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Abstract. Discovery of frequent itemsets is a very important data mining 
problem with numerous applications. Frequent itemset mining is often regarded 
as advanced querying where a user specifies the source dataset and pattern 
constraints using a given constraint model. A significant amount of research on 
frequent itemset mining has been done so far, focusing mainly on developing 
faster complete mining algorithms, efficient constraint handling, and reusing 
results of previous queries. Recently, a new problem of optimizing processing 
of batches of frequent itemset queries has been considered and two multiple 
query optimization techniques for frequent itemset queries: Common Counting 
and Mine Merge have been proposed. Mine Merge does not depend on a 
particular mining algorithm, while Common Counting has been specifically 
designed to work with Apriori. Nevertheless, in previous works the efficiency 
of Mine Merge was tested only on Apriori, and it is unclear how it would 
perform with newer pattern-growth algorithms like FP-growth. In this paper we 
adapt the Common Counting method to work with FP-growth and evaluate 
efficiency of both methods when FP-growth is used as a basic mining 
algorithm. 

1   Introduction 

Discovery of frequent itemsets [1] is a very important data mining problem with 
numerous practical applications. Informally, frequent itemsets are subsets frequently 
occurring in a collection of sets of items. Frequent itemsets are typically used to 
generate association rules. However, since generation of rules is a rather 
straightforward task, the focus of researchers has been mostly on optimizing the 
frequent itemset discovery step.  

Many frequent itemset mining algorithms have been developed. The two most 
prominent classes of algorithms are Apriori-like and pattern-growth methods. Apriori-
like solutions, represented by a classic Apriori algorithm [3], perform a breadth-first 
search of the pattern space. Apriori starts with discovering frequent itemsets of size 1, 
and then iteratively generates candidates from previously found smaller frequent 
itemsets and counts their occurrences in a database scan. The problems identified with 
Apriori are: (1) multiple database scans, and (2) huge number of candidates generated 
for dense datasets and/or low frequency threshold (minimum support). 



To address the limitations of Apriori-like methods, a novel mining paradigm has 
been proposed, called pattern-growth [8], which consists in a depth-first search of the 
pattern space. Pattern-growth methods also build larger frequent sets from smaller 
ones but instead of candidate generation and testing, they exploit the idea of database 
projections. Typically, pattern-growth methods start with transforming the original 
database into some complex data structure, preferably fitting into main memory. A 
classic example of the pattern-growth family of algorithms is FP-growth [9], which 
transforms a database into FP-tree stored in main memory using just 2 database scans, 
and then performs mining on that optimized FP-tree structure. 

Frequent pattern mining is often regarded as advanced querying where a user 
specifies the source dataset, the minimum support threshold, and optionally pattern 
constraints within a given constraint model [10]. A significant amount of research on 
efficient processing of frequent pattern queries has been done in recent years, 
focusing mainly on constraint handling and reusing results of previous queries in the 
context of frequent itemsets and sequential patterns.  

In this paper we consider the problem of optimizing batches of frequent itemset 
queries. In previous works, two multiple query optimization techniques for frequent 
itemset queries: Common Counting [19] and Mine Merge [21] have been proposed. 
Mine Merge does not depend on a particular mining algorithm, while Common 
Counting has been specifically designed to work with Apriori. Adaptation of 
Common Counting to other mining paradigms has not been considered so far. 
Similarly, although Mine Merge works with any frequent itemset mining algorithm, 
its efficiency has been evaluated and reported only for Apriori, and it is unclear how it 
would perform with newer pattern-growth algorithms like FP-growth. In this paper 
we adapt the Common Counting method to work with FP-growth and evaluate 
efficiency of both methods when FP-growth is used as a basic mining algorithm. 

1.1   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (see [18] for an overview). The idea was to identify common subexpressions 
and construct a global execution plan minimizing the overall processing time by 
executing the common subexpressions only once for the set of queries [4][11][16]. 
Data mining queries could also benefit from this general strategy, however, due to 
their different nature they require novel multiple-query processing methods. 

To the best of our knowledge, the only two multiple-query processing methods for 
data mining queries are Common Counting and Mine Merge, mentioned above. 
Recently, the need for multiple-query optimization has been postulated in the 
somewhat related research area of inductive logic programming, where a technique 
based on similar ideas as Common Counting has been proposed, consisting in 
combining similar queries into query packs [6]. 

As an introduction to multiple data mining query optimization, we can regard 
techniques of reusing intermediate or final results of previous queries to answer a new 
query. Methods falling into that category that have been studied in the context of 
frequent itemset discovery are: incremental mining [7], caching intermediate query 
results [15], and reusing materialized complete [5][13][14] or condensed [12] results 



of previous queries provided that syntactic differences between the queries satisfy 
certain conditions.  

1.2   Organization of the paper 

The paper is organized as follows. In Section 2 we review basic definitions regarding 
frequent itemset mining and we briefly describe the FP-growth algorithm. Section 3 
contains basic definitions regarding frequent pattern queries and presents the 
Common Counting and Mine Merge multiple-query optimization techniques. In 
Section 4 we discuss the method of incorporating the idea of Common Counting into 
the pattern-growth mining paradigm, represented by the FP-growth algorithm. 
Section 5 presents experimental results. Section 6 contains conclusions and directions 
for future work.  

2   Frequent Itemset Mining and Review of FP-Growth 

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets, 
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T. 
We say that an itemset T supports an itemset X⊆L if T supports every item in the set 
X. The support of the itemset X is the percentage of T in D that support X. The 
problem of mining frequent itemsets in D consists in discovering all itemsets whose 
support is above a user-defined minimum support threshold minsup.  

 
FP-growth. The initial phase of FP-growth is the construction of a memory structure 
called FP-tree. FP-tree is a highly compact representation of the original database (in 
particular for so-called dense datasets), which is assumed to fit into the main memory 
(a scalable, disk-based version of FP-tree has also been proposed). FP-tree contains 
only frequent items, each transaction has a corresponding path in the tree, and 
transactions having a common prefix share the common starting fragment of their 
paths. The procedure of creating an FP-tree requires two database scans: one to 
discover frequent items and their counts, and second to build the tree by adding 
transactions to it one by one. 

After an FP-tree is built, the actual FP-growth procedure is recursively applied to 
it, which discovers all frequent itemsets in a depth-first manner by exploring 
projections (conditional FP-trees) of the tree with respect to frequent prefixes found 
so far. It should be noted that after the FP-tree is created, the original database is not 
scanned anymore, and therefore the whole mining process requires exactly two 
database scans. 

The FP-growth algorithm is formally presented in Fig. 1, together with its initial 
tree-building phase (the details can be found in [9]). 

 



Input: database D, minimum support threshold minsup 
Output: the complete set of frequent patterns 
Method: 
1. scan D to discover frequent items and their counts 
2. create the root of FP-tree labeled as null 
3. scan D and add each transaction to FP-tree (omitting non-frequent items) 
4. call FP-growth(FP-tree, null) 
 
procedure FP-growth(FP-tree, α) { 
   if FP-tree contains a single path P  
   then for each combination β of nodes in P do 
      generate frequent itemset β∪α  
      with support(β∪α,D)= min support of nodes in β; 
   else for each ai in header table of FP-tree do { 
      generate frequent itemset β = ai∪α  
      with support(β,D) = support(ai,D); 
      construct β's conditional pattern base and 
      β's conditional FP-treeβ; 
      if FP-treeβ ≠ ∅ then FP-growth(FP-treeβ,β); 
} 
 

Fig. 1. FP-growth algorithm 

3   Multiple Query Optimization for Frequent Itemset Queries  

In this section, we review the definitions of a frequent itemset query and an 
elementary data selection predicate, which are used by the considered multiple-query 
optimization methods: Common Counting and Mine Merge, and next we describe the 
methods themselves. 

3.1   Frequent itemset query and its predicates 

A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β), where R is a relation, a is an 
attribute of R, Σ is a condition involving the attributes of R (called database 
predicate), Φ is a condition involving discovered patterns (called pattern predicate), 
β is the minimum support threshold. The result of the dmq is a set of frequent itemsets 
(patterns) discovered in πaσΣR, satisfying Φ, and having support ≥ β. 

 
Example. Given the database relation R1(a1, a2), where a2 is a set-valued attribute and 
a1 is of integer type. The frequent pattern query dmq1 = (R1, "a2", "a1>5", 
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-



valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3% 
and length less than 4 are discovered in the collection of records having a1>5. 

3.2   Elementary data selection predicates 

The set S={s1, s2 ,..., sk} of data selection predicates over the attribute a or the relation 
R is a set of elementary data selection predicates for a set of frequent itemset queries 
DMQ if for all i,j we have σsiR∩σsjR =∅ and for each i there exist integers a, b, ..., m 
such that σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2). 
 
 

 

dmq1 

dmq2 

l1
1min l1

1max l1
2min l1

2max 

l2
1min l2

1max 

R 

s1 

s2 

s3 

s4 

s5 

S 

 
 

Fig. 2. Example set of frequent itemset queries and their elementary data selection predicates 

Example. Given the relation R1=(attr1, attr2) and three data mining queries: 
dmq1=(R1, "attr2", "5 <attr1<20", ∅, 3), dmq2=(R1, "attr2", "0<attr1<15", ∅, 5), 
dmq3=(R1, "attr2", "5<attr1<15 or 30<attr1<40", ∅, 4). The set of elementary data 
selection predicates is then S={s1="0<attr1<5", s2="5<attr1<15", s3="15<attr1<20", 
s4="30<attr1<40"}.  

3.3   Common Counting 

The Common Counting method was developed for the Apriori algorithm and is based 
on the observation that when two or more different queries count their candidate 
itemsets in the same part of the database, only one scan of the common part of the 
database is required. During that scan, candidates generated by all the queries 
referring to that part of the database are counted. The Common Counting method in 
the context of Apriori algorithm for two concurrent queries (denoted as dmqA and 
dmqB) is presented in Fig. 3 (generalization of the algorithm to support more than two 



frequent itemset queries is straightforward). DA and DB denote parts of the database 
read by dmqA and dmqB respectively. 

 
 C1

A = {all 1-itemsets from DA} 
C1

B = {all 1-itemsets from DB} 
for (k=1; Ck

A ∪ Ck
B ≠ ∅; k++)  

            if Ck
A ≠ ∅ count(Ck

A, DA - DB); 
            if Ck

B ≠ ∅ count(Ck
B, DB - DA); 

            count(Ck
A ∪ Ck

B, DA ∩ DB); 
 Lk

A = {c ∈ Ck
A | c.count ≥ minsupA}; 

 Lk
B = {c ∈ Ck

B | c.count ≥ minsupB}; 
 Ck+1

A = generate_candidates(Lk
A); 

 Ck+1
B = generate_candidates(Lk

B); 
Answer(dmqA) = UkLk

A; 
Answer(dmqB) = UkLk

B; 

Fig. 3. Apriori Common Counting method 

During the integrated counting, the candidates from all the frequent itemset queries 
are loaded into the main memory. Next, the database is scanned and for each itemset 
from the database the supported candidate counters for all the relevant queries are 
incremented. If the candidates of all the queries do not fit into memory, the counting 
process is divided into phases, and queries are scheduled into phases so that an overall 
I/O cost is minimized [20][22]. 

3.4   Mine Merge 

Mine Merge employs the property that for a database divided into a set of disjoint 
partitions, an itemset which is frequent in a whole database, must also be frequent in 
at least one partition of it [17]. Mine Merge first generates a set of intermediate data 
mining queries, in which each data mining query is based on a single elementary 
selection predicate only. The intermediate data mining queries are derived from those 
original data mining queries that are sharing a given elementary selection predicate. 
Next, the intermediate data mining queries are executed sequentially using any 
frequent itemset mining algorithm and then their results are merged to form global 
candidates for the original data mining queries. Finally, a database scan is performed 
to count the global candidate supports and to answer the original data mining queries. 
The pseudocode of the Mine Merge algorithm is shown in Fig. 4. 
 



/* Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...} */ 
IDMQ ←∅ 
for each sj∈S do begin       
   Q ← {dmqi∈DMQ | (dmqi,sj)∈E} 
   intermediate_β ← min{βi |  dmqi=(R, a, si, Φi, βi)∈Q} 
   intermediate_Φ ←Φ1∨ Φ2 ∨ ... ∨ Φ|Q|, ∀i=1..|Q|,  dmqi=(R, a, si, Φi, βi)∈Q 
   IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β) 

     end 
/* Execute intermediate data mining queries */ 
     for each idmqi ∈ IDMQ do  

  IFi ← execute(idmqi) 
/* Generate results for original data mining queries DMQ = {dmq1, dmq2, ...} */ 
     for each dmqi∈ DMQ do 
         Ci ← {c∈ Uk IFk , (dmqi,sk)∈E, c.count ≥ βi} 

for each sj∈S do begin       
      CC ← UCl: (dmql,sj)∈E; /* select the candidates to count now */ 
      if CC≠∅ then count(CC, σsjR); 
end 
for (i=1; i<=n; i++) do 
    Answeri ← {c ∈ Ci | c.count ≥ βi}   /* generate responses */ 
 

Fig. 4. Mine Merge method 

4   Mine Merge and Common Counting for FP-growth 

Mine Merge can be applied to FP-growth without modifications, as it is independent 
of the mining algorithm used to execute intermediate queries. However, its 
applicability to algorithms other than Apriori has to be evaluated. This is definitely 
true for FP-growth, representing a pattern-growth family of algorithms, fundamentally 
different from Apriori. FP-growth requires only exactly two database scans, which 
makes it difficult for Mine Merge to compensate the cost of its extra database scan 
with the reduction of I/O thanks to query overlapping. 

On the other hand, Common Counting as formulated in [19] for Apriori cannot be 
applied directly to FP-growth because FP-growth does not perform candidate 
counting. However, we can exploit the general idea of Common Counting, which is 
integration of operations performed by a set of queries during the scan of the common 
part of the dataset. In case of FP-growth, the database is scanned 2 times (during the 
FP-tree building phase), and these two scans can be integrated for the collection of 
queries for which FP-trees are to be built. Thus, Common Counting in the context of 
FP-growth consists in concurrent building of FP-trees in main memory for a batch of 
queries. The Common Counting method in the context of FP-growth for two 
concurrent queries: dmqA and dmqB can be formalized as presented in Fig. 5. 
Common Counting takes place only during the tree-building step, the FP-growth 
recursive procedure is not affected by Common Counting. 

 



1. scan D to discover frequent items for DA and DB 

2. create the root of FP-treeA labeled as null 
3. create the root of FP-treeB labeled as null 

4. scan DA - DB and add each transaction to FP-treeA 

   (omitting items not frequent in DA) 
5. scan DA ∩ DB and add each transaction to both FP-treeA and FP-treeB  
    (omitting items not frequent in DA or DB respectively) 
6. scan DB – DA and add each transaction to FP-treeB 

   (omitting items not frequent in DB) 
7. call FP-growth(FP-treeA, null) 
8. call FP-growth(FP-treeB, null) 
 

Fig. 5. Common Counting with FP-growth 

5   Experimental Results 

In order to evaluate performance of Common Counting and Mine Merge using FP-
growth as a basic mining algorithm, we performed several experiments using two 
synthetic datasets generated with GEN [2]. The first dataset (denoted as GEN1) 
contained 50000 transactions, 1000 different items, and the average number of items 
in a transaction was 5. In the second dataset (denoted as GEN2) there were 50000 
transactions built from 10000 different items, and the average number of items in a 
transaction was also 5. The experiments were conducted on a PC with AMD Athlon 
2200+ 1.8 GHz processor and 256 MB of main memory. The datasets used in all 
experiments resided in flat files on a local disk.  

In the experiments we varied the minimum support threshold and the overlapping 
between the queries. Figures 6 and 7 present the execution times for Mine Merge 
(MM), Common Counting (CC), and sequential processing (STD) of two queries 
using FP-growth, for datasets GEN1 and GEN2 respectively. For both datasets the 
level of overlapping varied from 0% to 100%, and three values of support threshold 
have been used. We also experimented with sets of three queries, obtaining consistent 
results.  

The experiments show that Common Counting for FP-growth reduces the overall 
processing time if any overlapping between queries’ datasets occurs (the same was 
true for Apriori as reported in [19]). However, Mine Merge to outperform sequential 
processing with FP-growth required the overlapping of at least about 70%, and still 
was beaten by Common Counting in each tested case. Comparing these results with 
the ones reported for Apriori in [21], we observe that using FP-growth, Mine Merge 
requires much more significant overlapping between the queries and exhibits worse 
relative performance to Common Counting than in case of Apriori. This can be 
explained by the fact that FP-growth uses only 2 database scans, which is much fewer 
then in typical scenarios with Apriori, and therefore for FP-growth Mine Merge needs 
more I/O reduction during the integrated scans to compensate the extra scan of 
database that it performs after collecting results of intermediate queries. 
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Fig. 6. Execution times for Common Counting, Mine Merge, and sequential processing,  
using FP-growth for 2 overlapping queries (dataset GEN1) 
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Fig. 7. Execution times for Common Counting, Mine Merge, and sequential processing,  
using FP-growth for 2 overlapping queries (dataset GEN2) 



6   Conclusions 

In this paper we addressed the problem of multiple data mining query optimization for 
frequent itemset queries using Common Counting and Mine Merge methods. The 
methods reduce the I/O cost for a batch of queries by identifying common execution 
tasks and executing them only once for the whole batch.  

The contributions of this paper are: (1) adaptation of Common Counting, originally 
designed for Apriori, to work with FP-growth, and (2) experimental evaluation of 
Common Counting and Mine Merge using FP-growth as a basic mining algorithm. 
We have shown that the general idea of Common Counting, which is integration of 
operations performed by a set of queries during the scan of the common part of the 
dataset, can be carried over to FP-growth, however the implementation details are 
different for Apriori and FP-growth. 

The experiments show that Common Counting for FP-growth reduces the overall 
processing time if any overlapping between queries’ datasets occurs (the same was 
true for Apriori). On the other hand, Mine Merge to be successful with FP-growth 
requires much more significant overlapping between the queries than in case of 
Apriori.  

Since the size of memory structures used by FP-growth may limit the possibility of 
applying Common Counting in practice, and efficiency of Mine Merge for FP-growth 
is not satisfactory, there is definitely a need for novel multiple-query optimization 
techniques for pattern-growth methods, which will be the subject of our future 
research. Another interesting direction of future research may be multiple data mining 
query optimization in case of condensed representations of frequent itemsets. 
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