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Abstract. Data collected in many applications have a form of sequences of 
events. One of the popular data mining problems is discovery of frequently 
occurring episodes in such sequences. Eff icient algorithms discovering all 
frequent episodes have been proposed for sequences of simple events associated 
with basic event types. But in many cases events are described by a set of 
attributes rather than by just one event type attribute. The solutions handling 
such complex events proposed so far assume that a user provides a template of 
episodes to be discovered. This assumption does not allow users to discover all 
surprising relationships between event attributes. In this paper, we propose 
extensions to algorithms initially designed for simple events making them 
capable of handling complex events in the same manner. 

1   Introduction 

Data mining, also called knowledge discovery in databases, consists in eff icient 
discovery of previously unknown and potentially useful knowledge from large sets of 
data. One of the most important data mining problems is discovery of frequently 
occurring patterns in event sequences. Application areas for this problem include 
analysis of telecommunication systems, discovering frequent buying patterns, user 
interface studies, etc. 

The problem of mining frequent episodes was introduced in [8] in the context of 
analysis of telecommunication networks. The input dataset was a sequence of 
notifications (alarms) recorded during the operation of the system. The goal was to 
find all collections of events occurring close to each other frequently enough. Each 
event in the source data sequence had an associated event type end its occurrence 
time. There was a set of predefined event types, where each event type could 
correspond to the certain type of signal sent from a certain module. An episode was 
considered frequent if its number of occurrences or a percentage of windows of a 
user-defined size containing the episode was above a user-defined threshold. An 
episode could provide such information like “event of type A is followed by event of 
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type B 30 times in the event sequence” or “events of type A, B, and C occur together 
in 5% of windows of 60 time units” .  

The above formulation was not suff icient since usually events are described by a 
set of attributes rather than by a single basic event type. For example, alarms coming 
from telecommunication systems might be described by alarm type, module type and 
element id. Of course, one could treat concatenation of attribute values as event types 
and use the approach mentioned above without any modifications. Unfortunately, in 
that case it would be impossible to discover potentially interesting relationships 
between subsets of attributes describing events. An example of an episode build from 
subsets of event attributes in the context of telecommunication network alarms could 
be: “alarm type A in the module M1 is followed by an alarm in the element #123 30 
times in the event sequence”. Elements of such episodes are not fully specified events, 
which makes them more general and possibly more frequent and interesting. 
Discovery of episodes like the one above was possible in the approaches presented in 
[6] and [9]. The model discussed there considered episodes build from various unary 
and binary predicates but assumed that a user specifies a template for episodes to be 
discovered. This limitation made the discovery process similar to querying rather than 
mining. Moreover, relying on user’s expectations makes discovery of some 
unexpected patterns impossible. 

In this paper, we propose extensions to algorithms initially designed for simple 
events making them capable of handling complex events in the same manner. In our 
approach we do not expect from a user any knowledge concerning relationships 
between events. We extend the algorithms presented in [8] by adding an initial phase 
consisting in finding all frequently occurring combinations of event attribute values. 
Episodes considered in our model are build from such frequent combinations of event 
attribute values, which we call event descriptions. 

The paper is organized as follows. Section 2 presents the related work. In Section 3 
we introduce several definitions and formalize the problem of mining frequent 
patterns in sequences of complex events. Section 4 presents the algorithm for the 
discovery process. In Section 5 we evaluate performance and scalabilit y of our 
algorithm. Section 6 contains some concluding remarks. 

2   Related Work 

The problem of mining frequent episodes in event sequences was introduced in [8]. 
The episodes could have different type of ordering: full (serial episodes), none 
(parallel episodes) or partial and had to appear within a user-defined time window. 
They were mined over a single source data sequence and their statistical significance 
(frequency) was measured as a percentage of windows containing the episode or as a 
number of occurrences. Each event in a source data sequence had an associated event 
type and its occurrence time. Eff icient algorithms were presented for serial and 
parallel episodes. The algorithms were based on the Apriori algorithm [2] introduced 
for association rules discovery [1] and exploited the property that an episode can be 
frequent if and only if all of its subepisodes are frequent. 



In [9], the model was extended to handle events described by a set of attributes. 
Episodes mined in sequences of such events were build of a set of unary and binary 
predicates on event attributes. To make discovery of such complex episodes feasible, 
it was assumed that a user has to specify a class of interesting patterns by providing a 
template. In [6], a language capable of specifying episodes of interest based on logical 
predicates was presented and a few further extensions to the model were added. 

In [5], an issue of mining sequential relationships between events in a time 
sequence involving multiple time granularities was addressed. The events forming a 
source data sequence were occurrences of event types. It was assumed that a user 
specifies a class of interesting relationships by providing a “rough pattern” . 

Another approach to the problem of mining frequent patterns in sequential data 
was presented in [3]. The approach was motivated by the discovery of frequent 
buying patterns in data collected by companies selli ng various products. The class of 
patterns considered there, called sequential patterns, had a form of sequences of sets 
of items. The source database had a form of a set of sequences where each sequence 
contained sets of items bought in subsequent transactions by one customer. The 
statistical significance of a pattern (called support) was measured as a percentage of 
data sequences containing the pattern. In [11], the problem was generalized by adding 
taxonomies (is-a hierarchies) on items and time constraints such as minimum and 
maximum gap between adjacent elements of a pattern. 

Many ideas implemented in algorithms for discovery of frequent patterns in 
sequential data were first introduced in the context of association rules [1]. The 
problem of mining association rules was motivated by market basket analysis. Most 
approaches to association rules discovery involve discovery of frequently occurring 
sets of items. The majority of algorithms performing this task are variants of Apriori 
[2]. For each frequent set Apriori considers all it s subsets, which makes Apriori-like 
algorithms ineffective when discovered patterns are long. In [4] a new algorithm 
called Max-Miner was proposed for eff icient discovery of long patterns from 
databases. 

In [7] and [10], the problem of mining multiple-level association rules was studied. 
In both cases, the goal was to discover association rules at high concept levels. In [10] 
concept hierarchies (taxonomies), having a form of trees, were stored as separate 
objects in the database. In the initial phase of the discovery process, information 
stored in taxonomies was used to supplement transactions with all ancestors of items 
present in a given transaction. Then the Apriori algorithm was used. Such an approach 
was reasonable because the number of ancestors of an item was small . The idea of 
taxonomies was also applied to the problem of mining sequential patterns mentioned 
earlier. A slightly different approach to discovery of association rules at different 
concept levels was presented in [7], where items were described by a set of attributes. 
Each attribute corresponded to a certain concept level. The algorithm started with the 
discovery of rules at the highest concept level. Then additional attributes were taken 
into account and more specific rules were discovered. It was assumed that there is 
only one optimal order in which attributes can be added to form more specific 
meaningful descriptions. 



3   Problem Statement 

Definition 1. Given the set R = { A1, ..., Am} of event attributes with domains D1, ..., 
Dm, an event e over R is a (m+1)-tuple (a1, ..., am, t), where ai ∈ Di and t is a real 
number, the occurrence time of e. 
 
Definition 2. An event sequence S = <e1, ..., en> is a collection of events over R 
ordered according to their occurrence times. The total number of events forming an 
event sequence is called the length of the event sequence. 
 
Definition 3. An event description ed over R is a set of (attribute, value) pairs { (Ai1, 
v1), ..., (Aik, vk)} , where Aip ∈ R and for all p ≠ q we have Aip ≠ Aiq and for all p=1..k vp 
∈ Dip. The above definition implies that |ed| ≤ m. We also require that |ed| > 0. (|ed| is 
called the size of a description). Let ED be the set of all possible event descriptions. 
 
An event description provides information on the nature of an event. Informally, it is 
a non-empty set of event attribute values, where for each attribute we can have at 
most one value (some attributes can be omitted). If we take into account values of all 
the attributes of a given event, we have a full description of its nature. But in some 
cases, more general descriptions that take into account only a subset of all possible 
attributes can also be useful. More general descriptions apply to more events, hence 
they can be used to discover statistically significant relationships (episodes) in the 
source event sequence. 
 
Definition 4. An event description ed = { (A i1, v1), ..., (A ik, vk)} describes an event e = 
(a1, ..., am, t), iff f or each p=1..k we have aip = vp.  
 
Informally, a description describes an event if and only if, for each attribute included 
in the description, values of the attribute in the description and the event are the same. 
 
Definition 5. An episode ϕ = (V, ≤, g) is a set of nodes V, a partial order ≤ on V, and a 
mapping g : V → ED associating each node with an event description. 
 
According to the above definition, an episode can be seen as a directed acyclic graph. 
The interpretation of an episode is that the events described by descriptions associated 
with the nodes have to occur in the order defined by ≤. Our definition of an episode is 
a variation of the one from [8]. In its original form, nodes are mapped to basic event 
types. Since in our approach there is more than one attribute associated with an event, 
we map the nodes to event descriptions.   

The most important classes of episodes are parallel and serial episodes. An episode 
is parallel i f the partial order relation ≤ is empty (no ordering constraints are specified 
on elements of the episode). An episode is serial i f the partial order relation ≤ is a 
total order. Parallel and serial episodes are important because they are easy to 
interpret by end users and they can be discovered eff iciently from long event 
sequences. Moreover, any complex partially ordered episode could be seen as a 



recursive combination of parallel and serial episodes. Thus, recognition of partially 
ordered episodes can be reduced to recognition of simple parallel and serial episodes.  
 
Definition 6. An episode ϕ = (V, ≤, g) occurs in an event sequence S = <e1, ..., en>, 
iff there exists an injective mapping h : V → { 1, ..., n} such that g(v) describes eh(v) for 
all v ∈ V and for all v, w ∈ V with v ≤ w, h(v) < h(w). 
 
The occurrence of an episode is taken into account only if events corresponding to 
event descriptions forming the episode occur close enough in time, i.e. within a user-
defined time window. An episode is considered interesting if it occurs frequently 
enough. The measure of statistical significance of episodes is a number of occurrences 
of an episode in the whole event sequence. (The approach presented in the paper can 
easily be adapted for other statistical measures like e.g. frequency, defined as a 
percentage of time windows in which a given episode occurs. We consider here the 
number of occurrences as a basic measure, because frequency favors episodes 
occurring in time spans significantly shorter then the window size.) 
 
Problem Formulation. Given an event sequence S, a desired class of episodes 
(parallel or serial), a user-defined window size win and a minimal required number of 
occurrences for an episode to be called frequent min_fr, discover all frequent episodes 
from S. 

4   Discovery Process 

In this section we present a framework of the discovery algorithm for the problem 
formulated in Section 3. The discovery of frequent episodes in a sequence of complex 
events requires two steps: 
1) discovery of frequently occurring combinations of event attribute values (event 
descriptions), 
2) discovery of frequent episodes build from frequent event descriptions. 
For the second step algorithms introduced in [8] are almost directly applicable. 
However, in our case the algorithms start with a set of frequent descriptions (not event 
types as in case of simple events) and they use different criteria for checking whether 
a given episode occurs in the event sequence (checking is done according to 
Definition 6). Although implementation details are different for different classes of 
episodes (parallel or serial), the basic ideas underlying the algorithms from [8] are the 
same. They start with episodes containing one event description and then iteratively 
generate and verify candidate episodes of larger sizes. In k-th iteration candidate 
episodes of size k (containing k event descriptions) are generated from frequent 
episodes of size k-1. In each iteration, occurrences of candidate episodes in the event 
sequence are counted. Candidates that do not occur frequently enough are filtered out. 
The process stops when no candidates can be generated or no candidates of a certain 
size are found to be frequent.  

Since we do not introduce any other innovations in the second step of the discovery 
process, we concentrate here on the first step that consists in discovering all frequent 



combinations of event attribute values (called event descriptions). A straightforward 
solution for that problem is counting occurrences of all possible combinations of 
event attribute values in a single database scan. The only problem is that in many 
cases the number of such combinations may be too large. (There are (|D1| + 1) * (|D2| 
+ 1) * ... * (|Dm| + 1) - 1 possible combinations of event attribute values. We add 1 to 
sizes of attribute domains since a given attribute may not be present in a description, 
we subtract 1 from the resulting product since we require that at least one attribute is 
specified in a description.) 

To address the above limitation we propose an Apriori-like algorithm which 
requires several passes over source event sequence but does not have to check all 
possible combinations of event attribute values. The algorithm starts with a set of all 
candidate descriptions of size one (the set of all event attribute values). In k-iteration 
(k>1) candidate descriptions of size k are built from frequent descriptions of size k-1, 
and their occurrences in the database are counted. The algorithm stops if, for some k, 
no candidates of size k can be generated or no candidates of size k are found to be 
frequent. 

Apriori-like solutions may be ineff icient when patterns to be discovered are long 
but in our case the maximal length of a description is limited by a number of 
attributes, which is not likely to be large. In fact, knowing the upper bound on the size 
of a description we know the maximal possible number of iterations in this phase of 
the episode discovery process. In k-th iteration of the Apriori-like algorithm, 
candidate descriptions of size k are analyzed. Since the maximal size of a description 
is the number of attributes m, the maximal number of iterations of the Apriori-like 
algorithm is m. Of course, for a given frequency threshold, the actual number of 
iterations can be less than m, if no candidate descriptions of a certain size (less than 
m) turn out to be frequent. 

The detailed Apriori-like algorithm for discovery of frequent event descriptions is 
presented below. 
 
F1 = {frequent (attribute, value) pairs in S}; 
for (k=2; Fk-1 ≠ ∅ and k <= m ; k++) do 
begin 
  Ck = cand-desc-gen(Fk-1); 
  forall events e ∈ S do 
  begin 
    Cd = describing(Ck, e); 
    forall candidates c ∈ Cd do 
      c.count++; 
  end; 

  Fk = { c ∈ Ck | c.count ≥ min_fr}; 
end; 

Answer = ∪k Fk; 
 
The function cand-desc-gen is given a set of frequent event descriptions having k-1 
(attribute, value) pairs and returns a set of description candidates having k (attribute, 
value) pairs such that for each description candidate its elements concern different 
attributes and all of its subsets of size k-1 are frequent. 



The function describing has two parameters: a set of event descriptions Ck and an 
event e, and returns a subset of Ck containing descriptions describing event e. 
 
Candidate generation is done in two phases: 
1) generation of candidates by merging pairs of descriptions of size k-1 having k-2 
(attribute, value) pairs in common and differing in (attribute, value) pairs concerning 
different attributes, 
2) pruning out candidates having at least one subset that is not frequent. 
To guarantee uniqueness of candidates generated in the first of the above phases, we 
keep (attribute, value) pairs forming a description sorted lexicographically according 
to attribute names, and merge descriptions having the first k-2 pairs in common and 
differing in their last pair. This procedure guarantees completeness of the candidate 
generation process, and is common for all variants of Apriori [2]. The only thing 
specific to our problem is that we have to guarantee that elements of a candidate 
concern different attributes. 
 
Let us consider the following example. We are given a short event sequence presented 
in Table 1. The event sequence has a form of a log containing notifications of possible 
malfunction of system modules. Three attributes are used to describe the nature of 
events: module name, type of notification and severity. For each event, its occurrence 
time is remembered. Let us assume that a user wants to discover serial episodes that 
occurred at least two times (min_fr = 2). In addition, only occurrences spanning over 
no more than 10 time units are to be taken into account (win = 10). 

Table 1. Example event sequence 

Time Module name (M) Notification type (N) Severity (S) 
105 m10 t27 1 
108 m20 t54 2 
112 m10 t27 3 
113 m20 t30 3 
119 m30 t54 2 
126 m40 t54 3 

 
The process of discovering frequent episodes starts with the discovery of frequently 
occurring event descriptions. In this phase, only min_fr constraint is used. The first 
iteration of the Apriori-like algorithm finds all frequent (occurring at least min_fr 
times) attribute values. In our case we get: { (M, m10)} , { (M, m20)} , { (N, t27)} , { (N, 
t54)} , { (S, 2)} , and { (S, 3)} . In the second iteration, candidates of size 2 are 
generated: { (M, m10), (N, t27)} , { (M, m10), (N, t54)} , { (M, m10), (S, 2)} ,{ (M, 
m10), (S, 3)} ,{ (M, m20), (N, t27)} ,{ (M, m20), (N, t54)} ,{ (M, m20), (S, 2)} ,{ (M, 
m20), (S, 3)} ,{ (N, t27), (S, 2)} ,{ (N, t27), (S, 3)} ,{ (N, t54), (S, 2)} , and { (N, t54), (S, 
3)} . Next, in the database pass occurrences of generated candidates are counted. Only 
two of them turn out to be frequent (describing at least 2 events): { (M, m10), (N, 
t27)} and { (N, t54), (S, 2)} . In the third iteration, the algorithm tries to generate 
candidates of size 3. The discovery of frequent descriptions ends here, because no 
candidates of size 3 can be generated. The resulting frequent event descriptions ({ (M, 
m10)} , { (M, m20)} , { (N, t27)} , { (N, t54)} , { (S, 2)} , { (S, 3)} , { (M, m10), (N, t27)} 



and { (N, t54), (S, 2)} ) are then used to discover frequent episodes. An example of a 
serial episode that can be found in the event sequence from Table 1 is an episode 
saying that notification t27 from module m10 is followed by notification t54 with 
severity level of 2 coming from some module. 

5   Performance Analysis 

To assess the performance of our Apriori-like algorithm for discovery of frequent 
event descriptions we performed several experiments on synthetic data using a PC 
with Pentium 133MHz processor and 64MB of main memory. The data resided in a 
flat file and were generated so that the maximal size of a frequent description to be 
discovered was always equal to the number of event attributes. Due to the above 
constraint, our algorithm in each run had to perform the maximal possible number of 
iterations (we consider the worst case). In the experiments we measured execution 
times for various number of attributes, attribute domain sizes and database sizes 
(expressed as a total number of events forming the source event sequence). We also 
counted the number of candidates that our Apriori-like algorithm had to verify, and 
compared it to the number of all possible descriptions that can be build from a given 
number of attributes and their domain sizes.  

The goal of one of the experiments was to find out how our algorithm scales with 
the size of the database. Since the meaning of our frequency measure min_fr (the 
number of occurrences) depends on the length of the event sequence, in the 
experiments we expressed the required statistical significance of event descriptions as 
a ratio of min_fr to the length of the event sequence. All the experiments were 
conducted for two frequency thresholds: 2% of the sequence length and 10% of the 
sequence length. Results applying to runs of our Apriori-like algorithm with these 
frequency thresholds in the following table and charts are labeled Apriori2% and 
Apriori10% respectively. 

Table 2. Numbers of candidates analyzed by the Apriori-li ke algorithm 

 Candidates 
analyzed 

by Apriori2% 

Candidates 
analyzed 

by Apriori10% 

The total number  
of possible event 

descriptions 
NATR = 3, NVAL = 10 331 34 1330 
NATR = 3, NVAL = 15 721 49 4095 
NATR = 3, NVAL = 20 1261 64 9260 
NATR = 3, NVAL = 25 1951 79 17575 
NATR = 3, NVAL = 30 2791 94 29790 
NATR = 4, NVAL = 10 645 51 14640 
NATR = 5, NVAL = 10 1066 76 161050 
NATR = 6, NVAL = 10 1602 117 1771560 
NATR = 7, NVAL = 10 2269 190 19487170 

 
Table 2 presents numbers of candidates analyzed by the Apriori-like algorithm for 
different numbers of event attributes (denoted as NATR) and their domain sizes 
(denoted as NVAL). For simplicity, in all the experiments we considered attributes 



having the same domain sizes. The number of possible event descriptions grows 
exponentially with the number of attributes, which leads to huge numbers of possible 
descriptions even for relatively small sizes of attribute domains. The number of 
candidates analyzed by the Apriori-like algorithm remains reasonably small (of 
course, exact numbers depend on the nature of the input database).  

Figures 1 and 2 show execution times of the Apriori-like algorithm for different 
database sizes. Figure 1 shows results for the sequence of events having 3 attributes, 
Figure 2 - for the sequence of events having 7 attributes. In both cases the attribute 
domain size for all attributes was 10. The algorithm scales linearly with the database 
size. As the database size becomes larger, there are more events to read in each 
database pass but the number of candidates to process remains the same, because it 
depends on the distribution of attribute values in the database and not on the database 
size. 

 

Fig. 1. Execution time for different 
database sizes (NATR = 3, NVAL = 10) 

Fig. 2. Execution time for different 
database sizes (NATR = 7, NVAL = 10) 

 
Figures 3 and 4 show how execution times change with the number of attributes and 
sizes of their domains for the same database size of 100000 events. The experiments 
show that the scalabilit y of the algorithm with these two parameters is a bit worse 
than linear. The lower the frequency threshold, the more rapidly the execution time 
grows. This is not surprising, because if the frequency threshold is low, in each 
iteration many candidates are found to be frequent, which in turn leads to a large 
number of candidates generated in the next iteration. 

 

Fig. 3. Execution time for different 
number of attributes (NVAL = 10) 

Fig. 4. Execution time for different 
attribute domain sizes (NATR = 3) 
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6   Concluding Remarks 

We discussed the problem of mining frequent episodes in sequences of events 
described by sets of attributes. An algorithm for discovery of frequent episodes build 
from multi -attribute descriptions was presented. The algorithm uses previously 
proposed methods for episode discovery in sequences of simple events after the initial 
phase that consists in finding all frequently occurring combinations of event attribute 
values. Since the straightforward approach to that initial phase by checking 
occurrences of all possible event descriptions in a single database scan may not be 
feasible when the number of event attributes and their possible values are large, we 
proposed an Apriori-like algorithm to address this problem. Experiments show that 
our Apriori-like algorithm scales linearly with the size of the database and almost 
linearly with the number of event attributes and sizes of attribute domains.  

The approach presented in the paper could be adapted for discovery of sequential 
patterns, where patterns are mined in a set of data sequences containing sets of items. 
In that case, items would be described by a set of attributes and patterns would be 
sequences of elements having the form of sets of item descriptions. The only problem 
to be solved would be handling situations when within an element of a pattern one 
item description is a subset of some other item description. One possible solution 
would be considering descriptions that are subsets of some other item description 
from the same pattern element as redundant and removing them from the pattern. 
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