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Abstract. Frequent itemset mining is one of fundamental data mining
problems that shares many similarities with traditional database query-
ing. Hence, several query optimization techniques known from database
systems have been successfully applied to frequent itemset queries, in-
cluding reusing results of previous queries and multi-query optimization.
In this paper, we consider a new problem of processing of streams of in-
coming frequent itemset queries, where like in multi-query optimization
a number of queries are executed together and share some of their op-
erations, but unlike in previously considered scenarios, new queries are
dynamically being added to the currently processed set of queries.
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1 Introduction

Frequent itemset mining is one of fundamental data mining problems, where the
goal is to discover subsets frequently occurring in a collection of sets of items. The
problem was introduced in the context of market basket analysis as the initial
step in association rule mining [1] but quickly became the main focus of research
on frequent pattern discovery. While generating association rules from discovered
frequent itemsets is a relatively straightforward task, numerous frequent itemset
mining algorithms have been proposed, of which Apriori [3] is the most widely
implemented in practice. Apriori starts with the discovery of frequent items and
then iteratively finds larger frequent itemsets using a generate-and-test strat-
egy, exploiting the property that all subsets of a frequent itemset must also be
frequent. In order to facilitate efficient counting of potentially frequent itemsets
(called candidates), Apriori maintains a specialized in-memory data structure
called hash tree.

Frequent itemset mining can be regarded as advanced database querying
[7], and hence may benefit from optimization strategies that have previously
been considered and successfully applied in the context of database management
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systems. A frequent itemset query contains predicates for selection of source data
to be mined and a minimum support threshold. Optionally, it may also contain
predicates concerning frequent itemsets to be discovered.

First solutions addressing efficient processing of frequent itemset queries fo-
cused on incorporating pattern constraints into the mining process, rather than
verifying them in the post-processing step, to reduce the query execution time.
Various types of patterns constraints were identified and strategies of handling
them within existing pattern mining methodologies were proposed [13].

The next step in the area of frequent itemset query optimization was reusing
materialized results of previous queries. It was observed that data mining is of-
ten an interactive and iterative process where users adjust constraints of their
queries, and as a result, a sequence of similar data mining queries may be sub-
mitted to the system. Several result reusing schemes were proposed, exploiting
various classes of differences between the queries [6][10][12].

Finally, the problem of efficient processing of sets of frequent itemset queries
was considered, borrowing general ideas of computation sharing from the area of
multi-query optimization in database systems. This time the motivation was to
speed up execution of batches of queries that may occur mainly in data mining
systems working in a batch mode. Several processing schemes were proposed for
concurrent execution of sets of frequent itemset queries, broadly divided into
techniques depending on (e.g. [15]) and independent of (e.g., [16]) a particular
frequent itemset mining algorithm.

In this paper we shift the focus back on interactive data mining systems.
Reusing results of previous queries, which is targeted at such systems, has several
important limitations. Firstly, any given query may benefit from the results of
only these queries which have completed earlier and whose results have been
materialized. Secondly, specific relationships between the source datasets and
pattern constraints of the queries must hold for one query to be able to consume
the results of another query.

On the other hand, techniques of processing of sets of frequent itemset queries
try to exploit any overlapping between the queries’ datasets but their application
to streams of queries is problematic. It was postulated that an interactive system
could group queries from a given time window in order to process them together
but clearly such a strategy, while possibly beneficial from the point of view of
utilizing the system’s resources, may lead to postponing some queries with no
actual benefit.

Motivated by the shortcomings of existing solutions, we propose to handle
streams of frequent itemset queries in a similar manner to sets of such queries,
i.e., trying to benefit from any overlapping among the datasets of the queries
currently available to the data mining system, but allowing new queries to join
the batch currently being executed without waiting for it to complete. Obviously,
within such an approach we are going to look for solutions by adapting existing
techniques for sets of frequent itemset queries to handle “dynamic” batches of
queries. In this paper, we focus on the adaptation of one of the simplest but at the
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same time efficient and easy to implement technique called Common Counting
[15], dedicated to Apriori.

2 Related Work

Apart from the approaches to optimizing execution of frequent itemset queries
already mentioned in the introduction, the most related to the problem consid-
ered in this paper are works concerning multi-query optimization in data mining
and other research domains.

Multiple-query optimization has been extensively studied in the context of
database systems (see [14] for an overview). The idea was to identify common
subexpressions and construct a global execution plan minimizing the overall
processing time by executing the common subexpressions only once for the set
of queries [4]. In data warehousing, multiple-query optimization has been applied
to speed up maintenance of the set of materialized views by exploiting common
subexpressions between different view maintenance expressions [11].

To the best of our knowledge, apart from the problem considered in this
paper, multiple-query optimization for frequent pattern queries has been con-
sidered only in the context of frequent pattern mining on multiple datasets [9].
The idea was to reduce the common computations appearing in different com-
plex queries, each of which compared the support of patterns in several disjoint
datasets. This is fundamentally different from our problem, where each query
refers to only one dataset and the queries’ datasets overlap.

The need for multiple-query optimization has also been postulated in the
somewhat related research area of inductive logic programming, where a tech-
nique based on similar ideas as Common Counting was proposed, consisting in
combining similar queries into query packs [5].

3 Background and Common Counting Technique

3.1 Basic Definitions

Definition 1. Let I be a set of literals called items. An itemset X is a set of
items from I (X ⊆ I). The size of the itemset is the number of items in it. An
itemset of size k is called a k-itemset.

A transaction over I is a couple T = 〈tid,X〉, where tid is a transaction
identifier and X is an itemset. A database D over I is a set of transactions over
I such that each transaction has a unique identifier.

A transaction T = 〈tid,X〉 supports an itemset Y if Y ⊆ X . The support of
an itemset Y in D is the number of transactions in D that support Y . An itemset
is called frequent in D if its support is no less than a user-specified minimum
support threshold.

Given a database D and a minimum support threshold minsup, the problem
of frequent itemset mining consists in discovering all frequent itemsets in D
together with their supports.
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Definition 2. A frequent itemset query is a tuple dmq = (R, a, Σ, Φ, minsup),
where R is a database relation, a is a set-valued attribute of R, Σ is a condition
involving the attributes of R called a data selection predicate, Φ is a condition
involving discovered itemsets called a pattern constraint, and minsup is the min-
imum support threshold. The result of dmq is a set of itemsets discovered in
πaσΣR, satisfying Φ, and having support ≥ minsup (π and σ denote relational
projection and selection operations respectively).

Definition 3. The set of elementary data selection predicates for a set of fre-
quent itemset queries DMQ = {dmq

1
, dmq

2
, ..., dmqn} is the smallest set S =

{s1, s2, ..., sk} of data selection predicates over the relation R such that for each
u, v (u 6= v) we have σsuR ∩ σsvR = ∅ and for each dmqi there exist integers
a, b, ...,m such that σΣi

R = σsaR ∪ σsbR ∪ .. ∪ σsmR. The set of elementary
data selection predicates represents the partitioning of the database determined
by overlapping of queries’ datasets.

3.2 Common Counting

Common Counting reduces the data retrieval costs for a batch of frequent item-
set queries with respect to sequential processing by concurrent execution of a set
of frequent itemset queries using Apriori and integration of scans of the shared
parts of the database. The method iteratively generates and counts candidates
for all frequent itemset queries. The candidates are generated separately for each
query using the original procedure from the Apriori algorithm and then stored
in separate hash trees. Occurrences of candidates for all the queries are counted
during one integrated database scan so that if a database partition is shared by
several queries, it is read only once during each candidate counting phase. Com-
mon Counting does not incorporate pattern constraints into the actual mining
process, leaving them for post-processing.

Common Counting is a simple technique, optimizing only one aspect of fre-
quent itemset query execution, i.e., data retrieval, but it has several desired
properties important from the point of view of its practical applications. Firstly,
it has a negligible overhead and therefore practically guarantees reduction of the
overall processing time if any overlapping between the queries’ datasets occurs.
Secondly, it can be applied to a large number queries even if their hash trees
do not fit together in memory thanks to the possibility of partitioning the set
of queries and dividing candidate counting into phases [17]. Finally, it has been
shown to work well regardless of the availability of efficient access paths to data
partitions determined by query overlapping [8].

4 Common Counting Stream

The key to adapting Common Counting to streams of frequent itemset queries
is the observation that a Common Counting iteration does not rely on the fact
that all the processed queries are at the same Apriori iteration. Hence, we can
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actually add a new query to the currently processed batch even if the queries
previously added to it already performed one or more Apriori iterations. We
formalize this idea as the Common Counting Stream technique that maintains
a dynamic batch of queries and integrates their data retrieval phases. Similarly
to Common Counting, Common Counting Stream works in iterations but each
query has to control its own iteration counter because Common Counting Stream
iterations are not aligned with the queries’ Apriori iterations. The pseudo-code
of Common Counting Stream is presented in Fig. 1.

Input: DMQ = {dmq1, dmq2, ..., dmqn},
where dmqi = (R, a,Σi, Φi, minsupi)
(1) while true do

(2) update DMQ

(3) S = set of elementary data selection predicates for DMQ

(4) for (i=1; i ≤ n; i++) do
(5) if ki = 1 then

(6) Cki,i = all possible 1-itemsets
(7) else

(8) Cki,i = apriori gen(Fki−1,i)
(9) end if

(10) if Cki,i = ∅ then Answeri = σΦi

⋃
k
Fk,i

(11) end for

(12) for each sj ∈ S do

(13) CC = {Cki,i : σsjR ⊆ σΣi
R}

(14) if CC 6= ∅ then count(CC, σsjR)
(15) end for

(16) for (i=1; i ≤ n; i++) do
(17) Fki,i = {C ∈ Cki,i : C.counter ≥ minsupi}
(18) end while

Fig. 1. Common Counting Stream

Common Counting Stream works in an infinite loop (line 1). At the beginning of
the loop (line 2) it updates the current batch of queries by adding new queries and
removing the ones that completed in the previous iteration, and then updates the
set of elementary data selection predicates (line 3). Next, the algorithm generates
candidates for each query from the batch (lines 4-11) taking into account that
for some queries it may be the first iteration whereas for others a later one.
Generation of candidates of size greater than one (represented in the pseudo-
code by the apriori gen() function) is performed exactly as in the original Apriori
algorithm. Current Apriori iterations are tracked individually for each query and
denoted by ki in the algorithm. Cki,i and Fki,i denote candidates and frequent
itemsets of size ki for the query dmqi. If for a given query no further candidates
can be generated, the query completes and its final results are collected (line
10).
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The counting of candidates is performed exactly as in Common Counting
(lines 12-17). For each elementary data selection predicate, the transactions
from its corresponding database partition are read one by one. For each transac-
tion the candidates of the queries referring to the database partition being read
are considered, and the counters of candidates contained in the transaction are
incremented (lines 12-15). The inclusion test is performed by confronting the
transaction with hash trees of all the queries referring to the database partition
containing the transaction. Candidate counting is represented in the pseudo-code
as the count() function.

Analogously to Common Counting, in our formulation of Common Counting
Stream we assumed that hash trees of all the currently processed queries fit
into main memory. However, a practical implementation of Common Counting
Stream should apply the same strategy of dividing the counting into phases if
the queries’ data structures cannot be accommodated together in memory as
developed for Common Counting.

5 Experimental Results

In order to evaluate efficiency of the proposed new technique of processing
streams of frequent itemset queries we performed a series of experiments on
synthetic data on a PC with Intel Core 2 Duo 2.4GHz processor and 3.5GB
RAM, running Windows 7 32-bit. The compared algorithms were implemented
in Java. The test dataset was prepared using the following procedure. First,
we generated a small dataset using the GEN [2] generator with the following
settings: number of transactions in the database = 100000, average number of
items in a transactions = 8, number of different items = 1000, number of patterns
= 500, average pattern length = 4. Then, we multiplied the resulting dataset
10 times, thus producing a dataset containing 1000000 transactions. formed of
10 partitions having exactly the same data distribution. Thanks to the applied
procedure, when we later considered only queries selecting a number of identi-
cal partitions, we eliminated the possible impact of irregular data distribution
on the obtained results. The total size of the prepared test dataset was 71MB.
The dataset was stored on a hard disk as a flat file accompanied by an index
facilitating selective access to data partitions.

As the goal of the proposed technique was to reduce the overall processing
time of a stream of queries with respect to sequential execution of the queries, the
sequential execution was chosen as a primary reference query execution method.
As a secondary reference method we decided to include execution of the set of
queries using the original Common Counting technique, which can be regarded
as the optimal scenario where all the queries to be processed are submitted to
the system at once.

In all the experiments we measured total execution times but to provide a
better insight into performance gains due to sharing data reading operations be-
tween the queries we also counted the total number of transactions retrieved from
the database. The problem with relying solely on execution times in assessment
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of the compared query processing techniques is that the observed differences in
execution times are dependent on the ratio of CPU costs to I/O costs, and the
latter depend on the location of the dataset (local disk or remote database server)
and its size as well as the possibility of caching the data. In our test bed the
whole dataset easily fit into disk cache, while for real-life scenarios that would
be unlikely. In fact, we can regard our testing environment as the worst-case
scenario to observe reduction of execution times due to sharing data retrieval
operations.

In the first series of experiments we tested the effect of the overlapping be-
tween the queries’ datasets on efficiency of the three compared techniques: se-
quential execution (seq), Common Counting (cc), and Common Counting Stream
(cc-s). We considered the case of two queries, each retrieving half of the dataset.
With the way our input database had been generated, for the tested overlapping
levels we could formulate the queries so that they always operated on datasets
identical in terms of their size and contents, thus eliminating the possible ef-
fect of different data distributions on observed results. The minimum support
threshold of both the queries was set to 2.1% so that they performed five Apriori
iterations. The second query was added after the first one completed its second
Apriori iteration.

The results of this first series of experiments are shown in Fig. 2. As ex-
pected, both the number of retrieved transactions and the total execution time
of Common Counting Stream decrease linearly with the increase of overlapping.
However, since the queries were processed by Common Counting Stream to-
gether only for three out of their five Apriori iterations, the performance gains
are smaller than these of the reference Common Counting method, which was
provided with both the queries from the beginning of its operation (this is how
Common Counting was designed to operate, of course).
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Fig. 2. Execution times (left) and numbers of transactions read (right) for different
levels of overlapping between two frequent itemset queries with minsup=2.1%.

The goal of the second series of experiments was to observe the effect of iteration
offset between the queries (i.e., the number of Apriori iterations performed by the
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first query after which the second query was added). In this series of experiments
the queries always shared 60% of their datasets. The experiments were repeated
for two minimum support thresholds: 2.1% and 3%. With the increased support
threshold both the queries required only four iterations to complete, i.e., one
iteration less than for the threshold of 2.1%. The results are presented in Figures
3 and 4.
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Fig. 3. Execution times for two frequent itemset queries for different iteration offsets
between the two queries with minsup=2.1% (left) and minsup=3% (right)
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Fig. 4. Numbers of transactions read for two frequent itemset queries for different
iteration offsets between the two queries with minsup=2.1% (left) and minsup=3%
(right)

Obviously, the iteration offset matters only for Common Counting Stream. In
sequential execution any subsequent query is postponed until the previous one
completes. On the other hand, Common Counting was applied assuming that
both the queries were available from the beginning. The experiments show that
the smaller the iteration offset the better for the efficiency of Common Count-
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ing Stream. This is certainly not surprising as the smaller this offset the more
iterations can have their data scanning phases integrated for the two queries.
Since we expressed the iteration offset as the number of Apriori iterations (not
the percentage), its impact was more visible for the higher of considered sup-
port thresholds, for which the total number of iterations, and consequently the
number of iterations where I/O integration took place, was smaller than for the
lower support threshold.

In the last series of experiments we tested the three frequent itemset pro-
cessing schemes on streams of two to five queries in order to evaluate scalability
with the number of queries of Common Counting Stream. The streams of queries
were prepared using the following set of rules: 1) Each query had the same min-
imum support threshold (2.1% or 3%) and equal size and contents of the source
dataset by referring to 5 consecutive partitions of the database. 2) The first
query’s dataset started from the first partition, and each subsequent query had
its dataset shifted by one partition. 3) Each subsequent query (beginning with
the second one) was added after the previous one completed its second iteration.
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Fig. 5. Execution times for streams of two to five frequent itemset queries with min-
sup=2.1% (left) and minsup=3% (right)

Execution times and numbers of transactions retrieved from the database for
the last series of experiments are shown in Figures 5 and 6, respectively. It can
be seen that all the compared methods scale linearly with the number of queries
(under the assumption that the queries are identical in terms of their support
thresholds and contents of their source datasets, and additionally for Common
Counting Stream the time intervals between subsequent queries are uniform).
For the smaller of the considered support thresholds performance of Common
Counting Stream is relatively closer to that of Common Counting than for the
higher threshold for the same reason as in the second series of experiments.

The general conclusion is that Common Counting Stream is an efficient tech-
nique of processing streams of frequent itemset queries. Even in our test environ-
ment where the database resided on a local disk and its size was small enough
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Fig. 6. Numbers of transactions read for streams of two to five frequent itemset queries
with minsup=2.1% (left) and minsup=3% (right)

to fit into disk cache, Common Counting Stream noticeably outperformed se-
quential execution in all the conducted experiments. Moreover, detailed analysis
of numbers of data transactions processed by Common Counting Stream is an
indication of even more significant benefits in terms of overall processing time in
production data mining systems where the source data is often remote and/or
too big to fit into disk cache.

On the other hand, in all our experiments Common Counting Stream took
longer to complete than Common Counting. Nevertheless, such a behavior was
expected as the execution of a stream of frequent itemset queries cannot be easier
than the execution of a set of the same queries. In fact, we can regard Common
Counting as a specific case of Common Counting Stream where all the queries
are available from the beginning, and hence the chances of sharing data retrieval
operations between the queries are maximized.

Several parameters influence efficiency of Common Counting Stream. Simi-
larly to Common Counting (and other techniques of processing sets of frequent
itemset queries), Common Counting Stream’s performance gains with respect to
sequential processing are proportional to the level of overlapping between the
queries’ dataset. Other important factors contributing to the efficiency of Com-
mon Counting Stream are the minimum support threshold and time intervals
between the queries (which translates to iteration offset for Common Counting
Stream). In general, the lower the support threshold and the smaller the interval
between query submissions, the better Common Counting Stream performs due
to sharing a greater fraction of Apriori iterations between the queries.

6 Conclusions and Future Work

In this paper we addressed interactive data mining systems supporting frequent
itemset discovery by means of frequent itemset queries. We claimed that existing
solutions were not fully adequate for streams of queries occurring in such systems.
As desired features of a processing scheme for streams of frequent itemset queries,
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we listed the ability to exploit any overlapping among the queries’ datasets and
the possibility to add new queries to the currently processed batch of queries
when some of the previous queries are still being processed.

We postulated that a natural direction in search for such processing schemes
should be adaptation of existing techniques for sets of frequent itemset queries to
the scenario where new queries are continually added. In this paper we presented
an extension of Common Counting, a method falling into the aforementioned cat-
egory, dedicated to the most popular frequent itemset mining algorithm, Apriori.
The resulting technique, Common Counting Stream, applies the same data re-
trieval optimization method as Common Counting but maintains a dynamic
batch of queries which can be at different Apriori iterations. Our experimental
analysis showed that the new technique noticeably outperforms sequential execu-
tion, and may significantly reduce the I/O costs depending on the characteristics
of the query stream and of the queries themselves.

A natural direction of future research is adaptation of other techniques of
processing batches of frequent itemset queries to handle a stream of incoming
queries dynamically added to the processed batch.
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