
Evaluation of Common Counting Method  
for Concurrent Data Mining Queries∗ 

Marek Wojciechowski, Maciej Zakrzewicz 

Poznan University of Technology 
Institute of Computing Science 

ul. Piotrowo 3a, 60-965 Poznan, Poland 
{marek,mzakrz}@cs.put.poznan.pl 

Abstract. Data mining queries are often submitted concurrently to the data 
mining system. The data mining system should take advantage of overlapping 
of the mined datasets. In this paper we focus on frequent itemset mining and we 
discuss and experimentally evaluate the implementation of the Common 
Counting method on top of the Apriori algorithm. The general idea of Common 
Counting is to reduce the number of times the common parts of the source 
datasets are scanned during the processing of the set of frequent pattern queries. 

1   Introduction 

Data mining, also referred to as database mining or knowledge discovery in databases 
(KDD), aims at discovery of useful patterns from large databases or warehouses. 
Nowadays we are witnessing the evolution of data mining environments from 
specialized tools to multi-purpose data mining systems offering some level of 
integration with existing database management systems. Data mining can be seen as 
advanced querying, where a user specifies the source dataset and the requested pattern 
constraints, then the system chooses the appropriate data mining algorithm and 
returns the discovered patterns to the user. One of the most serious problems 
concerning data mining queries is long response time. Current systems often consume 
minutes or hours to answer single queries.  

In practical applications, data mining queries are often executed during nights, 
when system activity is low. Sets of queries are scheduled and then automatically 
evaluated by a data mining system. It is possible that the data mining queries 
delivered to the system are somehow similar, e.g., their source datasets overlap. Such 
queries can be executed serially, however, the fact that the datasets overlap may help 
in parallelizing the query execution. 

In [13] we have proposed various methods for batch processing of data mining 
queries for frequent itemset discovery. In order to improve the overall performance of 
the batched data mining queries, the methods tried to employ the fact that their source 
datasets overlapped. One of the methods, called Mine Merge, partitioned the set of 
                       
∗ This work was partially supported by the grant no. 4T11C01923 from the State Committee for 

Scientific Research (KBN), Poland. 



batched queries into the set of simple isolated queries. Another method, called 
Common Counting, integrated the phases of support counting for candidate itemsets. 
Both methods resulted in significant database I/O reduction. 

In this paper we present our experiences in implementing and evaluating the 
Common Counting method for concurrent data mining queries. We discuss the  
influence of various parameters on the efficiency of Common Counting. Experimental 
results are given to prove the advantages of the Common Counting method in the 
context of concurrent data mining queries. 

1.1   Related Work 

The problem of mining frequent itemsets and association rules was introduced in [1] 
and an algorithm called AIS was proposed. In [3], two new algorithms were presented, 
called Apriori and AprioriTid, that achieved significant improvements over AIS and 
became the core of many new algorithms for mining association rules. Apriori and its 
variants first generate all frequent itemsets (sets of items appearing together in a 
number of database records meeting the user-specified support threshold) and then 
use them to generate rules. Apriori and its variants rely on the property that an itemset 
can only be frequent if all of its subsets are frequent.  

Since it has been observed that generation of association rules from frequent 
itemsets is a straightforward task, further research focused on alternative methods for 
frequent itemset mining. In [14], a different algorithm called Eclat has been proposed. 
Eclat generates lists of itemset identifiers to efficiently generate and count frequent 
itemsets. Recently, a new family of pattern discovery algorithms, called pattern-
growth methods (see [7] for a review), has been developed for discovery of frequent 
itemsets (and other classes of patterns). The methods project databases based on the 
currently discovered frequent patterns and grow such patterns to longer ones in 
corresponding projected databases. Pattern-growth methods are supposed to perform 
better than Apriori-like algorithms in case of low minimum support thresholds. 
Nevertheless, practical studies [10] show that for real datasets Apriori and Eclat might 
still be a more efficient solution. 

The notion of data mining queries (or KDD queries) was introduced in [8]. The 
need for Knowledge and Data Management Systems (KDDMS) as second generation 
data mining tools was expressed. The ideas of application programming interfaces 
and data mining query optimizers were also mentioned. Several data mining query 
languages that are extensions of SQL were proposed [4][6][9][11][12].  

1.2   Basic Definitions 

Frequent itemsets. Let L={l1, l2, ..., lm} be a set of literals, called items. Let a non-
empty set of items T be called an itemset. Let D be a set of variable length itemsets, 
where each itemset T⊆L. We say that an itemset T supports an item x∈L if x is in T. 
We say that an itemset T supports an itemset X⊆L if T supports every item in the set 
X. The support of the itemset X is the percentage of T in D that support X. The 



problem of mining frequent itemsets in D consists in discovering all itemsets whose 
support is above a user-defined support threshold.  
 
Apriori algorithm. Apriori is an example of a level-wise algorithm for frequent 
itemset discovery. It makes multiple passes over the input data to determine all 
frequent itemsets. Let Lk denote the set of frequent itemsets of size k and let Ck denote 
the set of candidate itemsets of size k. Before making the k-th pass, Apriori generates 
Ck using Lk-1. Its candidate generation process ensures that all subsets of size k-1 of Ck 
are all members of the set Lk-1. In the k-th pass, it then counts the support for all the 
itemsets in Ck. At the end of the pass all itemsets in Ck with a support greater than or 
equal to the minimum support form the set of frequent itemsets Lk. Figure 1 provides 
the pseudocode for the general level-wise algorithm, and its Apriori implementation. 
The subset(t, k) function gives all the subsets of size k in the set t.  

This method of pruning the Ck set using Lk-1 results in a much more efficient 
support counting phase for Apriori when compared to the earlier algorithms. In 
addition, the usage of a hash-tree data structure for storing the candidates provides a 
very efficient support-counting process. 

 
 
C1 = {all 1-itemsets from D} 
for (k=1; Ck ≠ ∅; k++) 
            count(Ck, D); 
 Lk = {c ∈ Ck | c.count ≥ minsup}; 
 Ck+1 = generate_candidates(Lk); 

Answer = UkLk; 
 

L1 = {frequent 1-itemsets} 
for (k = 2; Lk-1 ≠ ∅; k++) 
 Ck = generate_candidates(Lk-1); 
 forall tuples t ∈ D 
      Ct=Ck ∩ subset(t, k); 
      forall candidates c ∈ Ct 
         c.count++; 
   Lk = {c ∈ Ck | c.count ≥ minsup} 

Answer = UkLk; 

Fig. 1. A general level-wise algorithm for association discovery (left)  
and its Apriori implementation (right) 

2   Preliminaries and Problem Statement 

Data mining query. A data mining query is a tuple DMQ = (R, a, Σ, Φ), where R is a 
relation, a is an attribute of R, Σ is a condition involving the attributes of the 
relation R, Φ is a condition involving discovered patterns. The result of the data 
mining query is a set of patterns discovered in πaσΣ and satisfying Φ. 

 
Example. Given the relation R1 shown in Fig. 2, the result of the data mining query 
DMQ1=(R1, “basket”, “id>5 AND id<10”, “minsup ≥ 3”) is shown in Fig. 3. 

 
 
 



R1: id  basket 
    -------- 
     1  a,b,c 
     4  a,c 
     6  d,f,g 
     7  f,g,k,m 
     8  e,f,g 
    15  a,f  

 

Fig. 2. Example relation R1 

 
 
 
result of DMQ1: 
 
{f} 
{g} 
{f,g} 
 

Fig. 3. DMQ1 query result 

 
Problem statement. Given a set S = {DMQ1, DMQ2, …, DMQn} of data mining 
queries, where DMQi = (R, a, Σi, Φi) and ∀i ∃j≠i σΣi (R) ∩ σΣj (R) ≠ ∅, the goal is to 
minimize the I/O cost and the CPU cost of executing S. 

2.1   Motivating example 

Consider a relation Sales(uad, basket, time) to store purchases made by users of an 
internet shop. For every visit to a shop, we store the user’s internet address (uad), the 
products purchased (basket) and the time of the visit (time). Since datasets of this kind 
tend to be very large, there is a need for automated analysis of their contents. One of 
the data mining methods that proved to be useful for such analysis is associations 
discovery. Assume a shop manager is interested in finding sets of products that were 
frequently co-occurring in the users’ purchases. The shop manager plans to create two 
reports: one showing the frequent sets that appeared in more than 350 purchases in 
January 2002 and one showing the frequent sets that appeared in more than 20 
purchases made by customers from France. The two data mining queries shown below 
are required to construct the response. 

 
DMQA=(Sales, “basket”, “time between ’01-01-02’ and ’01-31-02’”, “minsup > 350”) 
DMQB=(Sales, “basket”, “uad like ‘%.fr’”, “minsup > 20”) 

 
If the size of the Sales relation is very large, each of the above data mining queries 
can take a significant amount of time to execute. Part of this time will be spent on 
reading the Sales relation from disk in order to count occurrences of candidate 
itemsets. Notice that the sets of blocks to be read by the two data mining queries may 
overlap. If we try to merge the processing of the two data mining queries, we can 
reduce redundancy resulting from this overlapping. In the remaining of this paper we 
will use this example to illustrate our method. 

3   Cost Analysis of Level-Wise Algorithms 

In order to analytically compare the complexity of the method considered, first we 
derive the execution cost functions for a generic level-wise algorithm. We make the 
following assumptions: (1) the size of the database is much larger than the size of all 



candidate itemsets, (2) the size of all candidate itemsets can be larger than the 
memory size, and (3) frequent itemsets fit in memory. The notation we use is given in 
Table 1. 

Table 1. Notation used in cost models 

M main memory size (blocks) 
|D| number of itemsets in the database 
||D|| size of the database (blocks) 
|Ci| number of candidate itemsets for step i 
||Ci|| size of all candidate itemsets for step i (blocks), ||Ci||<<||D||, ||Ci||<M 
|Li| number of frequent itemsets for step i, |Li|<|Ci| 
||Li|| size of all frequent itemsets for step i (blocks), ||Li||<M 

 
The cost of performing the general level-wise association discovery algorithm is as 
follows: 

 
1.  Candidate counting-pruning. Candidate itemsets must be read from disk in 

portions equal to the available memory size. For each portion, the database must 
be scanned to join itemsets from Ci with itemsets from D. Next, the candidate 
itemsets with support greater or equal to minsup become frequent itemsets and 
must be written to disk. The I/O cost of a single iteration i is the following: 

 

i
i

iOI LD
M

C
C ++=/cost  

 
The dominant part of the CPU cost is join condition verification. For the 
simplicity, we assume the cost of comparing two itemsets does not depend on 
their sizes and equals 1. Thus, the CPU cost of a single iteration i is the 
following: 

 

DCiCPU =cost  

 
2.  Candidate generation. Frequent itemsets from the previous iteration must be 

read from disk, joined in memory, and saved as new candidate itemsets. The I/O 
cost of a single iteration i is the following: 

 

1/cost ++= iiOI CL  

 
The CPU cost of this phase of the algorithm is the following: 
 

iiCPU LL=cost  

 



Therefore, if K is the number of iterations, the overall cost of the level-wise algorithm 
is as follows: 

∑
=

+ 









+++=

K

i
ii

i
iOI CLD

M

C
C

1
1/ 2cost  

( )∑
=

+ +=
K

i
iiCPU LDC

1

2

1cost  

4   Common Counting Method 

When two or more different DMQs count their candidate itemsets in the same part of 
the database, only one scan of the common part of the database is required and during 
that scan candidates generated by all the queries referring to that part of the database 
are counted. For the sake of simplicity we formally present the Common Counting 
method in the context of Apriori algorithm for two concurrent DMQs only (Fig. 4). It 
is straightforward to extend the technique to support more than two DMQs. 

 
 C1

A = {all 1-itemsets from DA} 
C1

B = {all 1-itemsets from DB} 
for (k=1; Ck

A ∪ Ck
B ≠ ∅; k++)  

            if Ck
A ≠ ∅ count(Ck

A, DA - DB); 
            if Ck

B ≠ ∅ count(Ck
B, DB - DA); 

            count(Ck
A ∪ Ck

B, DA ∩ DB); 
 Lk

A = {c ∈ Ck
A | c.count ≥ minsupA}; 

 Lk
B = {c ∈ Ck

B | c.count ≥ minsupB}; 
 Ck+1

A = generate_candidates(Lk
A); 

 Ck+1
B = generate_candidates(Lk

B); 
AnswerA = UkLk

A; 
AnswerB = UkLk

B; 

Fig. 4. Model of the Common Counting method 

During the integrated counting, the candidates from all the DMQs are loaded into the 
main memory. Next, the database is scanned and for each itemset from the database 
the supported candidate counters for all the relevant queries are incremented. If the 
candidates’ set does not fit into memory, it is loaded in parts and the database is 
scanned multiple times (for the combined candidate set we apply the scheme 
proposed in the context of the original Apriori algorithm in [3]). After the candidate 
supports are calculated, frequent itemsets are derived in a traditional way. 



The Common Counting method is directly applicable to all level-wise algorithms 
(e.g., Apriori)1. The advantage of the method is database scan reduction because the 
common part of the database must be logically read only once.  

Different ways of implementing the candidate counting step are possible. In this 
paper we propose the following solution. The database is logically divided into 
disjoint partitions such that each part is a subset of the source dataset for one or more 
DMQs. In the candidate verification phase the database is scanned sequentially. 
Before scanning each of the partitions, candidates for all the queries referring to that 
partition have to be available. If for a given query the candidates have not been 
generated while processing previous partitions, then they have to be generated. We do 
not combine the sets of candidates for the collection of queries - for each query a 
separate candidate hash-tree is built. If the candidates for a given partition do not fit 
into available memory, they are processed in parts and the database partition is 
scanned several times (as in the original Apriori). After processing a database 
partition, the candidate hash-trees are swapped to disk only if the system is short of 
memory. Candidate hash-trees for queries that will not be needed for the highest 
number of subsequent partitions are first to be swapped.  

We see two alternatives to the candidate counting scheme described above based 
on the idea of combining candidate sets. Firstly, the candidates for all the queries can 
be combined and stored in one hash-tree with each candidate having several counters 
(one for each query). Since such a structure will contain candidates that should be 
counted in some partitions but not considered in others, a list of relevant database 
partitions should be associated with each candidate itemset. Efficiency of the scheme 
will likely depend on the number of common candidates between the queries.  

Secondly, we can modify the above scheme by combining the sets of candidates of 
the queries before processing each database partition, considering only the candidates 
of the relevant queries. This approach minimizes the memory usage but requires 
several costly operations of building and then destroying hash-trees. Evaluation of the 
two alternative candidate counting schemes is beyond the scope of this paper and is 
regarded as a topic for future research.  

 
Example. Let us consider the following example of the Common Counting method. 
Using the database selection conditions from the Section 2.1, we construct three 
separate dataset definitions: 

 
1.  select basket 

from   sales 
where  time between ’01-01-02’ and ’01-31-02’ 
  and  NOT uad like ‘%.fr’ 
 

2.  select basket 
from   sales 
where  time between ’01-01-02’ and ’01-31-02’ 
  and  uad like ‘%.fr’ 

 

                       
1 It should be noted that Common Counting can also be applied to algorithms that use Apriori-

like generate-and-test scheme in one of their phases (e.g., Eclat) 



3.  select basket 
from   sales 
where  NOT time between ’01-01-02’ and ’01-31-02’ 
  and  uad like ‘%.fr’ 
 

Next, we scan the first query’s result in order to count DMQA candidate itemsets, then 
we scan the second query’s result in order to count both DMQA and DMQB candidate 
itemsets, finally we scan the third query’s result in order to count DMQB candidate 
itemsets. Notice that none of the database blocks needed to be read twice, on the 
condition that candidate itemsets fit in memory. 

 
 

Let us analyze the cost of the level-wise phase of the Common Counting  method. 
Candidate itemsets of DMQA must be read, joined with DA-DB, counted, and saved to 
disk. Also, candidate itemsets of DMQB must be read, joined with DB-DA, counted, 
and saved to disk. Next, all candidates of DMQA and DMQB must be read, joined with 
DA∩ DB, counted, and saved to disk. The candidate itemsets with support greater or 
equal to, respectively, minsupA or minsupB, become frequent itemsets and are written 
to disk. In order to generate new candidate itemsets, all frequent itemsets must be read 
from disk and new candidate itemsets must be written to disk. Therefore, the I/O cost 
of this method is the following: 

 

∑
=

++ 





++++∩

+
+







−++−+

=
),max(

1

11

/

22

33

cost
BA KK

i
B
i

A
i

B
i

A
i

BA

B
i

A
i

AB

B
iB

i
BA

A
iA

i

OI

CCLLDD
M

CC

DD
M

C
CDD

M

C
C

 

 
Similarly, the CPU cost is as follows: 

( )( )∑

∑∑

=
++

=
+

=
+

∩+

+




 +−+





 +−=

),max(

1
11

1

2

1
1

2

1cost

BA

BA

KK

i

ABB
i

A
i

K

i

B
i

ABB
i

K

i

A
i

BAA
iCPU

DDCC

LDDCLDDC
 

5   Performance Analysis 

In order to evaluate performance of the Common Counting method in the context of 
frequent itemset mining we performed several experiments on synthetic and real 
datasets. The synthetic datasets were generated by means of the GEN generator from 
the Quest project [2]. The real datasets that we have used come from the UCI KDD 
Archive [5]. Here we report results obtained on two real datasets from UCI KDD 



Archive: Movies2 and MSWeb3 (Microsoft Anonymous Web Data), and two synthetic 
datasets (denoted as Gen1 and Gen2). Table 2 presents basic characteristics of these 
datasets (for both synthetic datasets the remaining GEN parameters not listed in Table 
2 were set to the following values: the number of patterns was set to 500 and the 
average pattern length to 3). 

Table 2. Datasets used in experiments 

 Gen1 Gen2 Movies MSWeb 
Number of sets in DB 100000 100000 8040 32710 

Avg length of set in DB 5 8 5 3 
Number of different items in DB 1000 10000 14561 285 

 
We implemented Common Counting on top of the classic Apriori algorithm using the 
candidate counting scheme with a separate candidate hash-tree for each query. The 
experiments were conducted on a PC with AMD Duron 1200 MHz processor and 256 
MB of main memory. The datasets used in all experiments resided in flat files on a 
local disk (disk cache was disabled). The amount of available main memory in the 
reported experiments was big enough to store all the candidates generated by all the 
queries in a given iteration. (We discuss the impact of the amount of available 
memory at the end of this section.) 

 
Gen1, 2 DMQs, minsup=1.5%

0

20

40

60

80

100

120

140

160

0% 20% 40% 60% 80% 100%

overlap [%]

ti
m

e 
[s

]

CC

SEQ

 

Gen2, 2 DMQs, minsup=2%

0
20
40
60
80

100
120
140
160
180
200

0% 20% 40% 60% 80% 100%

overlap [%]

ti
m

e 
[s

]

CC

SEQ

 
Movies, 2 DMQs, minsup=0.1%

24,4
24,6
24,8

25
25,2
25,4
25,6
25,8

26
26,2
26,4

0% 20% 40% 60% 80% 100%

overlap [%]

ti
m

e 
[s

]

CC
SEQ

 

MSWeb, 2 DMQs, minsup=0.1%

0
5

10
15
20
25
30
35
40
45

0% 20% 40% 60% 80% 100%

overlap [%]

ti
m

e 
[s

]

CC

SEQ

 

Fig. 5. Performance of Common Counting for various levels of dataset overlapping 

                       
2 http://kdd.ics.uci.edu/databases/movies/movies.html 
3 http://kdd.ics.uci.edu/databases/msweb/msweb.html 



In the first series of experiments we varied the level of overlapping of source datasets 
for the case of two queries. Both queries operated on datasets of the same size and 
containing the same data, the support threshold was also the same for both queries. 
We changed the level of overlapping from 0% to 100%. Overlapping is expressed as 
the ratio of the size of the common part of the database to the size of the source 
dataset of any of the two queries (recall that the experiments were conducted on pairs 
of identical queries). Figure 5 shows the processing times of Common Counting 
denoted as CC compared to sequential processing of the queries using Apriori 
denoted as SEQ. For all tested datasets Common Counting outperformed sequential 
execution of Apriori and the bigger the overlapping of source datasets for the queries 
the bigger the performance gap between the two methods. However, the performance 
gains thanks to Common Counting depend on the characteristics of the data and the 
minimum support threshold. Common Counting applied to the Movies dataset led to 
relatively small performance gains since in case of this dataset there was a huge 
number of candidates generated in the second iteration, and only a few of them turned 
out to be frequent leading to a small number of iterations (and database scans). Thus, 
the time spent on candidate verification dominated the time needed to scan the 
database which is optimized by Common Counting. 

 
Gen1, 2 DMQs, overlap=50%

0

50

100

150

200

250

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

minsup

ti
m

e 
[s

]

CC

SEQ

 
Fig. 6. Performance of Common Counting for different minimum support thresholds 

In the next experiment we varied the minimum support threshold (same for both 
queries). Figure 6 presents the impact of the minimum support threshold for the Gen1 
dataset, overlapping of 50%, and two queries. Interestingly, the relative performance 
of Common Counting was better for the threshold of 1.5% than for 1% or 2%. This 
means that neither increasing nor decreasing the support threshold will always work 
in favor of Common Counting. Such behavior is caused by the fact that the minimum 
support threshold has an impact on the number of frequent patterns (and indirectly on 
the number of processed candidates) and the number of iterations (related to the size 
of the largest frequent pattern). What is guaranteed is that increasing the minimum 
support threshold will not increase neither the number of candidates not the number of 
iterations. Similarly, decreasing the minimum support threshold will not decrease 
neither the number of candidates not the number of iterations. However, changing the 
support threshold can affect one of the values stronger than the other. Thus, increasing 
or decreasing the minimum support threshold can change the balance between the 
time needed to count the candidates (operation not optimized by Common Counting) 
and the time needed to read data for disk (operation optimized by Common Counting). 



 
 

Gen1, minsup=1.5%, overlap=50%

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

DMQs

ti
m

e 
[s

]
CC

SEQ

 

Fig. 7. Performance of Common Counting for different number of queries 

The next goal of the experiments was testing the efficiency of Common Counting for 
different number of queries processed concurrently. Again, for the sake of simplicity, 
we performed the tests on collections of identical queries (the same dataset and 
support threshold) increasing the number of queries from 2 to 5. We considered only 
one overlapping configuration (from many possible for more than two queries), where 
there was one partition common to all the queries and the rest of partitions were 
analyzed each by exactly one query (in such configuration we could express 
overlapping in the same manner as in the case of two queries). Figure 7 presents the 
impact of the number of concurrently processed queries for the Gen1 dataset, 
overlapping of 50%, and minimum support threshold of 1.5%. Again Common 
Counting outperformed Apriori in all the cases. 

All the results reported above were obtained on collections of identical queries 
(same data, same minimum support threshold). If the queries that are to be performed 
concurrently differ in the minimum support threshold and/or the source data (which is 
going to be the case in practical applications), then the performance gains thanks to 
Common Counting are smaller than in case of identical queries if the queries require 
different number of iterations to complete (performance gains are most significant if 
all scans of the common part of the database are exploited by all overlapping queries). 
It should be noted that the number of Apriori iterations for a given query is not known 
until the query completes, and depends on the characteristics of the data and the 
minimum support threshold. 

As we mentioned earlier, in the experiments reported above all the candidates 
processed in a given iteration fit into main memory, which is realistic for today’s 
computers (in case of reasonable support thresholds) but not required neither by 
Apriori nor by our Common Counting method. Recall that if the candidates to be 
verified in a given partition of database in a given iteration do not fit into main 
memory, then they have to be processed in parts and the corresponding partition is 
scanned more than once. Thus, limiting the amount of main memory can degrade 
performance of original Apriori as well as Common Counting. However, the relative 
performance of Common Counting compared to sequential Apriori may improve, 
degrade, or stay unchanged with the increase of available memory. The actual 
performance gains depend on the ratio of the amount of data read from disk by the 



Common Counting method to the amount of data read from disk by the queries 
executed sequentially.  

6   Conclusions 

We have presented our experiences in implementing and evaluating the Common 
Counting method for concurrent frequent itemset queries. The Common Counting 
method is specific to the class of algorithms that at least in some phases need to count 
the occurrences of candidates in the source dataset. The method exploits the fact that 
the source datasets of queries that are to be processed can overlap, and consists in 
reducing the number of scans of parts of the database that are common to two or more 
queries.  

We have implemented the Common Counting method on top of the classic Apriori 
algorithm and experimentally tested its efficiency with respect to various parameters. 
Our experiments showed that the method is efficient and usually leads to significant 
performance gains compared to sequential processing of queries.  

In the future we plan to further investigate the Common Counting scheme focusing 
on issues regarding possible strategies of managing candidate sets of queries 
processed concurrently. We also plan to work on methods of processing of sets of 
data mining queries that do not depend on a particular mining scheme (such as 
Apriori in case of Common Counting). 

References 

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in 
Large Databases. Proc. of the 1993 ACM SIGMOD Conf. on Management of Data (1993) 

2. Agrawal R., Mehta M., Shafer J., Srikant R., Arning A., Bollinger T.: The Quest Data 
Mining System. Proc. of the 2nd Int’l Conference on Knowledge Discovery in Databases 
and Data Mining, Portland, Oregon (1996) 

3. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th 
Int’l Conf. on Very Large Data Bases (1994) 

4. Ceri S., Meo R., Psaila G.: A New SQL-like Operator for Mining Association Rules. Proc. 
of the 22nd Int’l Conference on Very Large Data Bases (1996) 

5. Hettich S., Bay S. D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: 
University of California, Department of Information and Computer Science (1999) 

6. Han J., Fu Y., Wang W., Chiang J., Gong W., Koperski K., Li D., Lu Y., Rajan A., 
Stefanovic N., Xia B., Zaiane O.R.: DBMiner: A System for Mining Knowledge in Large 
Relational Databases. Proc. of the 2nd KDD Conference (1996) 

7. Han J., Pei J.: Mining Frequent Patterns by Pattern-Growth: Methodology and Implications. 
SIGKDD Explorations, December 2000 (2000) 

8. Imielinski T., Mannila H.: A Database Perspective on Knowledge Discovery. 
Communications of the ACM, Vol. 39, No. 11 (1996) 

9. Imielinski T., Virmani A., Abdulghani A.: Datamine: Application programming interface 
and query language for data mining. Proc. of the 2nd KDD Conference (1996) 

10.Zheng Z., Kohavi R., Mason L.: Real World Performance of Association Rule Algorithms. 
Proc. of the 7th KDD Conference (2001) 



11.Morzy T., Wojciechowski M., Zakrzewicz M.: Data Mining Support in Database 
Management Systems. Proc. of the 2nd DaWaK Conference (2000) 

12.Morzy T., Zakrzewicz M.: SQL-like Language for Database Mining. ADBIS’97 Symposium 
(1997) 

13.Wojciechowski M., Zakrzewicz M.: Methods for Batch Processing of Data Mining Queries, 
Proc. of the 5th International Baltic Conference on Databases and Information Systems  
(2002) 

14.Zaki M.J.: Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge 
and Data Engineering, Vol. 12, No. 3 (2000) 


