
Solution Pattern for Anomaly Detection

in Financial Data Streams

Maciej Zakrzewicz
1, Marek Wojciechowski

1
, Paweł Gławiński2

1 Poznan University of Technology, Poznan, Poland

{maciej.zakrzewicz, marek.wojciechowski}

@cs.put.poznan.pl

2 Softman SA, Piaseczno, Poland

pawel.glawinski@softman.pl

Abstract. Anomaly detection in versatile financial data streams is a vital busi-

ness problem. Existing IT solutions for business anomaly detection usually rely

on explicit Complex Event Processing or near-real time Business Activity Mon-

itoring. In this paper we argue that business anomaly detection should be con-

sidered an implicit infrastructural BPM service and we propose a corresponding

Solution Pattern. We describe how a Business Anomaly Detector can be archi-

tectured and designed in order to handle fast dynamic streams of business ob-

jects in BPM environments. The presented solution has been practically verified

in Oracle SOA/BPM Suite environment which handled real-life financial con-

trolling business processes.

Keywords: service oriented systems, design patterns, risk management.

1 Introduction

Business anomaly detection is a technique used to identify business items or events

which do not conform to valid data patterns. Typical business anomalies include cred-

it card frauds, purchase card frauds, telecommunication subscription fraud, phone call

fraud, financial reporting fraud, insurance fraud, fraudulent claims for health care,

credit applications fraud, credit transactional fraud, etc. Since fraud is a multi-million

dollar business, efficient IT solutions are demanded by the business sector to timely

detect anomalous/fraudulent activities attempted by performers of business processes

fed with streams of complex data. Anomalies in business process execution may ex-

hibit themselves in different manners, e.g., as an unusual process object state, as an

unusual process execution path, as an unusual performer-to-activity assignment.

For a long time, SOA-based Business Process Management Systems (BPMS) have

been used to design and execute services (typically SOAP Web Services) orchestrated

into complex business processes performed by humans and applications. However,

despite the maturity of business process modeling techniques and efficiency of execu-

tion platforms, effective monitoring of the flow of such business processes still lacks

usability and flexibility, especially in the area of detecting anomalous business behav-

2

ior, e.g., representing fraudulent actions. Existing solutions rely either on explicit calls

to rule evaluation systems (Complex Event Processing) in order to validate business

data, engage external tools for near-real time business reporting (Business Activity

Monitoring) or simply assume that anomaly detection is outside functional require-

ments. We argue that monitoring capabilities of BPMSs should be expanded with

functions to automatically monitor every single business process instance to detect

anomalous activities and report their findings to other components/processes.

Architectural, Design, and Solution Patterns are known as generalized, formalized

descriptions of reusable solutions to common problem classes within a given context,

supposed to transfer knowledge about successful designs and implementations. Ex-

amples of patterns that may partially support business anomaly detection include

Complex Event Processing (CEP) Design Pattern and Business Activity Monitoring

(BAM) Design Pattern. Unfortunately, the diverse nature of business processes and

their business data objects make it challenging to develop a universal CEP or BAM

framework for business anomaly detection.

In this paper we describe our proposal for the Business Anomaly Detection Solu-

tion Pattern and we present its successful implementation in the form of an asynchro-

nous Java EE service which can be easily injected into existing Business Process

Management (BPM) environments, allowing business processes to benefit from au-

tomated detection of anomalous behavior.

The remainder of this paper is organized as follows. Section 2 contains related

work. In Section 3 our Business Anomaly Detector Solution Pattern is characterized.

Section 4 describes architecture and design of a real-life Business Anomaly Detector.

Section 5 summarizes results of selected experimental validation tests that we have

conducted to justify our design decisions. Conclusions are presented in Section 6.

2 Related Work

General anomaly detection methods have been covered by numerous papers and sur-

veys. Statistical outlier detection techniques have been described in [3]. Machine

learning anomaly detection methods have been surveyed in [9]. A review of anomaly

detection techniques for numerical and symbolic data has been provided in [2].

SOA best practices and technologies have been covered in [7]. Surveys on Web

Service composition methods can be found in [8]. Implementation best practices and

messaging patterns for SOA have been described in [5]. In [6] the authors discussed

Business Activity Monitoring functional requirements and applications. Patterns for

business processes have been extensively studied in [1]. In [10] the motivation for

design patterns for Complex Event Processing has been presented and a foundation

for them has been provided.

3 Problem Definition

In this section we will follow a usual three-parted scheme [4] to describe our Solution

Pattern.

3

3.1 Context: SOA, BPM, Dynamic Data Streams

The background is a SOA-based Business Process Management environment, where

complex business processes orchestrate both software services and user tasks. The

business processes are fed with data entered by users as well as by data stream

sources like sensors, POS terminals, automatic document feeder scanners, IoT devic-

es, etc. Software services are invoked either directly or through an Enterprise Service

Bus (ESB).

3.2 Problem: Anomaly Detection Based on Rules and Learning Models

Automatic identification of business data objects or events which do not conform to

patterns. The patterns can be static in nature (defined by an operator) or dynamically

discovered (by using machine learning methods). The business data objects/events to

be analyzed can be any business process objects created, retrieved or transmitted by

business process tasks. The business data objects/events will be delivered explicitly or

implicitly intercepted in-flow during a business process execution. The solution

should be platform-agnostic to integrate with various BPM environments.

3.3 Solution: Infrastructural Service

A new architectural component of BPMS, a form of an infrastructural service which

performs on-line monitoring of business data objects being transmitted between activ-

ities of a business process. The captured business data objects are validated against

the static and discovered patterns in order to detect anomalies. When an anomaly is

detected, a BPM message or signal is generated to notify other processes or applica-

tions about the finding (Fig. 1).

Fig. 1. Business Anomaly Detector as an infrastructural service

We have successfully developed a prototype of a Business Anomaly Detector based

on the Java EE platform, using SOAP Web Service messaging, JMS/Kafka message

4

buffering, Drools Rule Management System, Weka Machine Learning, and ESB

message interception. The prototype has been validated in an Oracle SOA/BPM Suite

environment which handled real-life financial controlling business processes.

4 Software Architecture and Design

4.1 Overview

An overview of the architecture of the Business Anomaly Detector is shown in Fig. 2.

Business objects are delivered to SOAP Web Service interfaces as XML documents.

JAXB converts the XML documents into Java objects, which are sent to a throttling

JMS queue or Kafka topic. The objects in the queue/topic are periodically propagated

by the Controller to the embedded JBoss Drools rule engine, which then executes

business anomaly detection rules on the received objects. The business anomaly de-

tection rules are designed by a business user using a visual rule editor (part of our

solution). The rules can be based on the expert’s knowledge or rely on statistical

models obtained through machine learning. The models are learnt using Weka algo-

rithms integrated into the Business Anomaly Detector. When anomalies are detected,

new business objects are created and delivered to an output JMS queue or Kafka top-

ic. The Dispatcher splits the queued objects into classes and delivers them to external

consumers (SOAP Web Services) based on defined allocation schemes. All manage-

ment tasks are handled by a Web-based administration console. A database repository

is used as a persistence store to protect the state of the Business Activity Detector in

case of failures or planned unavailability. MongoDB has been selected for that pur-

pose in our implementation due to its permissive license, simple but adequate data

model, and small write overhead.

Fig. 2. Business Anomaly Detector software architecture

5

Business objects need to be delivered to the Business Anomaly Detector in order to be

processed using static or dynamically discovered anomaly detection rules. Several

scenarios can be considered for this action: (1) a business process can explicitly in-

voke the Business Anomaly Detector, providing objects to be analyzed, (2) a service

call can be intercepted on ESB level and its object can be delivered to the Business

Anomaly Detector, (3) an external application (e.g., a database table trigger, a net-

work firewall) can invoke the Business Anomaly Detector and pass business object

data.

Whenever an anomaly has been detected, a new business object is generated asyn-

chronously. The object can be then consumed by an event-based business process to

perform standard anomaly-related activities (e.g., notifications and alerting) or it can

be processed by an existing Business Activity Monitoring tool in order to visualize

the findings to the operator.

4.2 Input and Output Configuration

Business Anomaly Detector receives input data in the form of streams of XML docu-

ments. Each input stream corresponds to a particular class of analyzed business ob-

jects, e.g., invoices, bank transfers, credit card payments, etc. In order to define a new

input stream a user has to upload an XML Schema document describing the structure

of XML documents that will form the stream. Based on the uploaded XML Schema,

the system will automatically complete the process of input stream definition by per-

forming the following steps: (1) generation and compilation of JAXB classes, (2)

generation of a SOAP Web Service with one operation, called “Receive”, (3) de-

ployment of the created Web Service. The automatically generated code of the Web

Services’ “Receive” operation forwards the JAXB object corresponding to the re-

ceived XML document to the input JMS queue or Kafka topic.

The output of Business Anomaly Detector is a collection of streams of XML doc-

uments representing discovered anomalies, sent to registered external consumers. It is

assumed that a consumer provides a SOAP Web Service to receive XML messages

from Business Anomaly Detector. When defining an output stream, a user has to up-

load an XML Schema describing the outgoing XML documents and provide parame-

ters identifying the consuming SOAP Web Service and its operation. As part of the

output stream definition process, the system will automatically perform the following

steps: (1) generation and compilation of JAXB classes, (2) adding a record to the

system configuration associating the generated JAXB class with the external Web

Service.

4.3 Rule-Based Anomaly Detection

The heart of the Business Anomaly Detector is its rule engine. As this crucial compo-

nent we incorporated Drools since it was the only open source rule engine with a

permissive license that supported all types of rules included in our functional re-

quirements. Drools is implemented using Java, has a well-defined API conforming to

6

the JSR-94 specification, and therefore seamlessly integrates with Java EE applica-

tions.

Business rules in Drools are expressed in a textual format called DRL and have a

WHEN-THEN syntax. Coding business rules directly in DRL can certainly be benefi-

cial for advanced users due to its flexibility and expressive power. However, relying

on free-text rule editing only could make the system too difficult to use for novice

users, especially those without a technical background. Based on this observation, we

developed a GUI to define rules of low or moderate complexity in the form of an

interactive dialog window, still allowing advanced users to switch into the direct DRL

editing mode.

Four types of rules are supported by the Business Anomaly Detector and handled

by its Drools rule engine component:

1. Simple rules based on the current business object only. Example: When a credit

card payment exceeds 1500 EUR, then raise an alert.

2. Aggregation rules based on moving window aggregates calculated from collections

of business objects received in the past. Example: For each new bank transfer cal-

culate the number of bank transfers within the last 24 hours for the given customer

and when this number is greater by at least 50% than the average daily number of

bank transfers for this customer from the last 30 days, then raise an alert.

3. Calendar rules based on schedules to validate business objects received recently.

Example: Every day at 23:59 calculate a balance for each customer for the time

window of the last 30 days and when the balance is below -10000 EUR, then raise

an alert.

4. Learning model rules based on patterns learnt from business objects received re-

cently. Example: When the actual decision for a loan application is different than

predicted by the statistical model, then raise an alert.

For the rules of type 2 we had to extend the out-of-the box Drools engine with ag-

gregate materialization functionality to achieve satisfactory performance of the sys-

tem on large amounts of data (see Sect. 5). For the rule of type 4 we integrated the

Weka data mining library to build prediction models and implemented a solution for

keeping the prediction models up to date (see Sect. 4.4).

4.4 Discovery-Based Anomaly Detection

Data mining subsystem within our Business Anomaly Detector serves two purposes:

(1) generates statistical models based on event history from a defined time window,

(2) based on the built statistical model, discovers anomalies in incoming new business

events. The system reacts to discovered anomalies (e.g., by raising an alert) according

to defined business rules.

Despite the fact that the input to our system can be regarded as a data stream, we

decided against using a dedicated data stream mining library due to immaturity of

available solutions. Instead, we incorporated Weka, which is a well-established and

flexible library. From the collection of algorithms offered by Weka for anomaly pre-

diction we selected two classification algorithms: J48 decision trees and Naïve Bayes.

7

To keep the anomaly detection models up to date we periodically rerun the prediction

algorithms on recent data according to a user-defined time window. We also enable

operators to define derived or calculated facts/attributes in order to provide for anom-

aly detection in correlated parallel data streams.

As building prediction model takes significant time, our system performs this task

in the background. Each statistical model is learnt in one separated execution thread.

When a new prediction model is ready, it is put into production, and immediately

afterwards the new model is being learnt from the most recent time window including

the data that came during the previous model learning cycle. Thus, each statistical

model exists in two versions: the completely learnt Foreground Model which is used

for scoring incoming data and the Background Model being learnt that will become

the new Foreground Model when completed. Expired statistical models (ones re-

placed by new Foreground Models) can be archived (kept in the MongoDB reposito-

ry) for the sake of future analytics or auditing.

The detailed procedure of machine learning and prediction within Business Anom-

aly Detector consists of the following steps: (1) A new business event object is re-

trieved from the input JMS queue or Kafka topic. (2) The business event object is

placed in two Drools streams. The first stream is temporary, i.e., the object is removed

from it after being processed by all defined business rules. The second stream main-

tains an event time window on which statistical models are to be built. Objects are

removed from that stream when they fall out of the time window. (3) Drools business

rules are called. (4) Business rules apply predictive functions based on statistical

models to the business object.

5 Testing and Evaluation

In order to validate the proposed solution pattern and to verify its architectural and

design approaches, we have implemented the Business Anomaly Detector in Oracle

SOA/BPM Suite environment which handled real-life financial controlling business

processes. The prototype implementation served as a proof of concept and was used

as a testbed to verify the effect of aggregate materialization on the performance of

aggregation rules processing.

The impact of our aggregate materialization techniques has been experimentally

verified using a 4-CPU, 16GB RAM Linux machine. Our test business anomaly de-

tection rule alerted when an invoice exceeded the 30-day moving average for a cus-

tomer. The number of customers was set to 100, the daily number of invoices per a

customer varied between 1 and 1000 (uniform distribution). The performance metric

was the number of invoices processed per second. Throughout the experiments aggre-

gate materialization resulted in almost constant throughput of 10000 invoices pro-

cessed per second. With materialization turned off, the performance degraded to an

unacceptable level (i.e., the system unable to process invoices in real time) already

around 100 invoices per a customer, which clearly showed that aggregate materializa-

tion is a must for aggregation-based rules.

8

6 Summary

We have proposed a new solution pattern called Business Anomaly Detector and

provided good practices for its implementation. The Business Anomaly Detector can

be perceived as an infrastructural service, intercepting (explicitly or implicitly) busi-

ness objects from SOA BPM business process flows in order to detect anomalous

behavior. The good practices include asynchronous architecture, four types of anoma-

ly detection rules, aggregate materialization, and off-line learning of discovery-based

business rules. A prototype system has been implemented according to the proposed

solution pattern and has been validated in a real-life environment.

The current deployment architecture is based on Java EE, JMS/Kafka, SOAP tech-

nology stack. Our future work will focus on development of alternative integration

interfaces and runtime platforms, including application containerization and RESTful

Web Services (with business events represented in JSON).

References

1. Van der Aalst, W., Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Patterns.

Distributed and Parallel Databases 14(1), 5–51 (2003).

2. Agyemang, M., Barker, K., Alhajj, R.: A comprehensive survey of numeric and symbolic

outlier mining techniques. Intelligent Data Analysis 10(6), 521–538 (2006).

3. Barnett, V., Lewis, T.: Outliers in statistical data. 3rd edition. John Wiley & Sons, Inc.

(1994).

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture Volume 1: A System of Patterns. Wiley (1996).

5. Chaterjee, S.: Messaging Patterns in Service-Oriented Architecture (Parts 1 and 2). Mi-

crosoft Architects Journal, Issues 2 and 3 (2004).

6. DeFee, J., Harmon, P., Business Activity Monitoring and Simulation, In: Fischer, L.

(ed.), Workflow Handbook, pp. 53–74. Future Strategies Inc., Lighthouse Point (2005).

7. Dodani, M.: Where’s the SOA Beef? Journal of Object Technology 3(10), 41–46 (2004).

8. Dustdar, S., Schreiner., W.: A Survey on Web services Composition. International Jour-

nal of Web and Grid Services 1(1) (2005).

9. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artificial Intelligence

Review 22 (2), 85–126 (2004).

10.Paschke, A.: Design Patterns for Complex Event Processing. Proceedings from Distribut-

ed Event-Based Systems Symposium (2008).

