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Abstract.  Anomaly detection in versatile financial data streams is a vital busi-

ness problem. Existing IT solutions for business anomaly detection usually rely 

on explicit Complex Event Processing or near-real time Business Activity Mon-

itoring. In this paper we argue that business anomaly detection should be con-

sidered an implicit infrastructural BPM service and we propose a corresponding 

Solution Pattern. We describe how a Business Anomaly Detector can be archi-

tectured and designed in order to handle fast dynamic streams of business ob-

jects in BPM environments. The presented solution has been practically verified 

in Oracle SOA/BPM Suite environment which handled real-life financial con-

trolling business processes. 
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1 Introduction 

Business anomaly detection is a technique used to identify business items or events 

which do not conform to valid data patterns. Typical business anomalies include cred-

it card frauds, purchase card frauds, telecommunication subscription fraud, phone call 

fraud, financial reporting fraud, insurance fraud, fraudulent claims for health care, 

credit applications fraud, credit transactional fraud, etc. Since fraud is a multi-million 

dollar business, efficient IT solutions are demanded by the business sector to timely 

detect anomalous/fraudulent activities attempted by performers of business processes 

fed with streams of complex data. Anomalies in business process execution may ex-

hibit themselves in different manners, e.g., as an unusual process object state, as an 

unusual process execution path, as an unusual performer-to-activity assignment. 

For a long time, SOA-based Business Process Management Systems (BPMS) have 

been used to design and execute services (typically SOAP Web Services) orchestrated 

into complex business processes performed by humans and applications. However, 

despite the maturity of business process modeling techniques and efficiency of execu-

tion platforms, effective monitoring of the flow of such business processes still lacks 

usability and flexibility, especially in the area of detecting anomalous business behav-
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ior, e.g., representing fraudulent actions. Existing solutions rely either on explicit calls 

to rule evaluation systems (Complex Event Processing) in order to validate business 

data, engage external tools for near-real time business reporting (Business Activity 

Monitoring) or simply assume that anomaly detection is outside functional require-

ments. We argue that monitoring capabilities of BPMSs should be expanded with 

functions to automatically monitor every single business process instance to detect 

anomalous activities and report their findings to other components/processes. 

Architectural, Design, and Solution Patterns are known as generalized, formalized 

descriptions of reusable solutions to common problem classes within a given context, 

supposed to transfer knowledge about successful designs and implementations. Ex-

amples of patterns that may partially support business anomaly detection include 

Complex Event Processing (CEP) Design Pattern and Business Activity Monitoring 

(BAM) Design Pattern. Unfortunately, the diverse nature of business processes and 

their business data objects make it challenging to develop a universal CEP or BAM 

framework for business anomaly detection.  

In this paper we describe our proposal for the Business Anomaly Detection Solu-

tion Pattern and we present its successful implementation in the form of an asynchro-

nous Java EE service which can be easily injected into existing Business Process 

Management (BPM) environments, allowing business processes to benefit from au-

tomated detection of anomalous behavior.  

The remainder of this paper is organized as follows. Section 2 contains related 

work. In Section 3 our Business Anomaly Detector Solution Pattern is characterized. 

Section 4 describes architecture and design of a real-life Business Anomaly Detector. 

Section 5 summarizes results of selected experimental validation tests that we have 

conducted to justify our design decisions. Conclusions are presented in Section 6. 

2 Related Work 

General anomaly detection methods have been covered by numerous papers and sur-

veys. Statistical outlier detection techniques have been described in [3]. Machine 

learning anomaly detection methods have been surveyed in [9]. A review of anomaly 

detection techniques for numerical and symbolic data has been provided in [2].  

SOA best practices and technologies have been covered in [7]. Surveys on Web 

Service composition methods can be found in [8]. Implementation best practices and 

messaging patterns for SOA have been described in [5]. In [6] the authors discussed 

Business Activity Monitoring functional requirements and applications. Patterns for 

business processes have been extensively studied in [1]. In [10] the motivation for 

design patterns for Complex Event Processing has been presented and a foundation 

for them has been provided.  

3 Problem Definition 

In this section we will follow a usual three-parted scheme [4] to describe our Solution 

Pattern. 
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3.1 Context: SOA, BPM, Dynamic Data Streams 

The background is a SOA-based Business Process Management environment, where 

complex business processes orchestrate both software services and user tasks. The 

business processes are fed with data entered by users as well as by data stream 

sources like sensors, POS terminals, automatic document feeder scanners, IoT devic-

es, etc. Software services are invoked either directly or through an Enterprise Service 

Bus (ESB). 

3.2 Problem: Anomaly Detection Based on Rules and Learning Models 

Automatic identification of business data objects or events which do not conform to 

patterns. The patterns can be static in nature (defined by an operator) or dynamically 

discovered (by using machine learning methods). The business data objects/events to 

be analyzed can be any business process objects created, retrieved or transmitted by 

business process tasks. The business data objects/events will be delivered explicitly or 

implicitly intercepted in-flow during a business process execution. The solution 

should be platform-agnostic to integrate with various BPM environments. 

3.3 Solution: Infrastructural Service 

A new architectural component of BPMS, a form of an infrastructural service which 

performs on-line monitoring of business data objects being transmitted between activ-

ities of a business process. The captured business data objects are validated against 

the static and discovered patterns in order to detect anomalies. When an anomaly is 

detected, a BPM message or signal is generated to notify other processes or applica-

tions about the finding (Fig. 1). 

 

 

Fig. 1. Business Anomaly Detector as an infrastructural service 

We have successfully developed a prototype of a Business Anomaly Detector based 

on the Java EE platform, using SOAP Web Service messaging, JMS/Kafka message 
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buffering, Drools Rule Management System, Weka Machine Learning, and ESB  

message interception. The prototype has been validated in an Oracle SOA/BPM Suite 

environment which handled real-life financial controlling business processes. 

4 Software Architecture and Design 

4.1 Overview 

An overview of the architecture of the Business Anomaly Detector is shown in Fig. 2. 

Business objects are delivered to SOAP Web Service interfaces as XML documents. 

JAXB converts the XML documents into Java objects, which are sent to a throttling 

JMS queue or Kafka topic. The objects in the queue/topic are periodically propagated 

by the Controller to the embedded JBoss Drools rule engine, which then executes 

business anomaly detection rules on the received objects. The business anomaly de-

tection rules are designed by a business user using a visual rule editor (part of our 

solution). The rules can be based on the expert’s knowledge or rely on statistical 

models obtained through machine learning. The models are learnt using Weka algo-

rithms integrated into the Business Anomaly Detector. When anomalies are detected, 

new business objects are created and delivered to an output JMS queue or Kafka top-

ic. The Dispatcher splits the queued objects into classes and delivers them to external 

consumers (SOAP Web Services) based on defined allocation schemes. All manage-

ment tasks are handled by a Web-based administration console. A database repository 

is used as a persistence store to protect the state of the Business Activity Detector in 

case of failures or planned unavailability. MongoDB has been selected for that pur-

pose in our implementation due to its permissive license, simple but adequate data 

model, and small write overhead. 

 

 

Fig. 2. Business Anomaly Detector software architecture 
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Business objects need to be delivered to the Business Anomaly Detector in order to be 

processed using static or dynamically discovered anomaly detection rules. Several 

scenarios can be considered for this action: (1) a business process can explicitly in-

voke the Business Anomaly Detector, providing objects to be analyzed, (2) a service 

call can be intercepted on ESB level and its object can be delivered to the Business 

Anomaly Detector, (3) an external application (e.g., a database table trigger, a net-

work firewall) can invoke the Business Anomaly Detector and pass business object 

data. 

Whenever an anomaly has been detected, a new business object is generated asyn-

chronously. The object can be then consumed by an event-based business process to 

perform standard anomaly-related activities (e.g., notifications and alerting) or it can 

be processed by an existing  Business Activity Monitoring tool in order to visualize 

the findings to the operator. 

4.2 Input and Output Configuration 

Business Anomaly Detector receives input data in the form of streams of XML docu-

ments. Each input stream corresponds to a particular class of analyzed business ob-

jects, e.g., invoices, bank transfers, credit card payments, etc. In order to define a new 

input stream a user has to upload an XML Schema document describing the structure 

of XML documents that will form the stream. Based on the uploaded XML Schema, 

the system will automatically complete the process of input stream definition by per-

forming the following steps: (1) generation and compilation of JAXB classes, (2) 

generation of a SOAP Web Service with one operation, called “Receive”, (3) de-

ployment of the created Web Service. The automatically generated code of the Web 

Services’ “Receive” operation forwards the JAXB object corresponding to the re-

ceived XML document to the input JMS queue or Kafka topic. 

The output of Business Anomaly Detector is a collection of streams of XML doc-

uments representing discovered anomalies, sent to registered external consumers.  It is 

assumed that a consumer provides a SOAP Web Service to receive XML messages 

from Business Anomaly Detector. When defining an output stream, a user has to up-

load an XML Schema describing the outgoing XML documents and provide parame-

ters identifying the consuming SOAP Web Service and its operation. As part of the 

output stream definition process, the system will automatically perform the following 

steps: (1) generation and compilation of JAXB classes, (2) adding a record to the 

system configuration associating the generated JAXB class with the external Web 

Service. 

4.3 Rule-Based Anomaly Detection 

The heart of the Business Anomaly Detector is its rule engine. As this crucial compo-

nent we incorporated Drools since it was the only open source rule engine with a 

permissive license that supported all types of rules included in our functional re-

quirements. Drools is implemented using Java, has a well-defined API conforming to 
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the JSR-94 specification, and therefore seamlessly integrates with Java EE applica-

tions.  

Business rules in Drools are expressed in a textual format called DRL and have a 

WHEN-THEN syntax. Coding business rules directly in DRL can certainly be benefi-

cial for advanced users due to its flexibility and expressive power. However, relying 

on free-text rule editing only could make the system too difficult to use for novice 

users, especially those without a technical background. Based on this observation, we 

developed a GUI to define rules of low or moderate complexity in the form of an 

interactive dialog window, still allowing advanced users to switch into the direct DRL 

editing mode.  

Four types of rules are supported by the Business Anomaly Detector and handled 

by its Drools rule engine component:  

1. Simple rules based on the current business object only. Example: When a credit 

card payment exceeds 1500 EUR, then raise an alert. 

2. Aggregation rules based on moving window aggregates calculated from collections 

of business objects received in the past. Example: For each new bank transfer cal-

culate the number of bank transfers within the last 24 hours for the given customer 

and when this number is greater by at least 50% than the average daily number of 

bank transfers for this customer from the last 30 days, then raise an alert.   

3. Calendar rules based on schedules to validate business objects received recently. 

Example: Every day at 23:59 calculate a balance for each customer for the time 

window of the last 30 days and when the balance is below -10000 EUR, then raise 

an alert.  

4. Learning model rules based on patterns learnt from business objects received re-

cently. Example: When the actual decision for a loan application is different than 

predicted by the statistical model, then raise an alert. 

For the rules of type 2 we had to extend the out-of-the box Drools engine with ag-

gregate materialization functionality to achieve satisfactory performance of the sys-

tem on large amounts of data (see Sect. 5). For the rule of type 4 we integrated the 

Weka data mining library to build prediction models and implemented a solution for 

keeping the prediction models up to date (see Sect. 4.4). 

4.4 Discovery-Based Anomaly Detection 

Data mining subsystem within our Business Anomaly Detector serves two purposes: 

(1) generates statistical models based on event history from a defined time window, 

(2) based on the built statistical model, discovers anomalies in incoming new business 

events. The system reacts to discovered anomalies (e.g., by raising an alert) according 

to defined business rules.  

Despite the fact that the input to our system can be regarded as a data stream, we 

decided against using a dedicated data stream mining library due to immaturity of 

available solutions. Instead, we incorporated Weka, which is a well-established and 

flexible library. From the collection of algorithms offered by Weka for anomaly pre-

diction we selected two classification algorithms: J48 decision trees and Naïve Bayes. 
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To keep the anomaly detection models up to date we periodically rerun the prediction 

algorithms on recent data according to a user-defined time window. We also enable 

operators to define derived or calculated facts/attributes in order to provide for anom-

aly detection in correlated parallel data streams.  

As building prediction model takes significant time, our system performs this task 

in the background. Each statistical model is learnt in one separated execution thread. 

When a new prediction model is ready, it is put into production, and immediately 

afterwards the new model is being learnt from the most recent time window including 

the data that came during the previous model learning cycle. Thus, each statistical 

model exists in two versions: the completely learnt Foreground Model which is used 

for scoring incoming data and the Background Model being learnt that will become 

the new Foreground Model when completed. Expired statistical models (ones re-

placed by new Foreground Models) can be archived (kept in the MongoDB reposito-

ry) for the sake of future analytics or auditing. 

The detailed procedure of machine learning and prediction within Business Anom-

aly Detector consists of the following steps: (1) A new business event object is re-

trieved from the input JMS queue or Kafka topic. (2) The business event object is 

placed in two Drools streams. The first stream is temporary, i.e., the object is removed 

from it after being processed by all defined business rules. The second stream main-

tains an event time window on which statistical models are to be built. Objects are 

removed from that stream when they fall out of the time window. (3) Drools business 

rules are called. (4) Business rules apply predictive functions based on statistical 

models to the business object. 

5 Testing and Evaluation 

In order to validate the proposed solution pattern and to verify its architectural and 

design approaches, we have implemented the Business Anomaly Detector in Oracle 

SOA/BPM Suite environment which handled real-life financial controlling business 

processes. The prototype implementation served as a proof of concept and was used 

as a testbed to verify the effect of aggregate materialization on the performance of 

aggregation rules processing.  

The impact of our aggregate materialization techniques has been experimentally 

verified using a 4-CPU, 16GB RAM Linux machine. Our test business anomaly de-

tection rule alerted when an invoice exceeded the 30-day moving average for a cus-

tomer. The number of customers was set to 100, the daily number of invoices per a 

customer varied between 1 and 1000 (uniform distribution). The performance metric 

was the number of invoices processed per second. Throughout the experiments aggre-

gate materialization resulted in almost constant throughput of 10000 invoices pro-

cessed per second. With materialization turned off, the performance degraded to an 

unacceptable level (i.e., the system unable to process invoices in real time) already 

around 100 invoices per a customer, which clearly showed that aggregate materializa-

tion is a must for aggregation-based rules. 
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6 Summary 

We have proposed a new solution pattern called Business Anomaly Detector and 

provided good practices for its implementation. The Business Anomaly Detector can 

be perceived as an infrastructural service, intercepting (explicitly or implicitly) busi-

ness objects from SOA BPM business process flows in order to detect anomalous 

behavior. The good practices include asynchronous architecture, four types of anoma-

ly detection rules, aggregate materialization, and off-line learning of discovery-based 

business rules. A prototype system has been implemented according to the proposed 

solution pattern and has been validated in a real-life environment. 

The current deployment architecture is based on Java EE, JMS/Kafka, SOAP tech-

nology stack. Our future work will focus on development of alternative integration 

interfaces and runtime platforms, including application containerization and RESTful 

Web Services (with business events represented in JSON). 
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