefore, in this paper we propose and experimentally evaluate the minimum
improvement criterion to be used in the post-processing phase to reduce the
number of sequential patterns returned to the user. Our method is an adaptation
of one of the methods previously proposed for association rules.

1 Introduction

Sequential pattern mining [3] is an important data mining problem with numerous
applications including analysis of retail data, data registered during scientific
experiments, Web server logs, etc. Informally, sequential patterns are subsequences
frequently occurring in a database of sequences of sets of items. The most common
frequency measure is support, expressed as a number or percentage of data sequences
containing a given pattern. In a basic scenario, the goal of sequential pattern mining is
discovery of all patterns whose support exceeds a user-specified minimum support
threshold. Several algorithms have been proposed for this task, e.g., AprioriAll [3],
GSP [11], and PrefixSpan [9]. An obvious problem with such an approach is a huge
number of sequential patterns which are likely to be returned as mining results,
especially for low support thresholds. Unfortunately, in order to be able to discover
non-trivial, interesting, or even surprising patterns, typically a user will have to
choose a minimum support value that will lead to a large collection of patterns
difficult to comprehend.

In general, there are two strategies to cope with the above problem. One is to allow
a user to specify constraints on discovered patterns referring to their structure, e.g.,
the presence of certain items [5][7][13]. However, relying on constraint-based mining
as a means of reducing the size of the mining result has two disadvantages. Firstly, a
user may not have any requirements on the pattern structure. Secondly, as pointed out
in [8], mining with constraints reduces the possibility of reusing the mining results by
other users.

The second strategy to reduce the number of frequent patterns presented to the user
is excluding the patterns which do not provide significantly more information than
some other patterns in the result set. Two approaches falling into that category have
been studied in the context of sequential patterns: discovery of maximal sequential
patterns [3] and closed sequential patterns [14]. Maximal sequential patterns are
frequent patterns that are not a subsequence of any other sequential pattern. Pruning
non-maximal patterns was proposed as a post-processing step already together with
the first sequential pattern mining algorithm AprioriAll in [3]. Unfortunately, it was
immediately observed that the set of maximal patterns may not contain many
important patterns having high support. As a result, some patterns that could have an
impact on decision making might not be presented to the user.

A clearly better solution is discovery of closed sequential patterns. A sequential
pattern is a closed sequential pattern if it is not a subsequence of any other sequential
pattern having exactly the same support. Closed patterns have the following
advantages: (1) they form a so-called condensed representation of all frequent
patterns, i.e., all frequent patterns with their supports can be generated if necessary
from closed patterns, so only closed patterns have to be stored; (2) they can be
generated directly from the database, which is typically faster than mining all frequent
patterns, and then pruning the set of discovered patterns in a post-processing phase.
Nevertheless, the level of reduction of the number of returned patterns thanks to
mining only closed patterns depends strongly on the nature of the dataset and may not
be noticeable for sparse datasets.

To address the limitations of previously proposed methods, in this paper we
propose and experimentally evaluate the minimum improvement criterion to be used
in the post-processing phase to reduce the number of sequential patterns returned to
the user. The idea is to require that for a sequential pattern to be included in the result
set, its support should be greater than the support of all its super-sequences present in
the result set by more than the user-specified minimum improvement threshold. For
extreme minimum improvement threshold values the method results in mining closed
and maximal sequential patterns. Our method is an adaptation of one of the methods
previously proposed for association rules, in the context of which the problem of
reducing the size of the generated pattern set has been studied much more intensively.

The paper is organized as follows. Section 2 describes related work. In Section 3
we review basic definitions regarding sequential pattern mining, including maximal
and closed sequential patterns, and the definitions regarding association rules which
are relevant for our discussion. In Section 4 we introduce our improvement measure
for sequential patterns, and present the pruning algorithm exploiting the criterion.
Section 5 presents experimental results regarding the effectiveness and performance
of the proposed method. Section 6 contains concluding remarks.

2 Related Work

To the best of our knowledge, only two methods of reducing the number of
discovered sequential patterns by pruning the patterns that do not provide
significantly more information than some other patterns have been proposed so far.
These methods are discovery of maximal sequential patterns [3] and closed sequential
patterns [14].

Much more work on reducing the size of data mining results has been done in the
context of the related problem of discovery of frequent itemsets and association
rules [1]. In [12] the authors introduced the concept of a rule cover for association
rules. The idea was to discover the set of rules covering all the data in the database
and prune the remaining rules. As this method loses the completeness of association
rule mining, it was not studied further in other works.

Another solution was proposed in [4], where pruning was performed according to
the value of the minimum improvement threshold specified by a user. Improvement
provided by a rule was defined as the minimum difference between its confidence and
the confidence of any of its proper sub-rules, where a proper sub-rule is a
simplification of the rule formed by removing one or more items from its antecedent.

Recently, two interesting approaches aiming at reduction of the size of the
collection of discovered frequent patterns have been proposed as generalizations of
the concept of closed frequent itemsets [6]. [10] proposed g-closed itemsets that could
be used to derive all frequent itemsets and their supports within the error equal to a
user-specified tolerance factor. The number of g-closed itemsets is typically
significantly smaller than the number of closed itemsets, and for the tolerance of zero
the output is exactly the set of frequent closed itemsets. G-closed itemsets can be
discovered in a post-processing phase or directly from the database using one of the
two algorithms proposed by the authors.

In [8] it was observed that very often users do not need exact support values of
discovered patterns and they would be satisfied with approximations. The paper
introduced the concept of condensed frequent pattern bases, which are collections of
patterns that can be used to generate all frequent patterns with a guaranteed error on
their support. The major motivation was reduction of the number of mined, stored,
and analyzed patterns. The paper also proposed efficient algorithms for mining
condensed frequent pattern bases offering a satisfactory compression ratio directly
from the database. In two particular cases the proposed approach reduces to mining
maximal and closed patterns respectively.

A study of previous research on frequent patterns clearly shows that novel
solutions are typically introduced in the context of frequent itemsets or association
rules, and then adapted for sequential patterns. As for the techniques of pruning the
patterns that do not provide significantly more information than some other patterns,
the research on sequential patterns is definitely a few steps behind frequent itemsets
and association rules. This paper aims at lessening this gap by redefining the
improvement measure from [4] in the context of sequential patterns, and verifying its
usefulness for filtering uninteresting sequential patterns.

3 Basic Definitions

3.1 Sequential Patterns

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of
items. A sequence is an ordered list of itemsets. A sequence s is denoted as <S1 S2 ...
Sn>, where Si is an itemset (Si ⊆ L). Si is called an element of the sequence and
denoted as (x1 x2 ... xm), where xk is an item. The size of a sequence is the number of
items in the sequence. The length of a sequence is the number of elements in the
sequence.

A sequence α = <A1 A2 ... An> is called a subsequence of another sequence β = <B1

B2 ... Bm> (and β a super-sequence of α), denoted as α ⊑ β, if there exist integers
i1 < i2 < ... < in such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin.

A sequence database D is a set of tuples [sid, s], where sid is a sequence identifier
and s is a sequence. We say that a tuple [sid, s] contains a sequence α if α is a

subsequence of s (α ⊑ s). The support of a sequence α in a sequence database D
(denoted as sup(α)) is the number of tuples in D that contain α. A sequence α is
called a (frequent) sequential pattern in a sequence database D if its support in D is
above the user-specified threshold minsup.

A sequential pattern α is maximal if there exists no sequential pattern β (β ≠ α)
such that α is a subsequence of β.

A sequential pattern α is closed if there exists no sequential pattern β (β ≠ α) such
that α is a subsequence of β and sup(β) = sup(α).

3.2 Association Rules

Let L = {l1, l2, ..., lm} be a set of literals called items. An itemset is a non-empty set of
items. An association rule is an expression of the form X→Y, where X and Y are
itemsets (X⊂L, Y⊂L) such that X∩Y=∅. X is called an antecedent and Y a consequent
of the rule X→Y.

A transaction database TD is a set of tuples [tid, T], where tid is a transaction
identifier and T is an itemset (T⊆L). We say that a tuple [tid, T] contains an itemset X
if X⊆T. The support of an itemset X in a transaction database TD (denoted as sup(X))
is the number of tuples in TD that contain X.

The support of an association rule X→Y in a transaction database TD (denoted as
sup(X→Y)) is the support of X∪Y. The confidence of a rule X→Y (denoted as
conf(X→Y)) is defined as sup(A∪B) / sup(A). The improvement of a rule X→Y
(denoted as imp(X→Y)) is defined as min(∀X’ ⊂ X, conf(X → Y) – conf(X’ →Y)).

4 Pruning Discovered Sequential Patterns According to the
Minimum Improvement Threshold

In this section we formally define the improvement measure for sequential patterns as
an adaptation of the measure proposed in [4] for association rules, and then we
propose an algorithm that can be used to filter uninteresting patterns from the set of
discovered patterns. Our approach aims at providing a post-processing mechanism
that will allow a user to interactively adjust the number of presented patterns by
hiding the patterns that do not carry significantly more information than some other
patterns.

4.1 Improvement Measure for Sequential Patterns

The definition of the improvement measure for association rules is not directly
applicable to sequential patterns as it refers to confidence of rules, which is not
defined for sequential patterns. However, we claim that improvement can be
redefined for sequential patterns in a way preserving its general idea, i.e., capturing
the difference in some pattern interestingness measure between a pattern and its sub-
and super-patterns.

As the support is the most important and typically the only evaluated measure of
sequential patterns’ interestingness, we define our improvement measure for
sequential patterns in terms of differences in pattern support:

imp(α) = min(∀α’ | α⊑α’ ∧ α≠α’, sup(α) – sup(α’))

The above formula says that the improvement provided by a given sequential pattern
is the minimum difference between its support and the support of any proper super-
sequence of the pattern. According to the definition, a high value of the improvement
measure means that adding any items to the pattern would result in significant
decrease in support.

Example 1. Let us consider a sequential pattern α = 〈(3)(4 5)〉 having the support
sup(α) = 1000. Let us assume that its only proper frequent super-sequences are β =
〈(3 6)(4 5)〉 and γ = 〈(3)(4 5)(7)〉 with the following supports: sup(β) = 900, sup(γ) =
950. According to our definition, in this case: imp(α) = 50.

4.2 Pruning Algorithm

The improvement measure can be used to filter the collection of discovered sequential
patterns. The assumption is that a pattern being a subsequence of another sequential
pattern is interesting only if its support is significantly higher than the support of that
second pattern.

Obviously, improvement should be evaluated and tested only for non-maximal
patterns for the following two reasons. Firstly, to calculate the pattern improvement

we need to know the support of its most frequent super-sequence, and for maximal
patterns this will not be provided in the set of frequent patterns. Secondly, maximal
patterns should be presented to the user regardless of their improvement values
because their super-sequences cannot be considered more interesting since they are
not even frequent.

The minimum improvement threshold (minimp) for non-maximal patterns should
be a parameter set by a user1 and only patterns whose improvement is greater than
minimp should be returned. Such an approach will not miss many interesting patterns
that could be filtered out when mining maximal patterns, and typically should be
more selective than mining closed patterns. In fact, for minimp=0 the set of presented
sequential patterns will be exactly the set of closed sequential patterns, and for
minimp=∞ only maximal patterns will be retained.

According to the definition of the improvement measure, for a specified minimp
threshold, a sequential pattern α will be considered uninteresting if it has at least one
frequent super-sequence β such that sup(β) ≥ sup(α) - minimp. To illustrate a possible
problem with such a direct application of the pattern improvement measure, let us
analyze the following example.

Example 2. Consider three sequential patterns α = 〈(3)〉, β = 〈(3)(4)〉, and γ =
〈(3)(4)(5)〉 with the following supports: sup(α) = 1000, sup(β) = 950, sup(γ) = 900.
Assume that β is the only proper frequent super-sequence of α and γ is the only
proper frequent super-sequence of β. Thus, imp(α) = 50, imp(β) = 50, and imp(γ) will
not be evaluated as γ is a maximal pattern. If we prune the collection of patterns using
minimp = 60, only γ will be presented to the user.

Notice that in the above example, β would be removed because of γ and α would be
removed because of β. The point is that a user would not see α despite the fact that in
the set of presented patterns there were no super-sequences of α with the support
greater than or equal to sup(α) - minimp. This may or may not be what a user actually
expects. To address the above problem, we propose a pruning algorithm that will hide
a pattern which does not satisfy the minimum improvement criterion only if at least
one of its super-sequences that make it uninteresting is guaranteed to be included in
the set of presented patterns.

The pruning algorithm is depicted in Fig. 1. The algorithm takes a set of frequent
patterns FP and the minimum improvement threshold minimp as input, and returns the
set of interesting patterns to be presented PP. The assumption is that the pattern sets
FP and PP will be partitioned into subsets containing patterns of a given size, denoted
as FPi and PPi respectively.

The algorithm achieves its goal by analyzing each sequential pattern after all its
super-sequences have been tested (line 1). Each of the patterns is compared only with
larger patterns that have already been included in the set of patterns to be presented
(line 5). The effect of the whole procedure is as if pattern improvement used for
filtering was evaluated taking into account only patterns guaranteed to be retained.

1 Similarly to the minimum support threshold, minimp can be expressed as a number or

percentage of sequences in the database.

Conceptually, the difference in supports should be compared with minimp only if a
subsequence relation between the patterns holds. However, since the improvement
test is computationally simpler than the subsequence test (linear complexity wrt.
pattern length), we propose to first perform the improvement test for all considered
pairs of patterns, and the subsequence test only if the improvement indicates the
possibility of pruning (line 6).

 1. for i := max(∀s | s∈FP, size(s)) downto 1 do
 2. PPi := FPi;
 3. forall p in FPi do

 4. for j := i+1 to max(∀s | s∈FP, size(s)) do
 5. forall q in PPj do

 6. if sup(p) ≤ sup(q) + minimp and p ⊑ q then
 7. PPi := PPi \ {p}
 8. endif
 9. endfor
10. endfor
11. endfor
12. endfor

Fig. 1. Pruning algorithm

The algorithm performs two nested loops over the collection of patterns. Thus, its
complexity with respect to the number of patterns is O(n2).

5 Experimental Results

In order to evaluate effectiveness and efficiency of the proposed sequential pattern
filtering method, we performed several experiments using two different synthetic
datasets generated with GEN [2]. The first dataset (denoted as GEN1) was generated
using the following parameter values: number of customers = 1000, average number
of transactions per customer = 8, average number of items in transaction = 1, number
of different items = 100, number of patterns = 500, average maximal pattern length =
4, number of itemsets = 60, average maximal itemset length = 1. For the second
dataset (denoted as GEN2) the following parameter values were used: number of
customers = 1000, average number of transactions per customer = 8, average number
of items in transaction = 4, number of different items = 100, number of patterns =
500, average maximal pattern length = 8, number of itemsets = 60, average maximal
itemset length = 4.

The first generated dataset (GEN1) was a sparse dataset. For the generation of
GEN2, the parameters were adjusted in order to generate a more dense dataset, i.e.,
containing patterns with more items, with small differences in support between
patterns and their sub-patterns.

The experiments were conducted on a PC with AMD Athlon 1.5 GHz processor.
For sequential pattern discovery we used our own implementation of the GSP

algorithm from [11]. Our post-processing pattern filtering procedure was tested on
pattern collections stored in main memory.

In the first series of experiments we counted the number of removed sequential
patterns by the post-processing procedure for different values of the minimum
improvement threshold (minimp). The minimum support threshold for sequential
pattern discovery was set to 1% in case of GEN1 dataset, and 10% for GEN2 dataset.
Figures 2 and 3 show the number of removed patterns as a function of minimp for
GEN1 and GEN2 datasets respectively (minimp is expressed as the percentage of the
total number of sequences in the source dataset).

Fig. 2. Number of removed patterns (GEN1 dataset)

Fig. 3. Number of removed patterns (GEN2 dataset)

The charts show that for both datasets the number of removed patterns changed
similarly with the increase of minimp, which proves that our method is useful for

different kinds of datasets. However, for minimp = 0, which corresponds to mining
closed sequential patterns, there were only about 3% of patterns removed for GEN1,
and as many as 67% for GEN2. This was due to different characteristics of the two
datasets. Pruning non-closed patterns is known to result in significant reduction of the
pattern set for dense datasets (such as GEN2) but is not satisfactory for sparse datasets
(such as GEN1).

Nevertheless, starting with minimp=0, even with a slight increase of minimp the
number of removed patterns grew very rapidly in case for both datasets. Then, at
certain point, the number of pruned patterns stabilized and further increase of minimp
did not increase the number of removed patterns significantly. This was due to the
fact that for a certain value of minimp, only maximal patterns and a small number of
very short patterns with a particularly high support are retained. The difference
between a number of closed and maximal sequential patterns was about 30% of the
total number of frequent patterns for both datasets, which proves that the space for
adjusting the number of presented patterns using minimp is large.

The values of minimp for which a certain level of pruning was achieved were
different for GEN1 and GEN2 datasets. Obviously, the effect of pruning for a given
minimp threshold depends on the characteristics of a particular sequential pattern
collection, which are the consequence of the characteristics of the source dataset and
the minimum support threshold chosen for sequential pattern mining.

Fig. 4. Execution times (GEN1 dataset)

To evaluate performance of the proposed pattern filtering method, in the second series
of experiments we measured the execution time for different number of frequent
patterns and various minimp thresholds. The collections of sequential patterns were
generated from the GEN1 dataset using different minimum support thresholds varying
from 0.6% to 10%. Figure 4 presents the execution times of the pruning procedure for
different numbers of discovered sequential patterns. Each of the presented execution
times is an average over a series of executions for a number of different values of
minimp.

The chart confirms that processing time of the pruning procedure is proportional to
the square of the number of patterns, and shows that even for a few thousands of
discovered patterns the procedures completes in a fraction of a second which makes it
appropriate for interactive use. Comparing the time needed to filter the patterns
according to minimp using our algorithm to the time needed to discover the patterns
using GSP (not reported here) for dataset GEN1 and minimum support thresholds
varying from 0.6% to 10%, we observed that the execution time of our pruning
procedure was always less than 1% of the execution time of GSP.

6 Concluding Remarks

In this paper we addressed the problem of reducing the number of discovered
sequential patterns presented to the user. The paper has two following contributions.
Firstly, we defined a new measure of sequential patterns’ interestingness, called
improvement, as an adaptation of an analogous measure previously proposed for
association rules. Secondly, we discussed possible strategies of using the new
improvement measure to prune the collection of discovered sequential patterns, and
proposed a post-processing algorithm, which handles selection of closed and maximal
sequential patterns as two extreme cases.

The experiments show that the proposed method can significantly reduce the
number of sequential patterns, according to user’s needs, and offers satisfactory
efficiency to be used in interactive data mining environments.

In the paper, we have not considered integration of pruning according to the
minimum improvement threshold into sequential pattern mining algorithms. We
strongly believe that the proposed pruning criterion is best suited for post-processing,
allowing a user to interactively adjust the number of presented patterns from the set of
discovered patterns.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining (1996)

3. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. 11th ICDE Conf. (1995)
4. Bayardo R.J., Agrawal R., Gunopulos D.: Constraint-based rule mining in large, dense

databases. Proceedings of the 15th International Conference on Data Engineering (1999)
5. Garofalakis M., Rastogi R., Shim K.: SPIRIT: Sequential Pattern Mining with Regular

Expression Constraints. Proceedings of 25th VLDB Conference (1999)
6. Pasquier N., Bastide Y., Taouil R., Lakhal L.: Discovering frequent closed itemsets for

association rules. Proc. 7th Int’l Conf. On Database Theory (1999)

7. Pei J., Han J., Wang W.: Mining sequential patterns with constraints in large databases.
Proceedings of the 11th International Conference on Information and knowledge
management (2002)

8. Pei J., Dong G., Zou W., Han J.: Mining Condensed Frequent-Pattern Bases. Proceedings of
the IEEE 2002 International Conference on Data Mining (2002)

9. Pei J., Han J., Mortazavi-Asl B., Pinto H., Chen Q., Dayal U., Hsu M-C.: PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proceedings of
the 17th International Conference on Data Engineering (2001)

10. Pudi V., Haritsa J.R.: Generalized Closed Itemsets for Association Rule Mining.
Proceedings of the 19th International Conference on Data Engineering (2003)

11. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. Proc. of the 5th EDBT Conference (1996)

12.Toivonen H., Klemettinen M., Ronkainen P., Hätönen K., Mannila H.: Pruning and
grouping discovered association rules. MLnet Workshop on Statistics, Machine Learning,
and Discovery in Databases (1995)

13. Wojciechowski M.: Interactive Constraint-Based Sequential Pattern Mining. Proceedings of
the 5th East European Conference on Advances in Databases and Information Systems
(2001)

14. Yan X., Han J., Afshar R.: CloSpan: Mining closed sequential patterns in large datasets.
Proceedings of SIAM Int. Conf. on Data Mining (2003)

