
Heuristic Scheduling of
Concurrent Data Mining Queries∗

Marek Wojciechowski, Maciej Zakrzewicz

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
{marek,mzakrz}@cs.put.poznan.pl

Abstract. Execution cost of batched data mining queries can be reduced by
integrating their I/O steps. Due to memory limitations, not all data mining
queries in a batch can be executed together. In this paper we introduce a
heuristic algorithm called CCFull, which suboptimally schedules the data
mining queries into a number of execution phases. The algorithm significantly
outperforms the optimal approach while providing a very good accuracy.

1 Introduction

Multiple Query Optimization (MQO) [8] is a database research area that focuses on
optimizing sets of queries together by executing their common expressions only once
in order to save query execution time. Many exhaustive and heuristic algorithms have
been proposed for traditional MQO [3][6][7]. A specific type of a database query is a
Data Mining Query (DMQ) [5], which describes a data mining task. It defines
constraints on the data to be mined and constraints on the patterns to be discovered.
DMQs are submitted for execution to a Knowledge Discovery Management System
KDDMS [5], which is a Database Management System (DBMS) extended with data
mining functionality. Traditional KDDMSs execute DMQs serially and do not try to
share any common expressions between different DMQs.

DMQs are often processed in batches of dozens of queries, executed during low
user activity time. Queries in a batch may show many similarities to each other, e.g.,
their source data sets may overlap. If such queries were executed serially, then it
would be likely that many I/O operations were wasted because the same database
blocks were required by multiple DMQs. If I/O steps of different DMQs were
integrated and performed once, then it would be possible to decrease the overall
execution cost and time of the whole batch. One of the methods to process batches of
DMQs is Apriori Common Counting (ACC) [9], focused on frequent itemset
discovery queries [1]. ACC is based on Apriori algorithm [2] and it integrates the
steps of candidate support counting – all candidate hash trees for multiple DMQs are
loaded into memory and the database is scanned only once. Basic ACC [9] assumes

∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for

Scientific Research (KBN), Poland.

that all DMQs fit in memory, which is not a common case, at least for initial Apriori
iterations. If the memory can hold only a subset of all DMQs, then it is necessary to
divide/schedule the DMQs into subsets called phases [10]. The way such scheduling
is done determines the overall cost of batched DMQs execution. To solve the
scheduling problem, in [10] we proposed an “initial” heuristic algorithm, called
CCRecursive. According to our experiments CCRecursive offers acceptable accuracy
and on average outperforms the optimal scheduling algorithm. However, in particular
situations its execution time could increase significantly due to its recursive nature,
which is the motivation for seeking novel, more predictable solutions. In this paper
we present and evaluate another heuristic algorithm for scheduling data mining
queries to be executed by ACC, called CCFull.

1.1 Related Work

Multiple-query optimization has been extensively studied in the context of database
systems (see e.g. [8]), however very little work has been done on optimizing sets of
data mining queries. To the best of our knowledge, apart from the ACC method
discussed in this paper, the only other multiple query processing scheme for data
mining queries is Mine Merge, presented in one of our previous papers [11]. In
contrast to ACC, Mine Merge is independent of a particular frequent itemset mining
algorithm. However, it was proven very sensitive to data distribution and less
predictable than ACC.

2 Preliminaries and Problem Statement

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ, β), where R
is a relation, a is an attribute of R, Σ is a condition involving the attributes of the
relation R, Φ is a condition involving discovered patterns, and β is the minimum
support threshold. The result of the data mining query is a set of patterns discovered
in πaσΣR and satisfying Φ.

Problem statement. Given is a set of data mining queries DMQ = {dmq1, dmq2, ...,
dmqn}, where dmqi = (R, a, Σi, Φi, βi), Σi has the form “(li

1min < a < li
1max) ∨ (li

2min < a <
li

2max) ∨..∨ (li
kmin < a < li

kmax)”, li
* ∈ dom(a) and there exist at least two data mining

queries dmqi = (R, a, Σi, Φi, βi) and dmqj = (R, a, Σj, Φj, βj) such that σΣiR ∩
∩ σΣjR ≠ ∅. The problem of multiple query optimization of DMQ consists in
generating such an algorithm to execute DMQ that has the lowest I/O cost.

Apriori Common Counting (ACC). If the set of data mining queries was executed
serially, i.e. one data mining query at a time, then the total execution cost would be
the sum of execution costs of data selection formulas for each data mining query
separately. ACC executes a set of data mining queries by integrating their I/O
operations. It is based on the traditional Apriori approach to discover frequent

itemsets. In the first step, for each data mining query we build a separate hash tree for
1-candidates. Next, for each distinct data selection formula we scan its corresponding
database partition and we count candidates for all the queries that contain the formula.
Such a step is performed for 2-candidates, 3-candidates, etc. Notice that if a given
distinct data selection formula is shared by many queries, then its corresponding
database partition is read only once. An overview of ACC is shown in Fig. 1.

for (i=1; i<=n; i++) /* n = number of data mining queries */
 C1

i = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E} /* generate 1-candidates */
for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin
 for each sj∈S do begin
 CC= UCk

l: (dmql,sj)∈E; /* select the candidates to count now */
 if CC≠ ∅ then count(CC, σsjR);
 end
 for (i=1; i<=n; i++) do begin
 Fk

i = {C ∈ Ck
i | C.count ≥ minsupi}; /* identify frequent itemsets */

 Ck+1
i = generate_candidates(Fk

i);
 end
end
for (i=1; i<=n; i++) do
 Answeri = UkFk

i; /* generate responses */

Fig. 1. Apriori Common Counting

3 Heuristic Scheduling of Concurrent Data Mining Queries

The basic ACC assumes unlimited memory and therefore the candidate hash trees for
all DMQs can completely fit in memory. If, however, the memory is limited, then
ACC execution must be divided into multiple phases, so that in each phase only a
subset of DMQs is processed. In such a case, the key question to answer is: which
data mining queries from the set should be executed together in one phase and which
data mining queries can be executed in different phases? We refer to the task of data
mining queries partitioning as to data mining query scheduling.

The problem of data mining query scheduling is a combinatorial problem which
can be solved by generating all possible schedules and then choosing the best one.
Such approach can be used for a small number of data mining queries, however, for a
realistic case it is infeasible. The number of all possible schedules is determined by
the Bell number, e.g., for 13 queries we get over 4 million schedules. Therefore, we
propose a heuristic algorithm CCFull, which quickly finds a suboptimal schedule.

3.1 Algorithm CCFull

In the first step we generate a gain graph for the set of data mining queries. The gain
graph is a full hypergraph, in which vertices represent the data mining queries while

edges are described with weights which represent the amount of I/O cost reduction to
be achieved if data mining queries connected with the edge were executed together (in
the same phase). If common execution of given data mining queries results in no
reduction of I/O cost, the weight of the connecting edge is zero. A sample gain graph
is shown in Fig. 2. For example, it can be noticed that common execution of the data
mining queries dmq0, dmq2, and dmq3 would reduce the total I/O cost by 16 units (the
weight of the connecting hyperedge) compared with the sequential execution, since
for dmq0 and dmq2 the cost of redundant I/O operations is 5 units, for dmq2 and dmq3
the cost of redundant I/O operations is 8 units, and for dmq0 and dmq3 the cost of
redundant I/O operations is 3 units. Using the same example, it can be also noticed,
that common execution of only the data mining queries dmq1 and dmq2 provides no
cost reduction (the weight of the connecting hyperedge is zero).

e0
23

e1
8 e3

15

e2

10

e4
16

e6
3

e5
5

e7
7

e8
8

e9
0

e10
3

dmq0

dmq1

dmq2

dmq3

Fig. 2. Sample gain graph

The gain graph can be generated using the algorithm GenerateGainGraph shown in
Fig. 3. The algorithm takes two arguments: the set of all distinct data selection
formulas and the set of all data mining queries. First, the algorithm builds a full
hypergraph whose nodes are the data mining queries (line 1). Each hyperedge
receives the weight of zero, initially (line 3). Then, for each hyperedge e, we create a
set P of distinct data selection formulas involved in all data mining queries connected
with the hyperedge e (line 4). I/O costs for executing the distinct data selection

formulas from P are then summarized and the result is assigned to the hyperedge e
weight (line 5 and 6).

1.
2.
3.
4.
5.
6.

7.

GenerateGainGraph(S, DMQ):
 begin
 generate a full hypergraph G={V,E}, V=DMQ
 for each e ∈ E do begin
 e.gain = 0;
 P = {si ∈ S | ∃ dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj }
 for each s ∈ P do begin
 e.gain += cost(s)*(|{ dmqj: dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj }| - 1)
 end
 end
 return G

 end

Fig. 3. Gain graph generation algorithm

After having created the gain graph, CCFull performs the following steps. All
hyperedges are sorted in descending order according to their weights. Next, CCFull
iterates over the hyperedges and checks if data mining queries connected with the
current hyperedge have been already scheduled. If none of the data mining queries
has been scheduled so far, and if their hash trees fit in memory, then a new phase is
generated and the data mining queries are assigned to it. Otherwise, if only some of
the data mining queries have been already scheduled to different phases, then CCFull
tries to combine all those phases together with the unscheduled data mining queries. If
such combined phase does not fit in memory, then the current hyperedge is ignored
and CCFull continues with the next one. The algorithm ends when all hyperedges are
processed. The algorithm CCFull is shown in Fig. 4.

The detailed steps of the algorithm from Fig. 4 are the following. In line (1) we
initialize the set of scheduled phases – we start with the empty set. In line (2) we sort
the list E of hyperedges from the gain graph. Hyperedges with weights equal to zero
are removed from the list. In line (3) a loop starts, which iterates over the list of
hyperedges. In line (4) we select all data mining queries which are connected with the
current hyperedge (tmpV). In line (5) we test if any of the selected data mining queries
belongs to any of the phases scheduled so far. If not, then in line (7) we create a new
candidate phase containing all the data mining queries from tmpV. Otherwise, in line
(9) we create a new candidate phase containing both all the data mining queries from
tmpV and data mining queries from earlier scheduled phases, to which any of the
tmpV data mining queries was also scheduled. In line (10) we check if hash trees of all
the data mining queries from the new candidate phase fit in memory (MEMSIZE is the
available memory size). If this condition is satisfied, then in lines (11) and (12) we
append the new candidate phase to the current set of scheduled phases Phases,
possibly replacing some of the existing phases (when multiple phases are combined).
In line (13), for each data mining query which has not been scheduled we create a
new phase. In step (14) we return the generated phases.

1.
2.
3.
4.
5.
6.
7.

8.
9.

10.
11.
12.

13.
14.

CCFull(G=(V,E)):
 begin
 Phases ← {∅}
 sort E = <ei , e2 ,..., ek> in desc. order w.r. to ei.gain, ignore edges with zero gains
 for each ei in E do begin
 tmpV ← {v∈ V | v ∈ ei }
 if (|{p ∈ Phases | p ∩ tmpV ≠ ∅}| = 0) then

 commonPhases ← ∅
 newPhase ← tmpV
 else

 commonPhases ← {p ∈ Phases | p∩ tmpV ≠ ∅}
 newPhase ← tmpV ∪ U p| p∈ commonPhases

 end if
 if (treesize(newPhase) ≤ MEMSIZE) then
 Phases ← Phases - commonPhases
 Phases ← Phases ∪ newPhase
 end if
 end
 add phase for each unscheduled query

 return Phases
 end

Fig. 4. CCFull algorithm

3.2 Example

Consider scheduling of data mining queries from Fig. 2. For the sake of simplicity,
assume that hash tree sizes are 10MB for each data mining query and the available
memory is 20MB.

Hyperedges of the gain graph are sorted according to their weights (skipping zero-
weighted hyperedges): <e0, e4, e3, e2, e1, e8, e7, e5, e6, e10>. In the first iteration we
select the hyperedge e0, which is connecting the data mining queries dmq0, dmq1,
dmq2 and dmq3. None of the data mining queries has been scheduled so far, and total
size of their hash trees is 40MB, exceeding the available memory. Therefore, the
algorithm ignores the hyperedge and starts another iteration.

In the second iteration we select the hyperedge e4, which is connecting the data
mining queries dmq0, dmq2 and dmq3. None of the data mining queries has been
scheduled so far, and total size of their hash trees is 30MB, exceeding the available
memory again. Therefore, the algorithm ignores the hyperedge and starts another
iteration. In a similar way the iterations over the hyperedges e3, e2 and e1 are
performed – total sizes of hash trees exceed the available memory.

Yet in the sixth iteration the algorithm will behave in a different way. We select the
hyperedge e8, which is connecting the data mining queries dmq2 and dmq3. The total
size of their hash trees is 20MB, so a new phase is created: {dmq2, dmq3}. In the next
iteration we select the hyperedge e7, which is connecting the data mining queries

dmq1 and dmq3. Since dmq3 already belongs to a scheduled phase, we try to replace
the existing phase {dmq2, dmq3} with a new one: {dmq1, dmq2, dmq3}. We are
unsuccessful because the total size of hash trees for the data mining queries is 30MB,
what exceeds the available memory. In the next iteration we select the hyperedge e5,
and again we are unsuccessful when trying to replace the existing phase {dmq2, dmq3}
with a new phase {dmq0, dmq2, dmq3}. The next iteration operates on the hyperedge
e6, which is connecting the data mining queries dmq0 and dmq1. These data mining
queries do not belong to any of the existing phases and total size of their hash trees is
20MB. Therefore, a new phase is created: {dmq0, dmq1}.

In the last iteration we select the hyperedge e10, which is connecting the data
mining queries dmq0 and dmq3. Since both data mining queries have already been
scheduled to some phases, the algorithm tries to combine the existing phases {dmq2,
dmq3} and {dmq0, dmq1}. However, the phases are not merged since the total size of
hash trees of their data mining queries is 40MB and exceeds the available memory.
The algorithm has completed. The constructed scheduling of the four data mining
queries consists of 2 phases: {dmq2, dmq3} and {dmq0, dmq1}.

4 Experimental Evaluation

In order to evaluate performance and accuracy of the CCFull scheduling algorithm we
performed several experiments using the MSWeb dataset from the UCI KDD Archive
[4]. The experiments were conducted on a PC with AMD Duron 1.2 GHz processor
and 256 MB of main memory. The datasets used in all experiments resided in flat
files on a local disk. Memory was intentionally restricted to 10kB-50kB. Each
experiment was repeated 100 times. The queries were randomly generated.

0,98

1,03

1,08

1,13

1,18

1,23

2 3 4 5 6 7 8 9 10 11

num. queries

n
um

. b
lo

ck
s

(r
el

a
tiv

e
)

CCFull

Optimal

Random

Fig. 5. Accuracy of data mining query

scheduling algorithms

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

3 4 5 6 7 8 9 10 11 12 13 14 15

num. queries

e
xe

cu
tio

n
 ti

m
e

 [s
]

CCFull

Optimal

Fig. 6. Execution time of data mining query
scheduling algorithms

Fig. 5 shows disk I/O costs of schedules generated by the optimal scheduling
algorithm, by the CCFull algorithm, and by a random algorithm (which randomly
builds phases from queries). For example, for the set of 10 data mining queries, the
CCFull algorithm misses the optimal solution by only 6%.

Fig. 6 illustrates execution times for the optimal scheduling algorithm and for
CCFull. Notice that the optimal algorithm needs ca. 1000s to schedule 12 data mining
queries while CCFull executes in 30s.

Comparing accuracy and performance of CCFull with the experimental results
obtained for CCRecursive (reported in [10]), we have to admit that on average
CCRecursive outperforms CCFull, while offering a slightly better accuracy. However,
in particular, rare situations CCRecursive took more time to complete than the optimal
scheduling algorithm due to its recursive nature. We have not observed such problems
with CCFull, which makes it a more predictable solution.

5 Conclusions and Future Work

In this paper we have introduced a new heuristic algorithm CCFull to schedule data
mining queries for Apriori Common Counting. The algorithm offers a significant
reduction of execution time over the optimal algorithm while providing a very good
accuracy, and is predictable compared to our previous heuristics CCRecursive.

CCFull assumes that the set of data mining queries is static. However, in a real
system, new queries may arrive while other queries are being executed. In the future
we plan to investigate methods allowing for dynamic scheduling of the arriving
queries.

References

1. Agrawal R., Imielinski T., Swami A: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’l Conf. on Very Large Data Bases (1994)

3. Alsabbagh J.R., Raghavan V.V.: Analysis of common subexpression exploitation models in
multiple-query processing. Proc. of the 10th ICDE Conference (1994)

4. Hettich S., Bay S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:
University of California, Department of Information and Computer Science (1999)

5. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery.
Communications of the ACM, Vol. 39, No. 11 (1996)

6. Jarke M.: Common subexpression isolation in multiple query optimization. Query
Processing in Database Systems, Kim W., Reiner D.S. (Eds.), Springer (1985)

7. Roy P., Seshadri S., Sundarshan S., Bhobe S.: Efficient and Extensible Algorithms for Multi
Query Optimization. ACM SIGMOD Intl. Conference on Management of Data (2000)

8. Sellis T.: Multiple query optimization. ACM Transactions on Database Systems, Vol. 13,
No. 1 (1988)

9. Wojciechowski M., Zakrzewicz M.: Evaluation of Common Counting Method for
Concurrent Data Mining Queries. Proc. of the 7th ADBIS Conference (2003)

10. Wojciechowski M., Zakrzewicz M.: Data Mining Query Scheduling for Apriori Common
Counting. Proc. of the 6th Int’l Baltic Conf. on Databases and Information Systems (2004)

11. Wojciechowski M., Zakrzewicz M.: Evaluation of the Mine Merge Method for Data Mining
Query Processing. Proc. of the 8th ADBIS Conference (2004)

