
Concurrent Processing of Frequent Itemset Queries
Using FP-Growth Algorithm

Marek Wojciechowski, Krzysztof Galecki, Krzysztof Gawronek

Poznan University of Technology
Institute of Computing Science

ul. Berdychowo, 60-965 Poznan, Poland
marek@cs.put.poznan.pl

Abstract. Discovery of frequent itemsets is a very important data mining
problem with numerous applications. Frequent itemset mining is often regarded
as advanced querying where a user specifies the source dataset and pattern
constraints using a given constraint model. A significant amount of research on
frequent itemset mining has been done so far, focusing mainly on developing
faster complete mining algorithms, efficient constraint handling, and reusing
results of previous queries. Recently, a new problem of optimizing processing
of batches of frequent itemset queries has been considered and two multiple
query optimization techniques for frequent itemset queries: Common Counting
and Mine Merge have been proposed. Mine Merge does not depend on a
particular mining algorithm, while Common Counting has been specifically
designed to work with Apriori. Nevertheless, in previous works the efficiency
of Mine Merge was tested only on Apriori, and it is unclear how it would
perform with newer pattern-growth algorithms like FP-growth. In this paper we
adapt the Common Counting method to work with FP-growth and evaluate
efficiency of both methods when FP-growth is used as a basic mining
algorithm.

1 Introduction

Discovery of frequent itemsets [1] is a very important data mining problem with
numerous practical applications. Informally, frequent itemsets are subsets frequently
occurring in a collection of sets of items. Frequent itemsets are typically used to
generate association rules. However, since generation of rules is a rather
straightforward task, the focus of researchers has been mostly on optimizing the
frequent itemset discovery step.

Many frequent itemset mining algorithms have been developed. The two most
prominent classes of algorithms are Apriori-like and pattern-growth methods. Apriori-
like solutions, represented by a classic Apriori algorithm [3], perform a breadth-first
search of the pattern space. Apriori starts with discovering frequent itemsets of size 1,
and then iteratively generates candidates from previously found smaller frequent
itemsets and counts their occurrences in a database scan. The problems identified with
Apriori are: (1) multiple database scans, and (2) huge number of candidates generated
for dense datasets and/or low frequency threshold (minimum support).

To address the limitations of Apriori-like methods, a novel mining paradigm has
been proposed, called pattern-growth [8], which consists in a depth-first search of the
pattern space. Pattern-growth methods also build larger frequent sets from smaller
ones but instead of candidate generation and testing, they exploit the idea of database
projections. Typically, pattern-growth methods start with transforming the original
database into some complex data structure, preferably fitting into main memory. A
classic example of the pattern-growth family of algorithms is FP-growth [9], which
transforms a database into FP-tree stored in main memory using just 2 database scans,
and then performs mining on that optimized FP-tree structure.

Frequent pattern mining is often regarded as advanced querying where a user
specifies the source dataset, the minimum support threshold, and optionally pattern
constraints within a given constraint model [10]. A significant amount of research on
efficient processing of frequent pattern queries has been done in recent years,
focusing mainly on constraint handling and reusing results of previous queries in the
context of frequent itemsets and sequential patterns.

In this paper we consider the problem of optimizing batches of frequent itemset
queries. In previous works, two multiple query optimization techniques for frequent
itemset queries: Common Counting [19] and Mine Merge [21] have been proposed.
Mine Merge does not depend on a particular mining algorithm, while Common
Counting has been specifically designed to work with Apriori. Adaptation of
Common Counting to other mining paradigms has not been considered so far.
Similarly, although Mine Merge works with any frequent itemset mining algorithm,
its efficiency has been evaluated and reported only for Apriori, and it is unclear how it
would perform with newer pattern-growth algorithms like FP-growth. In this paper
we adapt the Common Counting method to work with FP-growth and evaluate
efficiency of both methods when FP-growth is used as a basic mining algorithm.

1.1 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (see [18] for an overview). The idea was to identify common subexpressions
and construct a global execution plan minimizing the overall processing time by
executing the common subexpressions only once for the set of queries [4][11][16].
Data mining queries could also benefit from this general strategy, however, due to
their different nature they require novel multiple-query processing methods.

To the best of our knowledge, the only two multiple-query processing methods for
data mining queries are Common Counting and Mine Merge, mentioned above.
Recently, the need for multiple-query optimization has been postulated in the
somewhat related research area of inductive logic programming, where a technique
based on similar ideas as Common Counting has been proposed, consisting in
combining similar queries into query packs [6].

As an introduction to multiple data mining query optimization, we can regard
techniques of reusing intermediate or final results of previous queries to answer a new
query. Methods falling into that category that have been studied in the context of
frequent itemset discovery are: incremental mining [7], caching intermediate query
results [15], and reusing materialized complete [5][13][14] or condensed [12] results

of previous queries provided that syntactic differences between the queries satisfy
certain conditions.

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we review basic definitions regarding
frequent itemset mining and we briefly describe the FP-growth algorithm. Section 3
contains basic definitions regarding frequent pattern queries and presents the
Common Counting and Mine Merge multiple-query optimization techniques. In
Section 4 we discuss the method of incorporating the idea of Common Counting into
the pattern-growth mining paradigm, represented by the FP-growth algorithm.
Section 5 presents experimental results. Section 6 contains conclusions and directions
for future work.

2 Frequent Itemset Mining and Review of FP-Growth

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets,
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T.
We say that an itemset T supports an itemset X⊆L if T supports every item in the set
X. The support of the itemset X is the percentage of T in D that support X. The
problem of mining frequent itemsets in D consists in discovering all itemsets whose
support is above a user-defined minimum support threshold minsup.

FP-growth. The initial phase of FP-growth is the construction of a memory structure
called FP-tree. FP-tree is a highly compact representation of the original database (in
particular for so-called dense datasets), which is assumed to fit into the main memory
(a scalable, disk-based version of FP-tree has also been proposed). FP-tree contains
only frequent items, each transaction has a corresponding path in the tree, and
transactions having a common prefix share the common starting fragment of their
paths. The procedure of creating an FP-tree requires two database scans: one to
discover frequent items and their counts, and second to build the tree by adding
transactions to it one by one.

After an FP-tree is built, the actual FP-growth procedure is recursively applied to
it, which discovers all frequent itemsets in a depth-first manner by exploring
projections (conditional FP-trees) of the tree with respect to frequent prefixes found
so far. It should be noted that after the FP-tree is created, the original database is not
scanned anymore, and therefore the whole mining process requires exactly two
database scans.

The FP-growth algorithm is formally presented in Fig. 1, together with its initial
tree-building phase (the details can be found in [9]).

Input: database D, minimum support threshold minsup
Output: the complete set of frequent patterns
Method:
1. scan D to discover frequent items and their counts
2. create the root of FP-tree labeled as null
3. scan D and add each transaction to FP-tree (omitting non-frequent items)
4. call FP-growth(FP-tree, null)

procedure FP-growth(FP-tree, α) {
 if FP-tree contains a single path P
 then for each combination β of nodes in P do
 generate frequent itemset β∪α
 with support(β∪α,D)= min support of nodes in β;
 else for each ai in header table of FP-tree do {
 generate frequent itemset β = ai∪α
 with support(β,D) = support(ai,D);
 construct β's conditional pattern base and
 β's conditional FP-treeβ;
 if FP-treeβ ≠ ∅ then FP-growth(FP-treeβ,β);
}

Fig. 1. FP-growth algorithm

3 Multiple Query Optimization for Frequent Itemset Queries

In this section, we review the definitions of a frequent itemset query and an
elementary data selection predicate, which are used by the considered multiple-query
optimization methods: Common Counting and Mine Merge, and next we describe the
methods themselves.

3.1 Frequent itemset query and its predicates

A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, β), where R is a relation, a is an
attribute of R, Σ is a condition involving the attributes of R (called database
predicate), Φ is a condition involving discovered patterns (called pattern predicate),
β is the minimum support threshold. The result of the dmq is a set of frequent itemsets
(patterns) discovered in πaσΣR, satisfying Φ, and having support ≥ β.

Example. Given the database relation R1(a1, a2), where a2 is a set-valued attribute and
a1 is of integer type. The frequent pattern query dmq1 = (R1, "a2", "a1>5",
"|itemset|<4", 3%) describes the problem of discovering frequent itemsets in the set-

valued attribute a2 of the relation R1. The frequent itemsets with support of at least 3%
and length less than 4 are discovered in the collection of records having a1>5.

3.2 Elementary data selection predicates

The set S={s1, s2 ,..., sk} of data selection predicates over the attribute a or the relation
R is a set of elementary data selection predicates for a set of frequent itemset queries
DMQ if for all i,j we have σsiR∩σsjR =∅ and for each i there exist integers a, b, ..., m
such that σΣiR=σsaR∪σsbR∪..∪σsmR (example in Fig. 2).

dmq1

dmq2

l1
1min l1

1max l1
2min l1

2max

l2
1min l2

1max

R

s1

s2

s3

s4

s5

S

Fig. 2. Example set of frequent itemset queries and their elementary data selection predicates

Example. Given the relation R1=(attr1, attr2) and three data mining queries:
dmq1=(R1, "attr2", "5 <attr1<20", ∅, 3), dmq2=(R1, "attr2", "0<attr1<15", ∅, 5),
dmq3=(R1, "attr2", "5<attr1<15 or 30<attr1<40", ∅, 4). The set of elementary data
selection predicates is then S={s1="0<attr1<5", s2="5<attr1<15", s3="15<attr1<20",
s4="30<attr1<40"}.

3.3 Common Counting

The Common Counting method was developed for the Apriori algorithm and is based
on the observation that when two or more different queries count their candidate
itemsets in the same part of the database, only one scan of the common part of the
database is required. During that scan, candidates generated by all the queries
referring to that part of the database are counted. The Common Counting method in
the context of Apriori algorithm for two concurrent queries (denoted as dmqA and
dmqB) is presented in Fig. 3 (generalization of the algorithm to support more than two

frequent itemset queries is straightforward). DA and DB denote parts of the database
read by dmqA and dmqB respectively.

 C1

A = {all 1-itemsets from DA}
C1

B = {all 1-itemsets from DB}
for (k=1; Ck

A ∪ Ck
B ≠ ∅; k++)

 if Ck
A ≠ ∅ count(Ck

A, DA - DB);
 if Ck

B ≠ ∅ count(Ck
B, DB - DA);

 count(Ck
A ∪ Ck

B, DA ∩ DB);
 Lk

A = {c ∈ Ck
A | c.count ≥ minsupA};

 Lk
B = {c ∈ Ck

B | c.count ≥ minsupB};
 Ck+1

A = generate_candidates(Lk
A);

 Ck+1
B = generate_candidates(Lk

B);
Answer(dmqA) = UkLk

A;
Answer(dmqB) = UkLk

B;

Fig. 3. Apriori Common Counting method

During the integrated counting, the candidates from all the frequent itemset queries
are loaded into the main memory. Next, the database is scanned and for each itemset
from the database the supported candidate counters for all the relevant queries are
incremented. If the candidates of all the queries do not fit into memory, the counting
process is divided into phases, and queries are scheduled into phases so that an overall
I/O cost is minimized [20][22].

3.4 Mine Merge

Mine Merge employs the property that for a database divided into a set of disjoint
partitions, an itemset which is frequent in a whole database, must also be frequent in
at least one partition of it [17]. Mine Merge first generates a set of intermediate data
mining queries, in which each data mining query is based on a single elementary
selection predicate only. The intermediate data mining queries are derived from those
original data mining queries that are sharing a given elementary selection predicate.
Next, the intermediate data mining queries are executed sequentially using any
frequent itemset mining algorithm and then their results are merged to form global
candidates for the original data mining queries. Finally, a database scan is performed
to count the global candidate supports and to answer the original data mining queries.
The pseudocode of the Mine Merge algorithm is shown in Fig. 4.

/* Generate intermediate data mining queries IDMQ = {idmq1, idmq2, ...} */
IDMQ ←∅
for each sj∈S do begin
 Q ← {dmqi∈DMQ | (dmqi,sj)∈E}
 intermediate_β ← min{βi | dmqi=(R, a, si, Φi, βi)∈Q}
 intermediate_Φ ←Φ1∨ Φ2 ∨ ... ∨ Φ|Q|, ∀i=1..|Q|, dmqi=(R, a, si, Φi, βi)∈Q
 IDMQ ← IDMQ ∪ idmqj=(R, a, sj, intermediate_Φ, intermediate_β)

 end
/* Execute intermediate data mining queries */
 for each idmqi ∈ IDMQ do

 IFi ← execute(idmqi)
/* Generate results for original data mining queries DMQ = {dmq1, dmq2, ...} */
 for each dmqi∈ DMQ do
 Ci ← {c∈ Uk IFk , (dmqi,sk)∈E, c.count ≥ βi}

for each sj∈S do begin
 CC ← UCl: (dmql,sj)∈E; /* select the candidates to count now */
 if CC≠∅ then count(CC, σsjR);
end
for (i=1; i<=n; i++) do
 Answeri ← {c ∈ Ci | c.count ≥ βi} /* generate responses */

Fig. 4. Mine Merge method

4 Mine Merge and Common Counting for FP-growth

Mine Merge can be applied to FP-growth without modifications, as it is independent
of the mining algorithm used to execute intermediate queries. However, its
applicability to algorithms other than Apriori has to be evaluated. This is definitely
true for FP-growth, representing a pattern-growth family of algorithms, fundamentally
different from Apriori. FP-growth requires only exactly two database scans, which
makes it difficult for Mine Merge to compensate the cost of its extra database scan
with the reduction of I/O thanks to query overlapping.

On the other hand, Common Counting as formulated in [19] for Apriori cannot be
applied directly to FP-growth because FP-growth does not perform candidate
counting. However, we can exploit the general idea of Common Counting, which is
integration of operations performed by a set of queries during the scan of the common
part of the dataset. In case of FP-growth, the database is scanned 2 times (during the
FP-tree building phase), and these two scans can be integrated for the collection of
queries for which FP-trees are to be built. Thus, Common Counting in the context of
FP-growth consists in concurrent building of FP-trees in main memory for a batch of
queries. The Common Counting method in the context of FP-growth for two
concurrent queries: dmqA and dmqB can be formalized as presented in Fig. 5.
Common Counting takes place only during the tree-building step, the FP-growth
recursive procedure is not affected by Common Counting.

1. scan D to discover frequent items for DA and DB

2. create the root of FP-treeA labeled as null
3. create the root of FP-treeB labeled as null

4. scan DA - DB and add each transaction to FP-treeA

 (omitting items not frequent in DA)
5. scan DA ∩ DB and add each transaction to both FP-treeA and FP-treeB
 (omitting items not frequent in DA or DB respectively)
6. scan DB – DA and add each transaction to FP-treeB

 (omitting items not frequent in DB)
7. call FP-growth(FP-treeA, null)
8. call FP-growth(FP-treeB, null)

Fig. 5. Common Counting with FP-growth

5 Experimental Results

In order to evaluate performance of Common Counting and Mine Merge using FP-
growth as a basic mining algorithm, we performed several experiments using two
synthetic datasets generated with GEN [2]. The first dataset (denoted as GEN1)
contained 50000 transactions, 1000 different items, and the average number of items
in a transaction was 5. In the second dataset (denoted as GEN2) there were 50000
transactions built from 10000 different items, and the average number of items in a
transaction was also 5. The experiments were conducted on a PC with AMD Athlon
2200+ 1.8 GHz processor and 256 MB of main memory. The datasets used in all
experiments resided in flat files on a local disk.

In the experiments we varied the minimum support threshold and the overlapping
between the queries. Figures 6 and 7 present the execution times for Mine Merge
(MM), Common Counting (CC), and sequential processing (STD) of two queries
using FP-growth, for datasets GEN1 and GEN2 respectively. For both datasets the
level of overlapping varied from 0% to 100%, and three values of support threshold
have been used. We also experimented with sets of three queries, obtaining consistent
results.

The experiments show that Common Counting for FP-growth reduces the overall
processing time if any overlapping between queries’ datasets occurs (the same was
true for Apriori as reported in [19]). However, Mine Merge to outperform sequential
processing with FP-growth required the overlapping of at least about 70%, and still
was beaten by Common Counting in each tested case. Comparing these results with
the ones reported for Apriori in [21], we observe that using FP-growth, Mine Merge
requires much more significant overlapping between the queries and exhibits worse
relative performance to Common Counting than in case of Apriori. This can be
explained by the fact that FP-growth uses only 2 database scans, which is much fewer
then in typical scenarios with Apriori, and therefore for FP-growth Mine Merge needs
more I/O reduction during the integrated scans to compensate the extra scan of
database that it performs after collecting results of intermediate queries.

GEN1, minsup=1%

0
5000

10000
15000
20000
25000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

GEN1, minsup=2%

0

5000

10000

15000

20000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

GEN1, minsup=5%

0

5000

10000

15000

20000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

Fig. 6. Execution times for Common Counting, Mine Merge, and sequential processing,
using FP-growth for 2 overlapping queries (dataset GEN1)

GEN2, minsup=1%

0

5000

10000

15000

20000

25000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

GEN2, minsup=2%

0

5000

10000

15000

20000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

GEN2, minsup=5%

0

5000

10000

15000

20000

0 20 40 60 80 10
0

overlapping [%]

ti
m

e
[m

s] CC

MM

STD

Fig. 7. Execution times for Common Counting, Mine Merge, and sequential processing,
using FP-growth for 2 overlapping queries (dataset GEN2)

6 Conclusions

In this paper we addressed the problem of multiple data mining query optimization for
frequent itemset queries using Common Counting and Mine Merge methods. The
methods reduce the I/O cost for a batch of queries by identifying common execution
tasks and executing them only once for the whole batch.

The contributions of this paper are: (1) adaptation of Common Counting, originally
designed for Apriori, to work with FP-growth, and (2) experimental evaluation of
Common Counting and Mine Merge using FP-growth as a basic mining algorithm.
We have shown that the general idea of Common Counting, which is integration of
operations performed by a set of queries during the scan of the common part of the
dataset, can be carried over to FP-growth, however the implementation details are
different for Apriori and FP-growth.

The experiments show that Common Counting for FP-growth reduces the overall
processing time if any overlapping between queries’ datasets occurs (the same was
true for Apriori). On the other hand, Mine Merge to be successful with FP-growth
requires much more significant overlapping between the queries than in case of
Apriori.

Since the size of memory structures used by FP-growth may limit the possibility of
applying Common Counting in practice, and efficiency of Mine Merge for FP-growth
is not satisfactory, there is definitely a need for novel multiple-query optimization
techniques for pattern-growth methods, which will be the subject of our future
research. Another interesting direction of future research may be multiple data mining
query optimization in case of condensed representations of frequent itemsets.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data
Mining System. Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining (1996)

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

4. Alsabbagh J.R., Raghavan V.V.: Analysis of common subexpression exploitation models in
multiple-query processing. Proc. of the 10th ICDE Conference (1994)

5. Baralis E., Psaila G.: Incremental Refinement of Mining Queries. Proceedings of the 1st
DaWaK Conference (1999)

6. Blockeel H., Dehaspe L., Demoen B., Janssens G., Ramon J., Vandecasteele H.: Improving
the Efficiency of Inductive Logic Programming Through the Use of Query Packs, Journal of
Artificial Intelligence Research, Vol. 16 (2002)

7. Cheung D.W., Han J., Ng V., Wong C.Y.: Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique. Proc. of the 12th ICDE (1996)

8. Han J., Pei J.: Mining Frequent Patterns by Pattern-Growth: Methodology and Implications.
SIGKDD Explorations, December 2000 (2000)

9. Han J., Pei J., Yin Y.: Mining frequent patterns without candidate generation. Proc. of the
2000 ACM SIGMOD Conf. on Management of Data (2000)

10. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Communica-
tions of the ACM, Vol. 39, No. 11 (1996)

11. Jarke M.: Common subexpression isolation in multiple query optimization. Query
Processing in Database Systems, Kim W., Reiner D.S. (Eds.), Springer (1985)

12. Jeudy B., Boulicaut J-F.: Using condensed representations for interactive association rule
mining. Proceedings of the 6th European Conference on Principles and Practice of
Knowledge Discovery in Databases (2002)

13. Meo R.: Optimization of a Language for Data Mining. Proc. of the ACM Symposium on
Applied Computing - Data Mining Track (2003)

14. Morzy T., Wojciechowski M., Zakrzewicz M.: Materialized Data Mining Views. Proceed-
ings of the 4th PKDD Conference (2000)

15. Nag B., Deshpande P.M., DeWitt D.J.: Using a Knowledge Cache for Interactive Discovery
of Association Rules. Proc. of the 5th KDD Conference (1999)

16. Roy P., Seshadri S., Sundarshan S., Bhobe S.: Efficient and Extensible Algorithms for Multi
Query Optimization. ACM SIGMOD Intl. Conference on Management of Data (2000)

17. Savasere A., Omiecinski E., Navathe S.: An Efficient Algorithm for Mining Association
Rules in Large Databases. Proc. 21th Int’l Conf. Very Large Data Bases (1995)

18. Sellis T.: Multiple-query optimization. ACM Transactions on Database Systems, Vol. 13,
No. 1 (1988)

19. Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for Concur-
rent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

20. Wojciechowski M., Zakrzewicz M.: Data Mining Query Scheduling for Apriori Common
Counting. Proc. of the Sixth International Baltic Conference on Databases and Information
Systems (2004)

21. Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining
Query Processing. Proc. of the 8th ADBIS Conference (2004)

22. Wojciechowski M., Zakrzewicz M.: On Multiple Query Optimization in Data Mining. Proc.
of the 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining (2005)

