
Itemset Materializing for Fast Mining
of Association Rules

Marek Wojciechowski, Maciej Zakrzewicz

Institute of Computing Science
Poznan University of Technology

ul. Piotrowo 3a, 60-965 Poznan, Poland
{marek, mzakrz}@cs.put.poznan.pl

Abstract. Mining association rules is an important data mining problem.
Association rules are usually mined repeatedly in different parts of a database.
Current algorithms for mining association rules work in two steps. First, the
most frequently occurring sets of items are discovered, then the sets are used to
generate the association rules. The first step usually requires repeated passes
over the analyzed database and determines the overall performance.
In this paper, we present a new method that addresses the issue of discovering
the most frequently occurring sets of items. Our method consists in
materializing precomputed sets of items discovered in logical database
partitions. We show that the materialized sets can be repeatedly used to
efficiently generate the most frequently occurring sets of items. Using this
approach, required association rules can be mined with only one scan of the
database. Our experiments show that the proposed method significantly
outperforms the well-known algorithms.

1 Introduction

Data mining, also referred to as database mining or knowledge discovery in databases
(KDD), is a new research area that aims at discovery of useful information from large
datasets. Data mining uses statistical analysis and inference to extract interesting
trends and events, create useful reports, support decision making etc. It exploits the
massive amounts of data to achieve business, operational or scientific goals. An
important goal of current research is to provide methods for on-line analytical mining
(OLAM) [6]. On-line analytical mining implies that data mining is performed in a
way similar to on-line analytical processing (OLAP), i.e. mining can be performed
interactively, for different portions of a database and at different conceptual levels.
On-line analytical mining requires a high-performance and rapid-response
environment that assists users in data selection, rule generation and rule filtering [5],
[8], [11].

One of the most significant data mining problems is mining association rules.
Association rules are interesting class of database regularities, introduced by Agrawal,

Imielinski, and Swami in [1]. Association rules approaches address a class of
problems typified by a market basket analysis. Classic market basket analysis treats
the purchase of a number of items (the contents of a shopping basket) as a single
transaction. Basket data usually consists of products bought by a customer along with
the date of transaction, quantity, price, etc. Such data may be collected, for example,
at supermarket checkout counters. The goal is to find trends across large number of
purchase transactions that can be used to understand and exploit natural buying
patterns, and represent the trends in the form of association rules. Each association
rule identifies the set of items that is most often purchased together with another set of
items. For example, an association rule may state that "80% of customers who bought
items A, B and C also bought D and E". This information may be used for
promotional displays design, optimal use of shelf and floor space, effective sales
strategies, target marketing, catalogue design etc.

1.1 Association Rules

Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items T be
called an itemset. Let D be a set of variable length itemsets, where each itemset T⊆L.
We say that an itemset T supports an item x∈L if x is in T. We say that an itemset T
supports an itemset X⊆L if T supports every item in the set X.

An association rule is an implication of the form X→Y, where X⊂L, Y⊂L, X∩Y=∅.
Each rule has associated measures of its statistical significance and strength, called
support and confidence. The support of the rule X→Y in the set D is:

{ }
.

 supports |
),(

D

YXTDT
DYXsupport

∪∈
=→ (1)

In other words, the rule X→Y holds in the set D with support s if s% of itemsets in

D support X∪Y. The confidence of the rule X→Y in the set D is:

{ }
{ } .

 supports |

 supports |
),(

XTDT

YXTDT
DYXconfidence

∈
∪∈

=→ (2)

In other words, the rule X→Y has confidence c if c% of itemsets in D that support

X also support Y.

1.2 Previous Work on Association Rules

The problem of generating association rules was first introduced in [1] and an
algorithm called AIS was proposed. In [13], an algorithm SETM was proposed for
mining association rules using relational operators. In [3], Agrawal and Srikant
presented two new algorithms, called Apriori and AprioriTid, that are fundamentally

different from the previous ones. The algorithms achieved significant improvements
over SETM and AIS and became the core of many new algorithms for mining
association rules

In the existing approaches [3], [6], [7], [9], [12], [14], [15] the problem of mining
association rules is decomposed into the following two steps:

1. Discover the large itemsets, i.e. the sets of itemsets that have support above a

predetermined minimum support σ.
2. Use the large itemsets to generate the association rules for the database.

It is noted that the overall performance of mining association rules is determined
by the first step. After the large itemsets are identified, the corresponding association
rules can be derived in a straightforward manner.

Much research has focused on deriving efficient algorithms for discovering large
itemsets. Generally, to show that an itemset is large we can count its occurrences in
the database D. If the count is greater than σ |D|, then the itemset is large. The
problem is that the number of all possible itemsets is huge and it is infeasible to count
them all (e.g. for 1000 different items there are: c.a. 500 000 of possible 2-itemsets,
c.a. 160 000 000 of possible 3-itemsets, etc.). If we knew, say, a few thousands of
itemsets which are potentially large we could count them in only one scan of the
database. All well-known algorithms rely on the property that an itemset can only be
large if all of its subsets are large. It leads to a level-wise procedure. First, all possible
1-itemsets (itemsets containing 1 item) are counted in the database to determine large
1-itemsets. Then, large 1-itemsets are combined to form potentially large 2-itemsets,
called candidate 2-itemsets. Candidate 2-itemsets are counted in the database to
determine large 2-itemsets. The procedure is continued by combining the large 2-
itemsets to form candidate 3-itemsets and so forth. A disadvantage of the algorithm is
that it requires K or K+1 passes over the database to discover all large itemsets, where
K is the size of the greatest large itemset found.

Since it is costly to discover association rules in large databases, there is often a
need for techniques that incrementally update the discovered association rules every
time the database changes. In general, database updates may not only invalidate some
existing strong association rules but also turn some weak rules into strong ones. Thus
it is nontrivial to maintain such discovered association rules in large databases. In [4],
Cheung, Han, Ng and Wong presented an algorithm called FUP (Fast Update
Algorithm) for computing the large itemsets in the expanded database from the old
large itemsets. The major idea of FUP algorithm is to reuse the information of the old
large itemsets and to integrate the support information of the new large itemsets in
order to reduce the pool of candidate itemsets to be re-examined. Unfortunately, the
method cannot be used to mine association rules in a part of a database because the
large itemsets that hold in the entire database may not hold in a part of it.

Another way of reducing the number of database passes was proposed by Savasere,
Omiecinski and Navathe in the algorithm called Partition [14]. Partition algorithm
reads the database in portions into main memory and discovers large itemsets inside

each portion. Then, by scanning the whole database, the actual support values for
these itemsets are computed.

1.3 Problem Description

Given a database of sets of items, the problem of mining association rules is to
discover all rules that have support and confidence above the user-defined minimum
values. In practice, association rules can be mined repeatedly in different parts of the
database. A straightforward, though ineffective way to solve this problem is to run
(each time) a well-known algorithm for mining association rules on the part of the
database. Note that if the large itemsets could be precomputed and stored in a
database, the algorithm for mining association rules would be simpler and more
efficient. This is known as the itemset materializing.

In this paper, we propose a new method that addresses the issue of discovering the
most frequently occurring sets of items. Our method consists in materializing
precomputed sets of items discovered in logical partitions of a large database. We
show that the materialized sets of items can be repeatedly used to efficiently generate
the sets of items that most frequently occur in the whole database or only in a part of
it. Using this approach, the required association rules can be interactively mined with
only one scan of the database.

1.4 Outline

The structure of the paper is the following. In Section 2, the method of itemset
materializing is described and the algorithm for mining association rules is given. In
Section 3 we give our experimental results showing the performance of the new
method. Section 4 contains final conclusions.

2 Itemset Materializing Method

The key idea behind itemset materializing is the following. Recall that the reason that
limits the well-known algorithms is that if itemset counting should be done in a single
scan of a database, the number of itemsets to count would be exponentially large.
However, if we could easily select a small set of potentially large itemsets, say a few
thousand itemsets, then they could be counted in only one scan of a database. We
present the method that uses materialized itemsets to select potentially large itemsets
that can be verified in a single database scan.

Itemset materializing method divides the database into user-defined, non-
overlapping partitions and discovers all large itemsets inside each partition. The
positive borders of the large itemsets are computed and stored along with the
partitions in the database. We use the positive borders as a condensed representation
of the itemsets. Later on, when association rules are to be discovered in a set of

database partitions, the positive borders for those partitions are merged to generate the
global positive border. Then all the itemsets described by the global positive border
(potentially large itemsets) are counted in the database partitions to find their
supports. Thus, the itemsets materialized only once can be used repeatedly to
efficiently select potentially large itemsets.

2.1 Basic Definitions

Positive border
The concept of the positive border was introduced by Manilla and Toivonen in [10].
Given a set S of itemsets, the positive border BD+(S) consists of those itemsets from S
which are not contained by any other itemsets from S:

Bd+(S) = { X ∈ S | for all Y ∈ S, we have X ⊄ Y } . (3)

The positive border can play a role of the condensed representation of the itemsets.

Combination of positive borders
Combination θ (S1, S2) of the two positive borders S1 and S2 is the positive border of
S1 ∪ S2:

θ (S1, S2) = Bd+(S1 ∪ S2) . (4)

We will use the combination of the positive borders to generate the global positive

border for the partitions.

2.2 Generation of Materialized Positive Borders

Given is a database D and a minimum support value σ. The minimum support value σ
should be less or equal to a predicted minimum value that users can set on support of
their mined association rules.

We divide the database D into a set of non-overlapping partitions: d1, d2, ..., dn. The
database can be divided according to e.g. dates, locations, customer types. For each
partition di all large itemsets L1

i, L2
i, ..., Lk

i are discovered be means of a well-known
algorithm (L1

i refers to large 1-itemsets in the partition di, L2
i refers to large 2-itemsets

in the partition di, etc.). Then, for each partition di a positive border Bd+
i of L1

i∪ L2
i∪

... ∪ Lk
i is computed and stored in the database together with the partition. The

algorithm is shown in Figure 1.

for each partition di of D do

 begin

 discover all itemsets whose support > σ

 compute the positive border Bd+
i for the discovered itemsets

 store Bd+
i together with di

 end

Fig. 1. Generation of materialized positive borders

Example 1
To illustrate the generation of materialized positive borders, consider the database D
in Figure 2. Assume that σ is 0.2. Let us first divide the database D into three
partitions: d1, d2, d3. For each partition all itemsets with support ≥ 0.2 are discovered
(not depicted here). Then the positive borders of the itemsets are computed. For the
partition d1 we have the positive border Bd+

1 = {{4,5,6}, {1,3,5,7}, {2,3,4,7}}, for the
partition d2 we have Bd+

2 = {{1,3,7}, {2,3,5}, {1,2,5,7}} and for the partition d3 we
have Bd+

3 = {{1,4,6}, {3,5,7}, {2,4,6,7}}. Then, the positive borders are stored
together with the partitions in the database.

D d1 d3
TID Item TID Item TID Item
100 1 3 5 7 100 1 3 5 7 106 3 5 7
101 2 3 4 7 101 2 3 4 7 107 1 4 6
102 4 5 6 102 4 5 6 108 2 4 6 7
103 1 2 5 7
104 2 3 5 d2
105 1 3 7 TID Item
106 3 5 7 103 1 2 5 7
107 1 4 6 104 2 3 5
108 2 4 6 7 105 1 3 7

Fig. 2. Example database and its partitions

2.3 Generation of Large Itemsets from Materialized Itemsets

Given is the database D, divided into the set of n partitions d1, d2, .., dn, and the
positive borders for the partitions Bd+

1, Bd+
2, ..., Bd+

n, derived for the minimum
support value σ. Let I = {i1, i2, ..., il} denote a set of partition identifiers. Below we

present the algorithm that discovers all large itemsets that hold in di1 ∪ di2 ∪...∪ dil
with support above σ', σ' ≥ σ. Once the large itemsets and their supports are
determined, the rules can be discovered in a straightforward manner [1].

First, the positive borders of all the partitions described in I are combined to form
the global positive border S. Then, for each itemset in S all unique subsets are
generated to form the set of potentially large itemsets C. In the next step the partitions
di1, di2, ..., dil are scanned to count the occurrences of all the itemsets in C. The result
of the algorithm consists of the itemsets in C with support greater or equal to σ', i.e.
large itemsets. The algorithm is shown in Figure 3.

S = ∅
for each partition identifier ik in I do
 S = θ (S, Bd+

ik)
C = all unique subsets of the itemsets in S
for each transaction t ∈ di1 ∪ di2 ∪...∪ dil do
 increment the count of all itemsets in C that are contained in t
Answer = all itemsets in C with support ≥ σ'

Fig. 3. Mining association rules

Example 2
To illustrate the large itemset generation algorithm, consider the database partitions
and the positive borders from Example 1. We are looking for all association rules that
hold in the database partitions d1 and d3 with support ≥ 0.4. First, the positive borders
Bd+

1 = {{4,5,6}, {1,3,5,7}, {2,3,4,7}} and Bd+
3 = {{1,4,6}, {3,5,7}, {2,4,6,7}} are

combined to form the global positive border S = {{1,4,6}, {4,5,6}, {1,3,5,7}, {2,3,4,7},
{2,4,6,7}}. Then, for each itemset in S all unique subsets are generated to form the set
of potentially large itemsets C. Thus we get C = {{1}, {2}, {3}, {4}, {5}, {6}, {7},
{1,3}, {1,4}, {1,5}, {1,6}, {1,7}, {2,3}, {2,4}, {2,7}, {2,6}, {3,4}, {3,5}, {3,7}, {4,5},
{4,6}, {4,7}, {5,6}, {5,7}, {6,7}, {4,5,6}, {1,4,6}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7},
{2,3,4}, {2,3,7}, {2,4,7}, {3,4,7}, {2,4,6}, {2,6,7}, {4,6,7}, {2,3,4,7}, {2,4,6,7}}. Now,
the partitions d1 and d3 are scanned and all the itemsets in C are counted. The itemsets
in C with support greater or equal to 0.4 are returned as the result. In this example the
resulting large itemsets are: {3}, {4}, {5}, {6}, {7}, {3,7}, {4,6}. The association
rules that can be derived from those large itemsets are the following:

3 → 7, support = 0.50, confidence = 1.00
7 → 3, support = 0.50, confidence = 0.75
4 → 6, support = 0.50, confidence = 0.75
6 → 4, support = 0.50, confidence = 1.00

Note that the database has been scanned only once to get this result.

Correctness
Our algorithm relies on the property that an itemset can only be large if it is large in at
least one partition. To prove this property formally, we show that if an itemset is not
large in any of the partitions, then it is not large in the whole database.

Let si denote the count of the itemset in the partition di. If the itemset is not large in
any of the database partitions, then:

s1/|d1| < σ ∧ s2/|d2| < σ ∧ ... ∧ sn/|dn| < σ , (5)

therefore:

s1 < σ |d1| ∧ s2 < σ |d2| ∧ ... ∧ sn < σ |dn| . (6)

When we add those inequalities together we get the following:

s1 + s2 + ... + sn < σ |d1| + σ |d2| + ... + σ |dn| , (7)

therefore:

(s1 + s2 + ... + sn)/(|d1| + |d2| + ... + |dn|) < σ . (8)

The last inequality says that the itemset is not large. Thus, we have shown that an

itemset that is not large in any of the partitions can not be large in the whole database.

2.4 Database Partitioning

Let us now consider how the database can be divided into partitions to efficiently use
the presented method. The limitation of the method is that association rules can be
mined in union of selected database partitions only, not in whichever part of the
database. However, it is obvious that in real systems users usually mine association
rules in semantic ranges of a database - i.e. in data from selected weeks, months,
supermarkets. Then, each partition can refer to a week or to a supermarket and
flexible queries over the partitions can be formulated. The similar problem is often
discussed in OLAP communities.

Flexibility of the presented method is greater when the number of the database
partitions is large. On the other hand, large number of partitions results in storage
overhead. Thus, users can evaluate the number and size of the partitions individually,
depending on the storage cost and flexibility requirements. We evaluated that a real-
life number of database partitions in which users mine association rules is 20-50.

Another important feature of the itemset materializing method is that it is easy to
maintain the materialized positive borders for the database partitions. When a
database or data warehouse is updated, the materialized positive borders for the
updated database partitions should be updated too. When new partitions are appended
to a database or data warehouse, then the positive borders for the new partitions must
be computed, however, none of the previously materialized positive borders need to
be updated. Besides, computing the positive borders for a partition can be done fast,
because the whole partition is likely to fit in main memory.

3 Experimental Results

To assess the performance of the proposed method, we conducted several experiments
on large itemset discovering by using a 2-processor Sun SPARCserver 630MP with
128 MB of main memory. The database was implemented in Oracle 7.3.1 DBMS.
Experimental data sets were generated by the synthetic data generator GEN from
Quest project [2]. GEN generates textual data files that contain sets of numerical
items. Several parameters affect the distribution of the synthetic data. These
parameters are shown in Table 1. To load the contents of the data files into the
database, Oracle SQL*Loader program was used.

Table 1. Synthetic data parameters

parameter value parameter value
ntrans number of item sets,

1,000 and 10,000
npats number of patterns, 50

and 500
nitems number of different items,

100
patlen average length of

maximal pattern, 6
tlen average items per set, 10

and 15
corr correlation between

patterns, 0.25

Figures 4 and 5 show the execution time of discovering the large itemsets in the

synthetic database for different minimum support values. The positive borders were
materialized before the experiment with the traditional Apriori algorithm. We have
compared the performance of our method (for different numbers of partitions) with
the performance of the algorithm Apriori. Our method, for 5-20 partitions and
minimum support > 0.05, beat out Apriori, running 2-3 times faster. As we expected,
its performance decreases for decreasing the minimum support value and for
increasing the number of partitions. This behavior can be explained by larger number
of itemsets that are described by the global positive border.

Figure 6 shows the storage overhead for the materialized positive borders for
different numbers of partitions. The space needed to store the positive borders is
linearly proportional to the number of partitions. In our experiments, the storage

overhead for 30 partitions and minimum support = 0.1 was c.a. 50% of the size of the
database. This is the cost of faster mining association rules.

�

��

���

���

���

���

���

� ���� ��� ���� ��� ����

������� �����	

�
�
�
�
�
��
�
�
��

�
��

��	
�	

�

��

��

��

Fig. 4. Execution time for different minimum support values

�

��

���

���

���

���

� � �� �� �� ��

������ �	
�������

�
�
�
�
�
��
�
�
��

�
��
 ���

���

����

Fig. 5. Execution time for different numbers of partitions and different minimum supports

�

���

���

���

���

����

����

����

����

����

� � �� �� �� �� �� ��

������ �	
�������

�
�
�
�
�
�
�
	

�
�
�
�
�
��

Fig. 6. Size of positive borders for different numbers of partition

4 Conclusions and Future Work

We have introduced and discussed the use of materialized itemsets in the task of
discovering association rules in large databases. Our algorithm uses the materialized
itemsets to efficiently generate the large itemsets that occur in the whole database or
only in a part of it. Thus, the required association rules can be interactively mined
with only one scan of the database.

We have presented our experimental results for synthetic databases to show that
itemset materializing can be an effective tool for data mining. The itemset
materializing method was compared with Apriori algorithm and significantly
outperformed it. We note that there is a trade-off between the flexibility of mining
association rules (in different parts of a database) and the storage overhead.

For the future work, we plan to extend the presented method along the following
dimensions:
• develop other data structures that can be used for fast sequential patterns discovery

and classification,
• study the buffer management techniques for data mining to efficiently process

sequences of association rules mining requests.

References

1. Agrawal R., Imielinski T., Swami A., “Mining Association Rules Between Sets of Items in
Large Databases”, Proc. ACM SIGMOD, pp. 207-216, Washington DC, USA, May 1993

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T., "The Quest Data
Mining System", Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases
and Data Mining, Portland, Oregon, August 1996

3. Agrawal R., Srikant R., “Fast Algorithms for Mining Association Rules”, Proc. 20th Int’l
Conf. Very Large Data Bases, pp. 478-499, Santiago, Chile, 1994

4. Cheung D.W., Han J., Ng V., Wong C.Y., “Maintenance of Discovered Association Rules in
Large Databases: An Incremental Updating Technique”, Proc. Int’l Conf. Dana Eng., New
Orleans, USA, February 1996

5. Fayyad U., Piatetsky-Shapiro G., Smyth P., "The KDD Process for Extracting Useful
Knowledge from Volumes of Data", Communications of the ACM, Vol. 39, No. 11, Nov.
1996

6. Han J., "Towards On-Line Analytical Mining in Large Databases, SIGMOD Record", Vol.
27, No. 1, March 1998

7. Houtsma M., Swami A., “Set-Oriented Mining of Association Rules”, Research Report RJ
9567, IBM Almaden Research Center, San Jose, California, USA, October 1993

8. Imielinski T., Manilla H., "A Database Perspective on Knowledge Discovery",
Communications of the ACM, Vol. 39, No. 11, Nov. 1996

9. Manilla H., Toivonen H., Inkeri Verkamo A., “Efficient Algorithms for Discovering
Association Rules”, Proc. AAAI Workshop Knowledge Discovery in Databases, pp. 181-
192, July 1994

10.Manilla H., Toivonnen H., "Levelwise Search and Borders of Theories in Knowledge
Discovery", Report C-1997-8, University of Helsinki, Finland

11.Morzy T., Zakrzewicz M., " SQL-Like Language For Database Mining", ADBIS’97
Symposium, St. Petersburg, September 1997

12.Park J.S., Chen M.-S., Yu P. S., "An Effective Hash-Based Algorithm for Mining
Association Rules", SIGMOD'95, San Jose, CA, USA, 1995

13.Piatetsky-Shapiro G., Frawley W.J., editors, Knowledge Discovery in Databases, MIT Press,
1991

14.Savasere, E. Omiecinski, S. Navathe, “An Efficient Algorithm for Mining Association Rules
in Large Databases”, Proc. 21th Int’l Conf. Very Large Data Bases, pp. 432-444, Zurich,
Switzerland, September 1995

15.Toivonen H., “Sampling Large Databases for Association Rules”, Proc. 22nd Int’l Conf.
Very Large Data Bases, Bombay, India, 1996

