
Mining various patterns in sequential data
in an SQL-like manner*

Marek Wojciechowski

Poznan University of Technology, Institute of Computing Science,
ul. Piotrowo 3a, 60-965 Poznan, Poland

Marek.Wojciechowski@cs.put.poznan.pl

Abstract. One of the most important data mining tasks is discovery of fre-
quently occurring patterns in sequences of events. Many algorithms for finding
various patterns in sequential data have been proposed recently. Researchers
concentrated on different classes of patterns, which resulted in many different
models and formulations of the problem. In this paper a uniform formulation of
the problem of mining frequent patterns in sequential data is provided together
with an SQL-like language capable of expressing queries concerning all classes
of patterns. An issue of materializing discovered patterns for further selective
analysis is also addressed by introducing a concept of knowledge snapshots.

1 Introduction

One of the most important data mining problems is discovery of frequently occur-
ring patterns in sequences of events. The problem was first introduced in [3], and then
generalized in [4], as a problem of mining sequential patterns in a set of sequences.
Another approach was presented in [5] and [6] where various types of patterns called
episodes where mined in one sequence of events. Many algorithms for finding vari-
ous patterns in sequential data have been proposed, optimized for particular classes of
patterns considered interesting in particular applications. We claim that all data min-
ing algorithms should be integrated into a powerful universal data mining engine and
users should be provided with a language capable of specifying all data mining tasks
including discovery of frequent patterns in sequential data.

As it was stated in [11], such a language could also serve as an Application Pro-
gramming Interface (API) for building business applications involving knowledge
discovery. One of the approaches was to develop such a language as an extension of
SQL. Several extensions of SQL were proposed to handle association rules queries
[11][12][13][14]. For the problem of mining association rules first formulated in [1],
an algorithm integrating user-defined constraints in the process of mining to reduce
the execution time was presented [2]. Such a possibility proves that a query language
can be used not only to select the desired subset of patterns from a larger set of pre-

* This work was partially supported by the grant no. KBN 43-1309 from the

State Committee for Scientific Research (KBN), Poland.

discovered patterns but also to guide the mining algorithm in order to improve per-
formance.

As for mining patterns in sequential data, no language capable of specifying all
variations of the problem has been proposed. One of the reasons for that is probably
the lack of the uniform formulation of the problem. Researchers concentrated on
different classes of patterns, which resulted in many different models. Some kind of a
language, based on logical predicates designed for specifying the structure of re-
quested patterns, was presented in [7].

In this paper, a uniform formulation of the problem of mining frequent patterns in
sequential data is provided together with an SQL-like language capable of expressing
queries concerning all classes of patterns. We refer to patterns in sequential data as to
episodes, following the terminology from [5]. An episode is defined as a collection of
events that are consistent with a given partial order [5]. As input data, we consider
sequential data that can be seen as a sequence or a set of sequences of events. We
assume that the input data is in a relational form (a set of tuples describing events)
and whether it is seen as one event sequence or a set of sequences depends on the
user’s interpretation.

The language presented in the paper is designed as an extension of MineSQL lan-
guage, which was introduced in [14] as a query language for mining various kinds of
rules. We assume that a user can mine patterns (episodes) having different type of
ordering, occurring in a single event sequence or in a set of sequences and satisfying
all sorts of constraints that current algorithms can handle.

An issue of materializing discovered patterns for further selective analysis is also
addressed in this paper by introducing a concept of knowledge snapshots as an alter-
native to the solution presented in [14], where discovered rules were to be stored
directly in database tables. The idea for knowledge snapshots comes from table snap-
shots used in Oracle mostly to replicate data from remote tables in a distributed envi-
ronment [15]. We introduce the idea of intelligent storage objects called knowledge
snapshots intended to contain discovered knowledge of any form that was valid at a
certain point in time.

1.1 Related Work

The problem of mining frequent patterns in a set of data sequences together with a
few mining algorithms was first introduced in [3]. The class of patterns considered
there, called sequential patterns, had a form of sequences of sets of items. The statis-
tical significance of a pattern (called support) was measured as a percentage of data
sequences containing the pattern. In [4], the problem was generalized by adding tax-
onomy (is-a hierarchy) on items and time constraints such as min-gap, max-gap and
sliding window (in this paper called tolerance).

Another formulation of the problem was given in [5], where discovered patterns
(called episodes) could have different type of ordering: full (serial episodes), none
(parallel episodes) or partial and had to appear within a user-defined time window.
The episodes were mined over a single event sequence and their statistical signifi-
cance was measured as a percentage of windows containing the episode (frequency)

or as a number of occurrences. In [6], the model was extended to handle episodes
described by a set of unary and binary predicates on event attributes. In [7], a lan-
guage capable of specifying episodes of interest based on logical predicates was pre-
sented and a few extensions to the model were added.

In [8], the issue of integrating data mining with current database management sys-
tems was addressed and a concept of KDD queries was introduced. Several exten-
sions of SQL were presented to handle association rules queries [11][12][13][14]. In
addition to the query language, in [14] a framework for materializing discovered
knowledge in a relational database was provided.

The idea of integrating data mining with relational databases by formulating min-
ing tasks as SQL queries in order to exploit optimization techniques offered by rela-
tional database management systems was discussed in [9] and [10].

1.2 Organization of the Paper

The paper is organized as follows. We give a uniform formulation of the problem
of mining frequent episodes in sequential data in Section 2. In Section 3 we present
the MINE EPISODE statement as an extension of the data mining query language
MineSQL introduced in [14]. Section 4 describes in detail a concept of knowledge
snapshots intended for storing discovered knowledge for further analyses. Section 5
contains final conclusions and discusses possible future work.

2 Mining frequent episodes in sequential data

In this section we generalize the problem of mining frequent episodes in sequential
data in the following way:

We are given an event sequence in a form of a set of tuples. Each tuple corre-
sponds to a single event and is described by a set of event attributes R, a set of se-
quence partitioning attributes P ⊂ R and an ordering attribute T ∈ R. An ordering
attribute determines how tuples should be sorted to form a sequence. A set of se-
quence partitioning attributes allows to treat the input data as a set of event sequences
(if P = ∅ then we are dealing with a single event sequence).

The goal is to find all episodes having desired type of ordering, a user-defined sta-
tistical significance, satisfying user-defined ordering conditions and content condi-
tions, taking into account user-defined taxonomies on event attributes and user-
defined time constraints.

In general, we assume partial order on events within an episode but we allow a
user to specify that the discovered episodes should be serial or parallel. An episode is
said to be serial when for each pair of events within the episode either one of them
precedes the other or they occur simultaneously. An episode is parallel if no con-
straints are imposed on the order in which events forming an episode should occur.

We assume that a user specifies the requested statistical significance of mined epi-
sodes by means of expressions involving one of the following statistical measures:
support, frequency or number of occurrences. Support is a percentage of input se-

quences containing a given pattern. Frequency can be measured only if a user speci-
fies a size of the time window within which an episode has to occur. Its value is the
percentage of windows containing a given episode.

Ordering and content conditions are used to specify the requested structure of
mined episodes. By content conditions we mean arbitrary predicates on events form-
ing an episode, concerning their attributes. Ordering conditions are used to specify
that within a given episode one event should precede some other event or that two
events should occur simultaneously.

Time constrains determine what should be taken into account while checking
whether a given episode occurs in a given input sequence or not. We consider the
following time constraints: window-size, max-gap, min-gap and tolerance. Window-
size is used to specify that all events forming an episode have to occur within a given
time period. Max-gap, min-gap and tolerance constraints can be used only in mining
serial episodes and they mean maximum and minimum time gap allowed between
consecutive events and the maximum time gap between two events when they can
still be treated as occurring simultaneously.

3 SQL-like language for mining patterns in sequential data

In MineSQL a user specifies the requested class of patterns by means of various
forms of the MINE statement. Here we present the MINE EPISODE statement capa-
ble of specifying all variations of data mining tasks concerning patterns in event se-
quences mentioned in the previous section. The MINE EPISODE statement has the
following syntax:
MINE EPISODE episode_expr [, ...]
[ORDERING {FULL|PARTIAL|NONE}]
FROM {table|SQL_select_statement}
ON attribute [USING tax_name][, ...]
SORTED BY attribute
[PARTITIONED BY attribute [, ...]]
[MAXGAP numeric_expr]
[MINGAP numeric_expr]
[TOLERANCE numeric_expr]
[WINDOW numeric_expr]
[CONTAINING EVENTS alias1 [, ...]]
[WHERE {order_condition|stat_condition
|content_condition}
[{AND|OR} {order_condition|stat_condition
|content_condition}] ...]
[ORDER BY episode_expr [{ASC|DESC}]]

In the above syntax episode_expr denotes an episode expression and can be a
pseudo-attribute EPISODE or any of allowed statistical metrics applied to the EPI-
SODE pseudo-attribute, that is support(EPISODE), frequency(EPISODE) or occur-
rences(EPISODE). Episode expressions are used in the main clause of the statement
to determine what should appear as the output and in the ORDER BY clause to deter-

mine how the results should be sorted. The clause ORDERING is used to specify the
type of ordering that the discovered set of episodes should be consistent with. The
FROM clause specifies the source data for the mining process, which can be a single
table or the result of an SQL query. The ON clause determines which attributes are to
be used as a description of an element of the pattern, with a possibility of specifying
taxonomy on each attribute (tax_name denotes the name of a taxonomy object, each
taxonomy object contains one is-a hierarchy). The SORTED BY clause determines the
attribute according to which the input data should be sorted to form a sequence. The
PARTITIONED BY clause is used to specify that the input data should be treated not
as a single event sequence but as a set of sequences (each sequence is formed from
tuples sharing the same values of all attributes listed in this clause). The MAXGAP,
MINGAP and TOLERANCE clauses can appear only if full ordering was requested
and they refer to max-gap, min-gap and tolerance time constraints respectively. When
any of the above three clauses is omitted, the corresponding time constraint is not
taken into account in the mining process. The clause WINDOW is used to specify that
events forming an episode should occur within a given time window. The clause
WHERE is used to specify thresholds for statistical measures (support, frequency and
number of occurrences) as well as the structure of required episodes by means of
ordering and content conditions. In ordering and content conditions, events are re-
ferred to by means of aliases specified in the CONTAINING EVENTS clause.

Let us consider the following example. We are given a database of telecommunica-
tion network alarms in a form of the table ALARMS(alarm_type, module, time). Let
us assume that a user wants to find all episodes (partially ordered) occurring within
an hour, involving occurring of the alarm of type 2134 before the alarm of type 1015
in the same module, having frequency higher then 1%. This leads to the following
query:
MINE EPISODE episode, frequency(episode)
FROM alarms
ON alarm_type, module
SORTED BY time
WINDOW 1/24
CONTAINING EVENTS a, b
WHERE a.alarm_type = 2134
AND b.alarm_type = 1015
AND a.time < b.time
AND a.module = b.module
AND frequency (episode) >= 0.01
ORDER BY frequency(episode);

4 Knowledge snapshots

A knowledge snapshot is a database object containing knowledge in form of rules,
patterns, etc., discovered as a result of a KDD query. It represents the knowledge that
was valid at a certain point of time. The main purpose of knowledge snapshots is
materialization of mining results for further selective analysis instead of running

mining algorithms each time when a user wants to browse previously discovered
knowledge.

Knowledge snapshots can be refreshed on demand or automatically according to a
user-defined time interval. This might be useful when a user is interested in a set of
rules or patterns, whose specification does not change in time, but always wants to
have access to relatively recent information.

Information about knowledge snapshots should be stored in a database's data dic-
tionary. A knowledge snapshot is described by its unique name, defining KDD query,
time of last refresh, and optional time interval according to which a snapshot should
be automatically refreshed. Access to such descriptions of knowledge snapshots is
necessary to interpret the contents of a given knowledge snapshot.

Knowledge snapshots are created by means of the CREATE KNOWLEDGE
SNAPSHOT statement and dropped by means of the DROP KNOWLEDGE SNAP-
SHOT statement. Creation of a new knowledge snapshot always involves knowledge
discovery. A user can specify that a knowledge snapshot should be refreshed auto-
matically but can also request an immediate refresh by means of the REFRESH
KNOWLEDGE SNAPSHOT statement. We propose the following syntax of the
CREATE KNOWLEDGE SNAPSHOT statement:
CREATE KNOWLEDGE SNAPSHOT knowledge_snap_name
[REFRESH time_interval]
AS mine_statement

In the above syntax knowledge_snap_name is the name of a knowledge snapshot,
time_interval denotes the time interval between two consecutive refreshes of the
knowledge snapshot, and mine_statement denotes any variation of the MINE state-
ment. The REFRESH clause is optional since a user might not want a knowledge
snapshot to be refreshed automatically.

To allow a user to select the desired set of patterns from those stored in a knowl-
edge snapshot, we propose to permit a user to specify the name of a knowledge snap-
shot instead of the name of a table or SQL query in the FROM clause of the MINE
statement. Execution of a MINE statement against a knowledge snapshot should
generate an error when a set of requested patterns is not guaranteed to be a subset of
the set of patterns stored in the knowledge snapshot. Moreover, only clauses that
specify pattern selection constraints or affect the presentation of results should be
allowed (in case of the MINE EPISODE statement: CONTAINING EVENTS, WHERE
and ORDER BY).

5 Conclusions

In this paper, a uniform formulation of the problem of mining frequent patterns in
sequential data covering all classes of patterns proposed in previous works has been
provided. Based on this formulation, an extension to the SQL-like data mining lan-
guage MineSQL capable of specifying queries concerning mining patterns in sequen-
tial data has been presented. A novel, general approach to materializing data mining
results has also been proposed by introducing a concept of knowledge snapshots.

The biggest challenge for future work is probably implementation of knowledge
snapshots. One of the questions is where the discovered knowledge should be stored.
The solution presented here assumed storing discovered patterns in the same database
where the input data was stored but it should be taken into account that data mining
algorithms are often run on data warehouses instead of operational databases. An-
other interesting problem concerning knowledge snapshots is how to refresh them
automatically. One of the possible approaches is to dedicate this task to a special
background process operating as a part of the data mining system.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the ACM SIGMOD Conference on Management of Data (1993).

2. Srikant R., Vu Q., Agrawal R.: Mining Association Rules with Item Constraints. Proc. of the
3rd Int’l Conference on Knowledge Discovery and Data Mining (1997).

3. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’l Conference on
Data Engineering (1995).

4. Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance Im-
provements. Proc. of the 5th Int’l Conf. on Extending Database Technology (1996).

5. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences. Proc.
of the 1st Int’l Conference on Knowledge Discovery and Data Mining (1995).

6. Mannila H., Toivonen H.: Discovering generalized episodes using minimal occurrences.
Proc. of the 2nd Int’l Conference on Knowledge Discovery and Data Mining (1996).

7. Guralnik V., Wijesekera D., Srivastava J.: Pattern Directed Mining of Sequence Data Proc.
of the 4th Int’l Conference on Knowledge Discovery and Data Mining (1998).

8. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. Communica-
tions of the ACM, Vol. 39, No. 11 (1996).

9. Sarawagi S., Thomas S., Agrawal R.: Integrating Association Rule Mining with Relational
Database Systems: Alternatives and Implications. Proc. of the ACM SIGMOD International
Conference on Management of Data (1998).

10. Thomas S., Sarawagi S.: Mining Generalized Association Rules and Sequential Patterns
Using SQL Queries. Proc. of the 4th Int’l Conference on Knowledge Discovery and Data
Mining (1998).

11. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface
and query language for data mining. Proc. of the 2nd Int’l Conference on Knowledge Dis-
covery and Data Mining (1996).

12. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc.
of the 22nd Int’l Conference on Very Large Data Bases (1996).

13. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A., Ste-
fanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large Rela-
tional Databases. Proc. of the 2nd Int’l Conference on Knowledge Discovery and Data Min-
ing (1996).

14. Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Sympo-
sium (1997).

15. Oracle Corporation: Oracle8™ Server Replication. Oracle8 Documentation (1997).

