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Abstract. Mining association rules is an important data mining problem. 
Association rules are usually mined repeatedly in different parts of a database. 
Current algorithms for mining association rules work in two steps. First, the 
most frequently occurring sets of items are discovered, then the sets are used to 
generate the association rules. The first step usually requires repeated passes 
over the analyzed database and determines the overall performance.  
In this paper, we present a new method that addresses the issue of discovering 
the most frequently occurring sets of items. Our method consists in 
materializing precomputed sets of items discovered in logical database 
partitions. We show that the materialized sets can be repeatedly used to 
efficiently generate the most frequently occurring sets of items. Using this 
approach, required association rules can be mined with only one scan of the 
database. Our experiments show that the proposed method significantly 
outperforms the well-known algorithms. 

1 Introduction 

Data mining, also referred to as database mining or knowledge discovery in databases 
(KDD), is a new research area that aims at discovery of useful information from large 
datasets. Data mining uses statistical analysis and inference to extract interesting 
trends and events, create useful reports, support decision making etc. It exploits the 
massive amounts of data to achieve business, operational or scientific goals. An 
important goal of current research is to provide methods for on-line analytical mining 
(OLAM) [6]. On-line analytical mining implies that data mining is performed in a 
way similar to on-line analytical processing (OLAP), i.e. mining can be performed 
interactively, for different portions of a database and at different conceptual levels. 
On-line analytical mining requires a high-performance and rapid-response 
environment that assists users in data selection, rule generation and rule filtering [5], 
[8], [11]. 

One of the most significant data mining problems is mining association rules. 
Association rules are interesting class of database regularities, introduced by Agrawal, 



Imielinski, and Swami in [1]. Association rules approaches address a class of 
problems typified by a market basket analysis. Classic market basket analysis treats 
the purchase of a number of items (the contents of a shopping basket) as a single 
transaction. Basket data usually consists of products bought by a customer along with 
the date of transaction, quantity, price, etc. Such data may be collected, for example, 
at supermarket checkout counters. The goal is to find trends across large number of 
purchase transactions that can be used to understand and exploit natural buying 
patterns, and represent the trends in the form of association rules. Each association 
rule identifies the set of items that is most often purchased together with another set of 
items. For example, an association rule may state that "80% of customers who bought 
items A, B and C also bought D and E". This information may be used for 
promotional displays design, optimal use of shelf and floor space, effective sales 
strategies, target marketing, catalogue design etc. 

1.1 Association Rules 

Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-empty set of items T be 
called an itemset. Let D be a set of variable length itemsets, where each itemset T⊆L. 
We say that an itemset T supports an item x∈L if x is in T. We say that an itemset T 
supports an itemset X⊆L if T supports every item in the set X. 

An association rule is an implication of the form X→Y, where X⊂L, Y⊂L, X∩Y=∅. 
Each rule has associated measures of its statistical significance and strength, called 
support and confidence. The support of the rule X→Y in the set D is: 
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In other words, the rule X→Y holds in the set D with support s if s% of itemsets in 

D support X∪Y. The confidence of the rule X→Y in the set D is: 
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In other words, the rule X→Y has confidence c if c% of itemsets in D that support 

X also support Y. 

1.2 Previous Work on Association Rules 

The problem of generating association rules was first introduced in [1] and an 
algorithm called AIS was proposed. In [13], an algorithm SETM was proposed for 
mining association rules using relational operators. In [3], Agrawal and Srikant 
presented two new algorithms, called Apriori and AprioriTid, that are fundamentally 



different from the previous ones. The algorithms achieved significant improvements 
over SETM and AIS and became the core of many new algorithms for mining 
association rules 

In the existing approaches [3], [6], [7], [9], [12], [14], [15] the problem of mining 
association rules is decomposed into the following two steps: 

 
1. Discover the large itemsets, i.e. the sets of itemsets that have support above a 

predetermined minimum support σ. 
2. Use the large itemsets to generate the association rules for the database. 
 

It is noted that the overall performance of mining association rules is determined 
by the first step. After the large itemsets are identified, the corresponding association 
rules can be derived in a straightforward manner. 

Much research has focused on deriving efficient algorithms for discovering large 
itemsets. Generally, to show that an itemset is large we can count its occurrences in 
the database D. If the count is greater than σ |D|, then the itemset is large. The 
problem is that the number of all possible itemsets is huge and it is infeasible to count 
them all (e.g. for 1000 different items there are: c.a. 500 000 of possible 2-itemsets, 
c.a. 160 000 000 of possible 3-itemsets, etc.). If we knew, say, a few thousands of 
itemsets which are potentially large we could count them in only one scan of the 
database. All well-known algorithms rely on the property that an itemset can only be 
large if all of its subsets are large. It leads to a level-wise procedure. First, all possible 
1-itemsets (itemsets containing 1 item) are counted in the database to determine large 
1-itemsets. Then, large 1-itemsets are combined to form potentially large 2-itemsets, 
called candidate 2-itemsets. Candidate 2-itemsets are counted in the database to 
determine large 2-itemsets. The procedure is continued by combining the large 2-
itemsets to form candidate 3-itemsets and so forth. A disadvantage of the algorithm is 
that it requires K or K+1 passes over the database to discover all large itemsets, where 
K is the size of the greatest large itemset found.  

Since it is costly to discover association rules in large databases, there is often a 
need for techniques that incrementally update the discovered association rules every 
time the database changes. In general, database updates may not only invalidate some 
existing strong association rules but also turn some weak rules into strong ones. Thus 
it is nontrivial to maintain such discovered association rules in large databases. In [4], 
Cheung, Han, Ng and Wong presented an algorithm called FUP (Fast Update 
Algorithm) for computing the large itemsets in the expanded database from the old 
large itemsets. The major idea of FUP algorithm is to reuse the information of the old 
large itemsets and to integrate the support information of the new large itemsets in 
order to reduce the pool of candidate itemsets to be re-examined. Unfortunately, the 
method cannot be used to mine association rules in a part of a database because the 
large itemsets that hold in the entire database may not hold in a part of it. 

Another way of reducing the number of database passes was proposed by Savasere, 
Omiecinski and Navathe in the algorithm called Partition [14]. Partition algorithm 
reads the database in portions into main memory and discovers large itemsets inside 



each portion. Then, by scanning the whole database, the actual support values for 
these itemsets are computed. 

1.3 Problem Description 

Given a database of sets of items, the problem of mining association rules is to 
discover all rules that have support and confidence above the user-defined minimum 
values. In practice, association rules can be mined repeatedly in different parts of the 
database. A straightforward, though ineffective way to solve this problem is to run 
(each time) a well-known algorithm for mining association rules on the part of the 
database. Note that if the large itemsets could be precomputed and stored in a 
database, the algorithm for mining association rules would be simpler and more 
efficient. This is known as the itemset materializing. 

In this paper, we propose a new method that addresses the issue of discovering the 
most frequently occurring sets of items. Our method consists in materializing 
precomputed sets of items discovered in logical partitions of a large database. We 
show that the materialized sets of items can be repeatedly used to efficiently generate 
the sets of items that most frequently occur in the whole database or only in a part of 
it. Using this approach, the required association rules can be interactively mined with 
only one scan of the database. 

1.4 Outline 

The structure of the paper is the following. In Section 2, the method of itemset 
materializing is described and the algorithm for mining association rules is given. In 
Section 3 we give our experimental results showing the performance of the new 
method. Section 4 contains final conclusions. 

2 Itemset Materializing Method 

The key idea behind itemset materializing is the following. Recall that the reason that 
limits the well-known algorithms is that if itemset counting should be done in a single 
scan of a database, the number of itemsets to count would be exponentially large. 
However, if we could easily select a small set of potentially large itemsets, say a few 
thousand itemsets, then they could be counted in only one scan of a database. We 
present the method that uses materialized itemsets to select potentially large itemsets 
that can be verified in a single database scan. 

Itemset materializing method divides the database into user-defined, non-
overlapping partitions and discovers all large itemsets inside each partition. The 
positive borders of the large itemsets are computed and stored along with the 
partitions in the database. We use the positive borders as a condensed representation 
of the itemsets. Later on, when association rules are to be discovered in a set of 



database partitions, the positive borders for those partitions are merged to generate the 
global positive border. Then all the itemsets described by the global positive border 
(potentially large itemsets) are counted in the database partitions to find their 
supports. Thus, the itemsets materialized only once can be used repeatedly to 
efficiently select potentially large itemsets. 

2.1 Basic Definitions 

Positive border 
The concept of the positive border was introduced by Manilla and Toivonen in [10]. 
Given a set S of itemsets, the positive border BD+(S) consists of those itemsets from S 
which are not contained by any other itemsets from S: 

 

Bd+(S) = { X ∈ S | for all Y ∈ S, we have X ⊄ Y } . (3) 

 
The positive border can play a role of the condensed representation of the itemsets. 

Combination of positive borders 
Combination θ (S1, S2) of the two positive borders S1 and S2 is the positive border of 
S1 ∪ S2: 

 

θ (S1, S2) = Bd+(S1 ∪ S2) . (4) 

 
We will use the combination of the positive borders to generate the global positive 

border for the partitions. 

2.2 Generation of Materialized Positive Borders 

Given is a database D and a minimum support value σ. The minimum support value σ 
should be less or equal to a predicted minimum value that users can set on support of 
their mined association rules. 

We divide the database D into a set of non-overlapping partitions: d1, d2, ..., dn. The 
database can be divided according to e.g. dates, locations, customer types. For each 
partition di all large itemsets L1

i, L2
i, ..., Lk

i are discovered be means of a well-known 
algorithm (L1

i refers to large 1-itemsets in the partition di, L2
i refers to large 2-itemsets 

in the partition di, etc.). Then, for each partition di a positive border Bd+
i of L1

i∪ L2
i∪ 

... ∪ Lk
i is computed and stored in the database together with the partition. The 

algorithm is shown in Figure 1. 
 



for each partition di of D do 

  begin 

    discover all itemsets whose support > σ 

    compute the positive border Bd+
i for the discovered itemsets 

    store Bd+
i together with di 

  end 

Fig. 1. Generation of materialized positive borders 

Example 1 
To illustrate the generation of materialized positive borders, consider the database D 
in Figure 2. Assume that σ is 0.2. Let us first divide the database D into three 
partitions: d1, d2, d3. For each partition all itemsets with support ≥ 0.2 are discovered 
(not depicted here). Then the positive borders of the itemsets are computed. For the 
partition d1 we have the positive border Bd+

1 = {{4,5,6}, {1,3,5,7}, {2,3,4,7}}, for the 
partition d2 we have Bd+

2 = {{1,3,7}, {2,3,5}, {1,2,5,7}} and for the partition d3 we 
have Bd+

3 = {{1,4,6}, {3,5,7}, {2,4,6,7}}. Then, the positive borders are stored 
together with the partitions in the database. 

 
 

D   d1   d3  
TID Item  TID Item  TID Item 
100 1 3 5 7  100 1 3 5 7  106 3 5 7 
101 2 3 4 7  101 2 3 4 7  107 1 4 6 
102 4 5 6  102 4 5 6  108 2 4 6 7 
103 1 2 5 7       
104 2 3 5  d2     
105 1 3 7  TID Item    
106 3 5 7  103 1 2 5 7    
107 1 4 6  104 2 3 5    
108 2 4 6 7  105 1 3 7    

 

Fig. 2. Example database and its partitions 

2.3 Generation of Large Itemsets from Materialized Itemsets 

Given is the database D, divided into the set of n partitions d1, d2, .., dn, and the 
positive borders for the partitions Bd+

1, Bd+
2, ..., Bd+

n, derived for the minimum 
support value σ. Let I = {i1, i2, ..., il} denote a set of partition identifiers. Below we 



present the algorithm that discovers all large itemsets that hold in di1 ∪ di2 ∪...∪ dil 
with support above σ', σ' ≥ σ. Once the large itemsets and their supports are 
determined, the rules can be discovered in a straightforward manner [1]. 

First, the positive borders of all the partitions described in I are combined to form 
the global positive border S. Then, for each itemset in S all unique subsets are 
generated to form the set of potentially large itemsets C. In the next step the partitions 
di1, di2, ..., dil  are scanned to count the occurrences of all the itemsets in C. The result 
of the algorithm consists of the itemsets in C with support greater or equal to σ', i.e. 
large itemsets. The algorithm is shown in Figure 3. 
 

 
S = ∅ 
for each partition identifier ik in I do 
  S = θ (S, Bd+

ik) 
C = all unique subsets of the itemsets in S 
for each transaction t ∈ di1 ∪ di2 ∪...∪ dil do 
  increment the count of all itemsets in C that are contained in t 
Answer = all itemsets in C with support ≥ σ' 
 

Fig. 3. Mining association rules 

Example 2 
To illustrate the large itemset generation algorithm, consider the database partitions 
and the positive borders from Example 1. We are looking for all association rules that 
hold in the database partitions d1 and d3 with support ≥ 0.4. First, the positive borders 
Bd+

1 = {{4,5,6}, {1,3,5,7}, {2,3,4,7}} and Bd+
3 = {{1,4,6}, {3,5,7}, {2,4,6,7}} are 

combined to form the global positive border S = {{1,4,6}, {4,5,6}, {1,3,5,7}, {2,3,4,7}, 
{2,4,6,7}}. Then, for each itemset in S all unique subsets are generated to form the set 
of potentially large itemsets C. Thus we get C = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, 
{1,3}, {1,4}, {1,5}, {1,6}, {1,7}, {2,3}, {2,4}, {2,7}, {2,6}, {3,4}, {3,5}, {3,7}, {4,5}, 
{4,6}, {4,7}, {5,6}, {5,7}, {6,7}, {4,5,6}, {1,4,6}, {1,3,5}, {1,3,7}, {1,5,7}, {3,5,7}, 
{2,3,4}, {2,3,7}, {2,4,7}, {3,4,7}, {2,4,6}, {2,6,7}, {4,6,7}, {2,3,4,7}, {2,4,6,7}}. Now, 
the partitions d1 and d3 are scanned and all the itemsets in C are counted. The itemsets 
in C with support greater or equal to 0.4 are returned as the result. In this example the 
resulting large itemsets are: {3}, {4}, {5}, {6}, {7}, {3,7}, {4,6}. The association 
rules that can be derived from those large itemsets are the following: 
 
3 → 7, support = 0.50, confidence = 1.00 
7 → 3, support = 0.50, confidence = 0.75 
4 → 6, support = 0.50, confidence = 0.75 
6 → 4, support = 0.50, confidence = 1.00 
 

Note that the database has been scanned only once to get this result. 



Correctness 
Our algorithm relies on the property that an itemset can only be large if it is large in at 
least one partition. To prove this property formally, we show that if an itemset is not 
large in any of the partitions, then it is not large in the whole database.  

Let si denote the count of the itemset in the partition di. If the itemset is not large in 
any of the database partitions, then: 

 

s1/|d1| < σ ∧ s2/|d2| < σ ∧ ... ∧ sn/|dn| < σ , (5) 

 
therefore: 

 

s1 < σ |d1| ∧ s2 < σ |d2| ∧ ... ∧ sn < σ |dn| . (6) 

 
When we add those inequalities together we get the following: 
 

s1 + s2 + ... + sn < σ |d1| + σ |d2| + ... + σ |dn| , (7) 

 
therefore: 

 

(s1 + s2 + ... + sn )/( |d1| + |d2| + ... + |dn|) < σ . (8) 

 
The last inequality says that the itemset is not large. Thus, we have shown that an 

itemset that is not large in any of the partitions can not be large in the whole database. 

2.4 Database Partitioning  

Let us now consider how the database can be divided into partitions to efficiently use 
the presented method. The limitation of the method is that association rules can be 
mined in union of selected database partitions only, not in whichever part of the 
database. However, it is obvious that in real systems users usually mine association 
rules in semantic ranges of a database - i.e. in data from selected weeks, months, 
supermarkets. Then, each partition can refer to a week or to a supermarket and 
flexible queries over the partitions can be formulated. The similar problem is often 
discussed in OLAP communities. 

Flexibility of the presented method is greater when the number of the database 
partitions is large. On the other hand, large number of partitions results in storage 
overhead. Thus, users can evaluate the number and size of the partitions individually, 
depending on the storage cost and flexibility requirements. We evaluated that a real-
life number of database partitions in which users mine association rules is 20-50. 



Another important feature of the itemset materializing method is that it is easy to 
maintain the materialized positive borders for the database partitions. When a 
database or data warehouse is updated, the materialized positive borders for the 
updated database partitions should be updated too. When new partitions are appended 
to a database or data warehouse, then the positive borders for the new partitions must 
be computed, however, none of the previously materialized positive borders need to 
be updated. Besides, computing the positive borders for a partition can be done fast, 
because the whole partition is likely to fit in main memory. 

3 Experimental Results 

To assess the performance of the proposed method, we conducted several experiments 
on large itemset discovering by using a 2-processor Sun SPARCserver 630MP with 
128 MB of main memory. The database was implemented in Oracle 7.3.1 DBMS. 
Experimental data sets were generated by the synthetic data generator GEN from 
Quest project [2]. GEN generates textual data files that contain sets of numerical 
items. Several parameters affect the distribution of the synthetic data. These 
parameters are shown in Table 1. To load the contents of the data files into the 
database, Oracle SQL*Loader program was used. 

Table 1. Synthetic data parameters 

parameter value parameter value 
ntrans number of item sets, 

1,000 and 10,000 
npats number of patterns, 50 

and 500 
nitems number of different items, 

100 
patlen average length of 

maximal pattern, 6 
tlen average items per set, 10 

and 15 
corr correlation between 

patterns, 0.25 
 
 
Figures 4 and 5 show the execution time of discovering the large itemsets in the 

synthetic database for different minimum support values. The positive borders were 
materialized before the experiment with the traditional Apriori algorithm. We have 
compared the performance of our method (for different numbers of partitions) with 
the performance of the algorithm Apriori. Our method, for 5-20 partitions and 
minimum support > 0.05, beat out Apriori, running 2-3 times faster. As we expected, 
its performance decreases for decreasing the minimum support value and for 
increasing the number of partitions. This behavior can be explained by larger number 
of itemsets that are described by the global positive border.  

Figure 6 shows the storage overhead for the materialized positive borders for 
different numbers of partitions. The space needed to store the positive borders is 
linearly proportional to the number of partitions. In our experiments, the storage 



overhead for 30 partitions and minimum support = 0.1 was c.a. 50% of the size of the 
database. This is the cost of faster mining association rules. 
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Fig. 4. Execution time for different minimum support values 
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Fig. 5. Execution time for different numbers of partitions and different minimum supports 
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Fig. 6. Size of positive borders for different numbers of partition 

4 Conclusions and Future Work 

We have introduced and discussed the use of materialized itemsets in the task of 
discovering association rules in large databases. Our algorithm uses the materialized 
itemsets to efficiently generate the large itemsets that occur in the whole database or 
only in a part of it. Thus, the required association rules can be interactively mined 
with only one scan of the database. 

We have presented our experimental results for synthetic databases to show that 
itemset materializing can be an effective tool for data mining. The itemset 
materializing method was compared with Apriori algorithm and significantly 
outperformed it. We note that there is a trade-off between the flexibility of mining 
association rules (in different parts of a database) and the storage overhead.  

For the future work, we plan to extend the presented method along the following 
dimensions: 
• develop other data structures that can be used for fast sequential patterns discovery 

and classification, 
• study the buffer management techniques for data mining to efficiently process 

sequences of association rules mining requests. 
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