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Abstract. Execution cost of batched data mining queries can be reduced by 
integrating their I/O steps. Due to memory limitations, not all data mining 
queries in a batch can be executed together. In this paper we introduce a 
heuristic algorithm called CCFull, which suboptimally schedules the data 
mining queries into a number of execution phases. The algorithm significantly 
outperforms the optimal approach while providing a very good accuracy. 

1   Introduction 

Multiple Query Optimization (MQO) [8] is a database research area that focuses on 
optimizing sets of queries together by executing their common expressions only once 
in order to save query execution time. Many exhaustive and heuristic algorithms have 
been proposed for traditional MQO [3][6][7]. A specific type of a database query is a 
Data Mining Query (DMQ) [5], which describes a data mining task. It defines 
constraints on the data to be mined and constraints on the patterns to be discovered. 
DMQs are submitted for execution to a Knowledge Discovery Management System 
KDDMS [5], which is a Database Management System (DBMS) extended with data 
mining functionality. Traditional KDDMSs execute DMQs serially and do not try to 
share any common expressions between different DMQs. 

DMQs are often processed in batches of dozens of queries, executed during low 
user activity time. Queries in a batch may show many similarities to each other, e.g., 
their source data sets may overlap. If such queries were executed serially, then it 
would be likely that many I/O operations were wasted because the same database 
blocks were required by multiple DMQs. If I/O steps of different DMQs were 
integrated and performed once, then it would be possible to decrease the overall 
execution cost and time of the whole batch. One of the methods to process batches of 
DMQs is Apriori Common Counting (ACC) [9], focused on frequent itemset 
discovery queries [1]. ACC is based on Apriori algorithm [2] and it integrates the 
steps of candidate support counting – all candidate hash trees for multiple DMQs are 
loaded into memory and the database is scanned only once. Basic ACC [9] assumes 
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that all DMQs fit in memory, which is not a common case, at least for initial Apriori 
iterations. If the memory can hold only a subset of all DMQs, then it is necessary to 
divide/schedule the DMQs into subsets called phases [10]. The way such scheduling 
is done determines the overall cost of batched DMQs execution. To solve the 
scheduling problem, in [10] we proposed an “initial” heuristic algorithm, called 
CCRecursive. According to our experiments CCRecursive offers acceptable accuracy 
and on average outperforms the optimal scheduling algorithm. However, in particular 
situations its execution time could increase significantly due to its recursive nature, 
which is the motivation for seeking novel, more predictable solutions. In this paper 
we present and evaluate another heuristic algorithm for scheduling data mining 
queries to be executed by ACC, called CCFull. 

1.1   Related Work 

Multiple-query optimization has been extensively studied in the context of database 
systems (see e.g. [8]), however very little work has been done on optimizing sets of 
data mining queries. To the best of our knowledge, apart from the ACC method 
discussed in this paper, the only other multiple query processing scheme for data 
mining queries is Mine Merge, presented in one of our previous papers [11]. In 
contrast to ACC, Mine Merge is independent of a particular frequent itemset mining 
algorithm. However, it was proven very sensitive to data distribution and less 
predictable than ACC.  

2   Preliminaries and Problem Statement 

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ, β), where R 
is a relation, a is an attribute of R, Σ is a condition involving the attributes of the 
relation R, Φ is a condition involving discovered patterns, and β is the minimum 
support threshold. The result of the data mining query is a set of patterns discovered 
in πaσΣR and satisfying Φ. 
 
Problem statement. Given is a set of data mining queries DMQ = {dmq1, dmq2, ..., 
dmqn}, where dmqi = (R, a, Σi, Φi, βi), Σi has the form “(li

1min < a < li
1max) ∨ (li

2min < a < 
li

2max) ∨..∨ (li
kmin < a < li

kmax)”, li
* ∈ dom(a) and there exist at least two data mining 

queries dmqi = (R, a, Σi, Φi, βi) and dmqj = (R, a, Σj, Φj, βj) such that σΣiR  ∩ 
∩ σΣjR ≠ ∅. The problem of multiple query optimization of DMQ consists in 
generating such an algorithm to execute DMQ that has the lowest I/O cost. 
 
Apriori Common Counting (ACC). If the set of data mining queries was executed 
serially, i.e. one data mining query at a time, then the total execution cost would be 
the sum of execution costs of data selection formulas for each data mining query 
separately. ACC executes a set of data mining queries by integrating their I/O 
operations. It is based on the traditional Apriori approach to discover frequent 



itemsets. In the first step, for each data mining query we build a separate hash tree for 
1-candidates. Next, for each distinct data selection formula we scan its corresponding 
database partition and we count candidates for all the queries that contain the formula. 
Such a step is performed for 2-candidates, 3-candidates, etc. Notice that if a given 
distinct data selection formula is shared by many queries, then its corresponding 
database partition is read only once. An overview of ACC is shown in Fig. 1. 
 

for (i=1; i<=n; i++)   /* n = number of data mining queries */ 
  C1

i = {all 1-itemsets from σs1∪s2∪..∪skR, ∀sj∈S: (dmqi,sj)∈E}  /* generate 1-candidates */ 
for (k=1; Ck

1 ∪ Ck
2 ∪..∪ Ck

n ≠ ∅; k++) do begin 
   for each sj∈S do begin       
      CC= UCk

l: (dmql,sj)∈E; /* select the candidates to count now */ 
      if CC≠ ∅ then count(CC, σsjR); 
   end 
   for (i=1; i<=n; i++) do begin 
     Fk

i = {C ∈ Ck
i | C.count ≥ minsupi};  /* identify frequent itemsets */ 

     Ck+1
i = generate_candidates(Fk

i);  
  end 
end 
for (i=1; i<=n; i++) do 
   Answeri = UkFk

i;  /* generate responses */ 

Fig. 1. Apriori Common Counting 

3   Heuristic Scheduling of Concurrent Data Mining Queries 

The basic ACC assumes unlimited memory and therefore the candidate hash trees for 
all DMQs can completely fit in memory. If, however, the memory is limited, then 
ACC execution must be divided into multiple phases, so that in each phase only a 
subset of DMQs is processed. In such a case, the key question to answer is: which 
data mining queries from the set should be executed together in one phase and which 
data mining queries can be executed in different phases? We refer to the task of data 
mining queries partitioning as to data mining query scheduling. 

The problem of data mining query scheduling is a combinatorial problem which 
can be solved by generating all possible schedules and then choosing the best one. 
Such approach can be used for a small number of data mining queries, however, for a 
realistic case it is infeasible. The number of all possible schedules is determined by 
the Bell number, e.g., for 13 queries we get over 4 million schedules. Therefore, we 
propose a heuristic algorithm CCFull, which quickly finds a suboptimal schedule. 

3.1   Algorithm CCFull 

In the first step we generate a gain graph for the set of data mining queries. The gain 
graph is a full hypergraph, in which vertices represent the data mining queries while 



edges are described with weights which represent the amount of I/O cost reduction to 
be achieved if data mining queries connected with the edge were executed together (in 
the same phase). If common execution of given data mining queries results in no 
reduction of I/O cost, the weight of the connecting edge is zero. A sample gain graph 
is shown in Fig. 2. For example, it can be noticed that common execution of the data 
mining queries dmq0, dmq2, and dmq3 would reduce the total I/O cost by 16 units (the 
weight of the connecting hyperedge) compared with the sequential execution, since 
for dmq0 and dmq2 the cost of redundant I/O operations is 5 units, for dmq2 and dmq3 
the cost of redundant I/O operations is 8 units, and for dmq0 and dmq3 the cost of 
redundant I/O operations is 3 units. Using the same example, it can be also noticed, 
that common execution of only the data mining queries dmq1 and dmq2 provides no 
cost reduction (the weight of the connecting hyperedge is zero). 
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Fig. 2. Sample gain graph 

The gain graph can be generated using the algorithm GenerateGainGraph shown in 
Fig. 3. The algorithm takes two arguments: the set of all distinct data selection 
formulas and the set of all data mining queries. First, the algorithm builds a full 
hypergraph whose nodes are the data mining queries (line 1). Each hyperedge 
receives the weight of zero, initially (line 3). Then, for each hyperedge e, we create a 
set P of distinct data selection formulas involved in all data mining queries connected 
with the hyperedge e (line 4). I/O costs for executing the distinct data selection 



formulas from P are then summarized and the result is assigned to the hyperedge e 
weight (line 5 and 6). 
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GenerateGainGraph(S, DMQ): 
 begin 
 generate a full hypergraph G={V,E}, V=DMQ 
 for each e ∈ E do begin 
   e.gain = 0; 
   P = {si ∈ S | ∃ dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj } 
   for each s ∈ P do begin 
      e.gain += cost(s)*(|{ dmqj: dmqj∈ e, dmqj =(R, a, Σj, Φj, βj), si ⊆Σj }| - 1) 
   end 
 end 
 return G 

 end 

Fig. 3. Gain graph generation algorithm 

After having created the gain graph, CCFull performs the following steps. All 
hyperedges are sorted in descending order according to their weights. Next, CCFull 
iterates over the hyperedges and checks if data mining queries connected with the 
current hyperedge have been already scheduled. If none of the data mining queries 
has been scheduled so far, and if their hash trees fit in memory, then a new phase is 
generated and the data mining queries are assigned to it. Otherwise, if only some of 
the data mining queries have been already scheduled to different phases, then CCFull 
tries to combine all those phases together with the unscheduled data mining queries. If 
such combined phase does not fit in memory, then the current hyperedge is ignored 
and CCFull continues with the next one. The algorithm ends when all hyperedges are 
processed. The algorithm CCFull is shown in Fig. 4. 

The detailed steps of the algorithm from Fig. 4 are the following. In line (1) we 
initialize the set of scheduled phases – we start with the empty set. In line (2) we sort 
the list E of  hyperedges from the gain graph. Hyperedges with weights equal to zero 
are removed from the list. In line (3) a loop starts, which iterates over the list of 
hyperedges. In line (4) we select all data mining queries which are connected with the 
current hyperedge (tmpV). In line (5) we test if any of the selected data mining queries 
belongs to any of the phases scheduled so far. If not, then in line (7) we create a new 
candidate phase containing all the data mining queries from tmpV. Otherwise, in line 
(9) we create a new candidate phase containing both all the data mining queries from 
tmpV and data mining queries from earlier scheduled phases, to which any of the 
tmpV data mining queries was also scheduled. In line (10) we check if hash trees of all 
the data mining queries from the new candidate phase fit in memory (MEMSIZE is the 
available memory size). If this condition is satisfied, then in lines (11) and (12) we 
append the new candidate phase to the current set of scheduled phases Phases, 
possibly replacing some of the existing phases (when multiple phases are combined). 
In line (13), for each data mining query which has not been scheduled we create a 
new phase. In step (14) we return the generated phases. 
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CCFull(G=(V,E)): 
  begin 
   Phases ← {∅}  
   sort E = <ei , e2 ,..., ek> in desc. order w.r. to ei.gain, ignore edges with zero gains 
   for each ei in E do begin 
      tmpV ← {v∈ V | v ∈ ei } 
      if  (|{p ∈ Phases | p ∩ tmpV  ≠ ∅}| = 0)  then 

         commonPhases ← ∅ 
         newPhase ← tmpV 
  else 

         commonPhases ← {p ∈ Phases | p∩ tmpV ≠ ∅}  
         newPhase ← tmpV ∪ U p| p∈ commonPhases  

  end if 
      if (treesize(newPhase) ≤ MEMSIZE) then  
         Phases ← Phases - commonPhases  
         Phases ← Phases ∪ newPhase 
      end if 
    end 
    add phase for each unscheduled query 

 return Phases 
   end 

Fig. 4. CCFull algorithm 

3.2   Example 

Consider scheduling of data mining queries from Fig. 2. For the sake of simplicity, 
assume that hash tree sizes are 10MB for each data mining query and the available 
memory is 20MB.  

Hyperedges of the gain graph are sorted according to their weights (skipping zero-
weighted hyperedges): <e0, e4, e3, e2, e1, e8, e7, e5, e6, e10>. In the first iteration we 
select the hyperedge e0, which is connecting the data mining queries dmq0, dmq1, 
dmq2 and dmq3. None of the data mining queries has been scheduled so far, and total 
size of their hash trees is 40MB, exceeding the available memory. Therefore, the 
algorithm ignores the hyperedge and starts another iteration.  

In the second iteration we select the hyperedge e4, which is connecting the data 
mining queries dmq0, dmq2 and dmq3. None of the data mining queries has been 
scheduled so far, and total size of their hash trees is 30MB, exceeding the available 
memory again. Therefore, the algorithm ignores the hyperedge and starts another 
iteration. In a similar way the iterations over the hyperedges e3, e2 and e1 are 
performed – total sizes of hash trees exceed the available memory.  

Yet in the sixth iteration the algorithm will behave in a different way. We select the 
hyperedge e8, which is connecting the data mining queries dmq2 and dmq3. The total 
size of their hash trees is 20MB, so a new phase is created: {dmq2, dmq3}. In the next 
iteration we select the hyperedge e7, which is connecting the data mining queries 



dmq1 and dmq3. Since dmq3 already belongs to a scheduled phase, we try to replace 
the existing phase {dmq2, dmq3} with a new one: {dmq1, dmq2, dmq3}. We are 
unsuccessful because the total size of hash trees for the data mining queries is 30MB, 
what exceeds the available memory. In the next iteration we select the hyperedge e5, 
and again we are unsuccessful when trying to replace the existing phase {dmq2, dmq3} 
with a new phase {dmq0, dmq2, dmq3}. The next iteration operates on the hyperedge 
e6, which is connecting the data mining queries dmq0 and dmq1. These data mining 
queries do not belong to any of the existing phases and total size of their hash trees is 
20MB. Therefore, a new phase is created: {dmq0, dmq1}.  

In the last iteration we select the hyperedge e10, which is connecting the data 
mining queries dmq0 and dmq3. Since both data mining queries have already been 
scheduled to some phases, the algorithm tries to combine the existing phases {dmq2, 
dmq3} and {dmq0, dmq1}. However, the phases are not merged since the total size of 
hash trees of their data mining queries is 40MB and exceeds the available memory. 
The algorithm has completed. The constructed scheduling of the four data mining 
queries consists of 2 phases: {dmq2, dmq3} and {dmq0, dmq1}. 

4   Experimental Evaluation 

In order to evaluate performance and accuracy of the CCFull scheduling algorithm we 
performed several experiments using the MSWeb dataset from the UCI KDD Archive 
[4]. The experiments were conducted on a PC with AMD Duron 1.2 GHz processor 
and 256 MB of main memory. The datasets used in all experiments resided in flat 
files on a local disk. Memory was intentionally restricted to 10kB-50kB. Each 
experiment was repeated 100 times. The queries were randomly generated. 
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Fig. 5 shows disk I/O costs of schedules generated by the optimal scheduling 
algorithm, by the CCFull algorithm, and by a random algorithm (which randomly 
builds phases from queries). For example, for the set of 10 data mining queries, the 
CCFull algorithm misses the optimal solution by only 6%. 



Fig. 6 illustrates execution times for the optimal scheduling algorithm and for 
CCFull. Notice that the optimal algorithm needs ca. 1000s to schedule 12 data mining 
queries while CCFull executes in 30s. 

Comparing accuracy and performance of CCFull with the experimental results 
obtained for CCRecursive (reported in [10]), we have to admit that on average 
CCRecursive outperforms CCFull, while offering a slightly better accuracy. However, 
in particular, rare situations CCRecursive took more time to complete than the optimal 
scheduling algorithm due to its recursive nature. We have not observed such problems 
with CCFull, which makes it a more predictable solution. 

5   Conclusions and Future Work 

In this paper we have introduced a new heuristic algorithm CCFull to schedule data 
mining queries for Apriori Common Counting. The algorithm offers a significant 
reduction of execution time over the optimal algorithm while providing a very good 
accuracy, and is predictable compared to our previous heuristics CCRecursive.  

CCFull assumes that the set of data mining queries is static. However, in a real 
system, new queries may arrive while other queries are being executed. In the future 
we plan to investigate methods allowing for dynamic scheduling of the arriving 
queries. 
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