
Discovering Frequent Episodes in Sequences
of Complex Events*

Marek Wojciechowski

Poznan University of Technology
Institute of Computing Science

ul. Piotrowo 3a, 60-965 Poznan, Poland
Marek.Wojciechowski@cs.put.poznan.pl

Abstract. Data collected in many applications have a form of sequences of
events. One of the popular data mining problems is discovery of frequently
occurring episodes in such sequences. Eff icient algorithms discovering all
frequent episodes have been proposed for sequences of simple events associated
with basic event types. But in many cases events are described by a set of
attributes rather than by just one event type attribute. The solutions handling
such complex events proposed so far assume that a user provides a template of
episodes to be discovered. This assumption does not allow users to discover all
surprising relationships between event attributes. In this paper, we propose
extensions to algorithms initially designed for simple events making them
capable of handling complex events in the same manner.

1 Introduction

Data mining, also called knowledge discovery in databases, consists in eff icient
discovery of previously unknown and potentially useful knowledge from large sets of
data. One of the most important data mining problems is discovery of frequently
occurring patterns in event sequences. Application areas for this problem include
analysis of telecommunication systems, discovering frequent buying patterns, user
interface studies, etc.

The problem of mining frequent episodes was introduced in [8] in the context of
analysis of telecommunication networks. The input dataset was a sequence of
notifications (alarms) recorded during the operation of the system. The goal was to
find all collections of events occurring close to each other frequently enough. Each
event in the source data sequence had an associated event type end its occurrence
time. There was a set of predefined event types, where each event type could
correspond to the certain type of signal sent from a certain module. An episode was
considered frequent if its number of occurrences or a percentage of windows of a
user-defined size containing the episode was above a user-defined threshold. An
episode could provide such information like “event of type A is followed by event of

* This work was partially supported by the grant no. KBN 43-1309 from the

State Committee for Scientific Research (KBN), Poland.

type B 30 times in the event sequence” or “events of type A, B, and C occur together
in 5% of windows of 60 time units” .

The above formulation was not suff icient since usually events are described by a
set of attributes rather than by a single basic event type. For example, alarms coming
from telecommunication systems might be described by alarm type, module type and
element id. Of course, one could treat concatenation of attribute values as event types
and use the approach mentioned above without any modifications. Unfortunately, in
that case it would be impossible to discover potentially interesting relationships
between subsets of attributes describing events. An example of an episode build from
subsets of event attributes in the context of telecommunication network alarms could
be: “alarm type A in the module M1 is followed by an alarm in the element #123 30
times in the event sequence”. Elements of such episodes are not fully specified events,
which makes them more general and possibly more frequent and interesting.
Discovery of episodes like the one above was possible in the approaches presented in
[6] and [9]. The model discussed there considered episodes build from various unary
and binary predicates but assumed that a user specifies a template for episodes to be
discovered. This limitation made the discovery process similar to querying rather than
mining. Moreover, relying on user’s expectations makes discovery of some
unexpected patterns impossible.

In this paper, we propose extensions to algorithms initially designed for simple
events making them capable of handling complex events in the same manner. In our
approach we do not expect from a user any knowledge concerning relationships
between events. We extend the algorithms presented in [8] by adding an initial phase
consisting in finding all frequently occurring combinations of event attribute values.
Episodes considered in our model are build from such frequent combinations of event
attribute values, which we call event descriptions.

The paper is organized as follows. Section 2 presents the related work. In Section 3
we introduce several definitions and formalize the problem of mining frequent
patterns in sequences of complex events. Section 4 presents the algorithm for the
discovery process. In Section 5 we evaluate performance and scalabilit y of our
algorithm. Section 6 contains some concluding remarks.

2 Related Work

The problem of mining frequent episodes in event sequences was introduced in [8].
The episodes could have different type of ordering: full (serial episodes), none
(parallel episodes) or partial and had to appear within a user-defined time window.
They were mined over a single source data sequence and their statistical significance
(frequency) was measured as a percentage of windows containing the episode or as a
number of occurrences. Each event in a source data sequence had an associated event
type and its occurrence time. Eff icient algorithms were presented for serial and
parallel episodes. The algorithms were based on the Apriori algorithm [2] introduced
for association rules discovery [1] and exploited the property that an episode can be
frequent if and only if all of its subepisodes are frequent.

In [9], the model was extended to handle events described by a set of attributes.
Episodes mined in sequences of such events were build of a set of unary and binary
predicates on event attributes. To make discovery of such complex episodes feasible,
it was assumed that a user has to specify a class of interesting patterns by providing a
template. In [6], a language capable of specifying episodes of interest based on logical
predicates was presented and a few further extensions to the model were added.

In [5], an issue of mining sequential relationships between events in a time
sequence involving multiple time granularities was addressed. The events forming a
source data sequence were occurrences of event types. It was assumed that a user
specifies a class of interesting relationships by providing a “rough pattern” .

Another approach to the problem of mining frequent patterns in sequential data
was presented in [3]. The approach was motivated by the discovery of frequent
buying patterns in data collected by companies selli ng various products. The class of
patterns considered there, called sequential patterns, had a form of sequences of sets
of items. The source database had a form of a set of sequences where each sequence
contained sets of items bought in subsequent transactions by one customer. The
statistical significance of a pattern (called support) was measured as a percentage of
data sequences containing the pattern. In [11], the problem was generalized by adding
taxonomies (is-a hierarchies) on items and time constraints such as minimum and
maximum gap between adjacent elements of a pattern.

Many ideas implemented in algorithms for discovery of frequent patterns in
sequential data were first introduced in the context of association rules [1]. The
problem of mining association rules was motivated by market basket analysis. Most
approaches to association rules discovery involve discovery of frequently occurring
sets of items. The majority of algorithms performing this task are variants of Apriori
[2]. For each frequent set Apriori considers all it s subsets, which makes Apriori-like
algorithms ineffective when discovered patterns are long. In [4] a new algorithm
called Max-Miner was proposed for eff icient discovery of long patterns from
databases.

In [7] and [10], the problem of mining multiple-level association rules was studied.
In both cases, the goal was to discover association rules at high concept levels. In [10]
concept hierarchies (taxonomies), having a form of trees, were stored as separate
objects in the database. In the initial phase of the discovery process, information
stored in taxonomies was used to supplement transactions with all ancestors of items
present in a given transaction. Then the Apriori algorithm was used. Such an approach
was reasonable because the number of ancestors of an item was small . The idea of
taxonomies was also applied to the problem of mining sequential patterns mentioned
earlier. A slightly different approach to discovery of association rules at different
concept levels was presented in [7], where items were described by a set of attributes.
Each attribute corresponded to a certain concept level. The algorithm started with the
discovery of rules at the highest concept level. Then additional attributes were taken
into account and more specific rules were discovered. It was assumed that there is
only one optimal order in which attributes can be added to form more specific
meaningful descriptions.

3 Problem Statement

Definition 1. Given the set R = { A1, ..., Am} of event attributes with domains D1, ...,
Dm, an event e over R is a (m+1)-tuple (a1, ..., am, t), where ai ∈ Di and t is a real
number, the occurrence time of e.

Definition 2. An event sequence S = <e1, ..., en> is a collection of events over R
ordered according to their occurrence times. The total number of events forming an
event sequence is called the length of the event sequence.

Definition 3. An event description ed over R is a set of (attribute, value) pairs { (Ai1,
v1), ..., (Aik, vk)} , where Aip ∈ R and for all p ≠ q we have Aip ≠ Aiq and for all p=1..k vp
∈ Dip. The above definition implies that |ed| ≤ m. We also require that |ed| > 0. (|ed| is
called the size of a description). Let ED be the set of all possible event descriptions.

An event description provides information on the nature of an event. Informally, it is
a non-empty set of event attribute values, where for each attribute we can have at
most one value (some attributes can be omitted). If we take into account values of all
the attributes of a given event, we have a full description of its nature. But in some
cases, more general descriptions that take into account only a subset of all possible
attributes can also be useful. More general descriptions apply to more events, hence
they can be used to discover statistically significant relationships (episodes) in the
source event sequence.

Definition 4. An event description ed = { (A i1, v1), ..., (A ik, vk)} describes an event e =
(a1, ..., am, t), iff f or each p=1..k we have aip = vp.

Informally, a description describes an event if and only if, for each attribute included
in the description, values of the attribute in the description and the event are the same.

Definition 5. An episode ϕ = (V, ≤, g) is a set of nodes V, a partial order ≤ on V, and a
mapping g : V → ED associating each node with an event description.

According to the above definition, an episode can be seen as a directed acyclic graph.
The interpretation of an episode is that the events described by descriptions associated
with the nodes have to occur in the order defined by ≤. Our definition of an episode is
a variation of the one from [8]. In its original form, nodes are mapped to basic event
types. Since in our approach there is more than one attribute associated with an event,
we map the nodes to event descriptions.

The most important classes of episodes are parallel and serial episodes. An episode
is parallel i f the partial order relation ≤ is empty (no ordering constraints are specified
on elements of the episode). An episode is serial i f the partial order relation ≤ is a
total order. Parallel and serial episodes are important because they are easy to
interpret by end users and they can be discovered eff iciently from long event
sequences. Moreover, any complex partially ordered episode could be seen as a

recursive combination of parallel and serial episodes. Thus, recognition of partially
ordered episodes can be reduced to recognition of simple parallel and serial episodes.

Definition 6. An episode ϕ = (V, ≤, g) occurs in an event sequence S = <e1, ..., en>,
iff there exists an injective mapping h : V → { 1, ..., n} such that g(v) describes eh(v) for
all v ∈ V and for all v, w ∈ V with v ≤ w, h(v) < h(w).

The occurrence of an episode is taken into account only if events corresponding to
event descriptions forming the episode occur close enough in time, i.e. within a user-
defined time window. An episode is considered interesting if it occurs frequently
enough. The measure of statistical significance of episodes is a number of occurrences
of an episode in the whole event sequence. (The approach presented in the paper can
easily be adapted for other statistical measures like e.g. frequency, defined as a
percentage of time windows in which a given episode occurs. We consider here the
number of occurrences as a basic measure, because frequency favors episodes
occurring in time spans significantly shorter then the window size.)

Problem Formulation. Given an event sequence S, a desired class of episodes
(parallel or serial), a user-defined window size win and a minimal required number of
occurrences for an episode to be called frequent min_fr, discover all frequent episodes
from S.

4 Discovery Process

In this section we present a framework of the discovery algorithm for the problem
formulated in Section 3. The discovery of frequent episodes in a sequence of complex
events requires two steps:
1) discovery of frequently occurring combinations of event attribute values (event
descriptions),
2) discovery of frequent episodes build from frequent event descriptions.
For the second step algorithms introduced in [8] are almost directly applicable.
However, in our case the algorithms start with a set of frequent descriptions (not event
types as in case of simple events) and they use different criteria for checking whether
a given episode occurs in the event sequence (checking is done according to
Definition 6). Although implementation details are different for different classes of
episodes (parallel or serial), the basic ideas underlying the algorithms from [8] are the
same. They start with episodes containing one event description and then iteratively
generate and verify candidate episodes of larger sizes. In k-th iteration candidate
episodes of size k (containing k event descriptions) are generated from frequent
episodes of size k-1. In each iteration, occurrences of candidate episodes in the event
sequence are counted. Candidates that do not occur frequently enough are filtered out.
The process stops when no candidates can be generated or no candidates of a certain
size are found to be frequent.

Since we do not introduce any other innovations in the second step of the discovery
process, we concentrate here on the first step that consists in discovering all frequent

combinations of event attribute values (called event descriptions). A straightforward
solution for that problem is counting occurrences of all possible combinations of
event attribute values in a single database scan. The only problem is that in many
cases the number of such combinations may be too large. (There are (|D1| + 1) * (|D2|
+ 1) * ... * (|Dm| + 1) - 1 possible combinations of event attribute values. We add 1 to
sizes of attribute domains since a given attribute may not be present in a description,
we subtract 1 from the resulting product since we require that at least one attribute is
specified in a description.)

To address the above limitation we propose an Apriori-like algorithm which
requires several passes over source event sequence but does not have to check all
possible combinations of event attribute values. The algorithm starts with a set of all
candidate descriptions of size one (the set of all event attribute values). In k-iteration
(k>1) candidate descriptions of size k are built from frequent descriptions of size k-1,
and their occurrences in the database are counted. The algorithm stops if, for some k,
no candidates of size k can be generated or no candidates of size k are found to be
frequent.

Apriori-like solutions may be ineff icient when patterns to be discovered are long
but in our case the maximal length of a description is limited by a number of
attributes, which is not likely to be large. In fact, knowing the upper bound on the size
of a description we know the maximal possible number of iterations in this phase of
the episode discovery process. In k-th iteration of the Apriori-like algorithm,
candidate descriptions of size k are analyzed. Since the maximal size of a description
is the number of attributes m, the maximal number of iterations of the Apriori-like
algorithm is m. Of course, for a given frequency threshold, the actual number of
iterations can be less than m, if no candidate descriptions of a certain size (less than
m) turn out to be frequent.

The detailed Apriori-like algorithm for discovery of frequent event descriptions is
presented below.

F1 = {frequent (attribute, value) pairs in S};
for (k=2; Fk-1 ≠ ∅ and k <= m ; k++) do
begin
 Ck = cand-desc-gen(Fk-1);
 forall events e ∈ S do
 begin
 Cd = describing(Ck, e);
 forall candidates c ∈ Cd do
 c.count++;
 end;

 Fk = { c ∈ Ck | c.count ≥ min_fr};
end;

Answer = ∪k Fk;

The function cand-desc-gen is given a set of frequent event descriptions having k-1
(attribute, value) pairs and returns a set of description candidates having k (attribute,
value) pairs such that for each description candidate its elements concern different
attributes and all of its subsets of size k-1 are frequent.

The function describing has two parameters: a set of event descriptions Ck and an
event e, and returns a subset of Ck containing descriptions describing event e.

Candidate generation is done in two phases:
1) generation of candidates by merging pairs of descriptions of size k-1 having k-2
(attribute, value) pairs in common and differing in (attribute, value) pairs concerning
different attributes,
2) pruning out candidates having at least one subset that is not frequent.
To guarantee uniqueness of candidates generated in the first of the above phases, we
keep (attribute, value) pairs forming a description sorted lexicographically according
to attribute names, and merge descriptions having the first k-2 pairs in common and
differing in their last pair. This procedure guarantees completeness of the candidate
generation process, and is common for all variants of Apriori [2]. The only thing
specific to our problem is that we have to guarantee that elements of a candidate
concern different attributes.

Let us consider the following example. We are given a short event sequence presented
in Table 1. The event sequence has a form of a log containing notifications of possible
malfunction of system modules. Three attributes are used to describe the nature of
events: module name, type of notification and severity. For each event, its occurrence
time is remembered. Let us assume that a user wants to discover serial episodes that
occurred at least two times (min_fr = 2). In addition, only occurrences spanning over
no more than 10 time units are to be taken into account (win = 10).

Table 1. Example event sequence

Time Module name (M) Notification type (N) Severity (S)
105 m10 t27 1
108 m20 t54 2
112 m10 t27 3
113 m20 t30 3
119 m30 t54 2
126 m40 t54 3

The process of discovering frequent episodes starts with the discovery of frequently
occurring event descriptions. In this phase, only min_fr constraint is used. The first
iteration of the Apriori-like algorithm finds all frequent (occurring at least min_fr
times) attribute values. In our case we get: { (M, m10)} , { (M, m20)} , { (N, t27)} , { (N,
t54)} , { (S, 2)} , and { (S, 3)} . In the second iteration, candidates of size 2 are
generated: { (M, m10), (N, t27)} , { (M, m10), (N, t54)} , { (M, m10), (S, 2)} ,{ (M,
m10), (S, 3)} ,{ (M, m20), (N, t27)} ,{ (M, m20), (N, t54)} ,{ (M, m20), (S, 2)} ,{ (M,
m20), (S, 3)} ,{ (N, t27), (S, 2)} ,{ (N, t27), (S, 3)} ,{ (N, t54), (S, 2)} , and { (N, t54), (S,
3)} . Next, in the database pass occurrences of generated candidates are counted. Only
two of them turn out to be frequent (describing at least 2 events): { (M, m10), (N,
t27)} and { (N, t54), (S, 2)} . In the third iteration, the algorithm tries to generate
candidates of size 3. The discovery of frequent descriptions ends here, because no
candidates of size 3 can be generated. The resulting frequent event descriptions ({ (M,
m10)} , { (M, m20)} , { (N, t27)} , { (N, t54)} , { (S, 2)} , { (S, 3)} , { (M, m10), (N, t27)}

and { (N, t54), (S, 2)}) are then used to discover frequent episodes. An example of a
serial episode that can be found in the event sequence from Table 1 is an episode
saying that notification t27 from module m10 is followed by notification t54 with
severity level of 2 coming from some module.

5 Performance Analysis

To assess the performance of our Apriori-like algorithm for discovery of frequent
event descriptions we performed several experiments on synthetic data using a PC
with Pentium 133MHz processor and 64MB of main memory. The data resided in a
flat file and were generated so that the maximal size of a frequent description to be
discovered was always equal to the number of event attributes. Due to the above
constraint, our algorithm in each run had to perform the maximal possible number of
iterations (we consider the worst case). In the experiments we measured execution
times for various number of attributes, attribute domain sizes and database sizes
(expressed as a total number of events forming the source event sequence). We also
counted the number of candidates that our Apriori-like algorithm had to verify, and
compared it to the number of all possible descriptions that can be build from a given
number of attributes and their domain sizes.

The goal of one of the experiments was to find out how our algorithm scales with
the size of the database. Since the meaning of our frequency measure min_fr (the
number of occurrences) depends on the length of the event sequence, in the
experiments we expressed the required statistical significance of event descriptions as
a ratio of min_fr to the length of the event sequence. All the experiments were
conducted for two frequency thresholds: 2% of the sequence length and 10% of the
sequence length. Results applying to runs of our Apriori-like algorithm with these
frequency thresholds in the following table and charts are labeled Apriori2% and
Apriori10% respectively.

Table 2. Numbers of candidates analyzed by the Apriori-li ke algorithm

 Candidates
analyzed

by Apriori2%

Candidates
analyzed

by Apriori10%

The total number
of possible event

descriptions
NATR = 3, NVAL = 10 331 34 1330
NATR = 3, NVAL = 15 721 49 4095
NATR = 3, NVAL = 20 1261 64 9260
NATR = 3, NVAL = 25 1951 79 17575
NATR = 3, NVAL = 30 2791 94 29790
NATR = 4, NVAL = 10 645 51 14640
NATR = 5, NVAL = 10 1066 76 161050
NATR = 6, NVAL = 10 1602 117 1771560
NATR = 7, NVAL = 10 2269 190 19487170

Table 2 presents numbers of candidates analyzed by the Apriori-like algorithm for
different numbers of event attributes (denoted as NATR) and their domain sizes
(denoted as NVAL). For simplicity, in all the experiments we considered attributes

having the same domain sizes. The number of possible event descriptions grows
exponentially with the number of attributes, which leads to huge numbers of possible
descriptions even for relatively small sizes of attribute domains. The number of
candidates analyzed by the Apriori-like algorithm remains reasonably small (of
course, exact numbers depend on the nature of the input database).

Figures 1 and 2 show execution times of the Apriori-like algorithm for different
database sizes. Figure 1 shows results for the sequence of events having 3 attributes,
Figure 2 - for the sequence of events having 7 attributes. In both cases the attribute
domain size for all attributes was 10. The algorithm scales linearly with the database
size. As the database size becomes larger, there are more events to read in each
database pass but the number of candidates to process remains the same, because it
depends on the distribution of attribute values in the database and not on the database
size.

Fig. 1. Execution time for different
database sizes (NATR = 3, NVAL = 10)

Fig. 2. Execution time for different
database sizes (NATR = 7, NVAL = 10)

Figures 3 and 4 show how execution times change with the number of attributes and
sizes of their domains for the same database size of 100000 events. The experiments
show that the scalabilit y of the algorithm with these two parameters is a bit worse
than linear. The lower the frequency threshold, the more rapidly the execution time
grows. This is not surprising, because if the frequency threshold is low, in each
iteration many candidates are found to be frequent, which in turn leads to a large
number of candidates generated in the next iteration.

Fig. 3. Execution time for different
number of attributes (NVAL = 10)

Fig. 4. Execution time for different
attribute domain sizes (NATR = 3)

�

� �

� �

� �

� �

� � �

� � �

� � �

� �
�
	 � 	 � 	 �� � � ��� ��� ��� � � � � � � ��� � �

� !
"# $
%

&�' � � � � � � (
&�' � � � � � � � (

)
*)
)
+
)
)
,-)
)
.
)
)
/-)
)
0
)
)
1
)
)
2-)
)
3-)
)
*)-)�)

*)-)�)-)
) +
)-)�)-)
) ,-)-)�)-)
) .
)-)�)-)
) /-)-)�)-)
)
465 7 5
8�5-9 :;9 < =�:;> ?A@-BC8�:ED
F GE:�H�:EI 7 9�J

KL M
NO P
Q

RAS-D < F-D < +-T
RAS-D < F-D <-*)-T

�
� �
� �
� �
� �
� � �
� � �
� � �
� � �
� � �
� � �

� � � � U
��� �A� � ��� � 	 � � � � � � � �

� !
"# $
%

&�' � � � � � � (
&�' � � � � � � � (

�
� �
� �
� �
� �
� � �
� � �
� � �
� � �
� � �

� � � � � � � � � �
��� ��� � � � � 	 � � � � � � � �A� 	 V � �

� !
"# $
%

&�' � � � � � � (
&�' � � � � � � � (

6 Concluding Remarks

We discussed the problem of mining frequent episodes in sequences of events
described by sets of attributes. An algorithm for discovery of frequent episodes build
from multi -attribute descriptions was presented. The algorithm uses previously
proposed methods for episode discovery in sequences of simple events after the initial
phase that consists in finding all frequently occurring combinations of event attribute
values. Since the straightforward approach to that initial phase by checking
occurrences of all possible event descriptions in a single database scan may not be
feasible when the number of event attributes and their possible values are large, we
proposed an Apriori-like algorithm to address this problem. Experiments show that
our Apriori-like algorithm scales linearly with the size of the database and almost
linearly with the number of event attributes and sizes of attribute domains.

The approach presented in the paper could be adapted for discovery of sequential
patterns, where patterns are mined in a set of data sequences containing sets of items.
In that case, items would be described by a set of attributes and patterns would be
sequences of elements having the form of sets of item descriptions. The only problem
to be solved would be handling situations when within an element of a pattern one
item description is a subset of some other item description. One possible solution
would be considering descriptions that are subsets of some other item description
from the same pattern element as redundant and removing them from the pattern.

References

1. Agrawal R., Imielinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993 ACM-SIGMOD Conf. on Management of Data (1993)

2. Agrawal R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’ l Conf. on Very Large Databases (1994)

3. Agrawal R., Srikant R.: Mining Sequential Patterns. Proc. of the 11th Int’ l Conference on
Data Engineering (1995)

4. Bayardo R. J.: Eff iciently Mining Long Patterns from Databases. Proc. of the 1998 ACM-
SIGMOD Conf. on Management of Data (1998)

5. Bettini C., Wang X.S., Jajodia S., Lin J.: Discovering Frequent Event Patterns with Multiple
Granularities in Time Sequences. IEEE Transactions on Knowledge and Data Engineering,
Vol. 10, No. 2, March/April 1998 (1998)

6. Guralnik V., Wijesekera D., Srivastava J.: Pattern Directed Mining of Sequence Data. Proc.
of the 4th Int’ l Conference on Knowledge Discovery and Data Mining (1998)

7. Han J., Fu Y.: Discovery of Multiple-Level Association Rules from Large Databases. Proc.
of the 21st Int’ l Conf. on Very Large Data Bases, Zurich, Switzerland (1995)

8. Mannila H., Toivonen H., Verkamo A.I.: Discovering frequent episodes in sequences. Proc.
of the 1st Int’ l Conference on Knowledge Discovery and Data Mining (1995)

9. Mannila H., Toivonen H.: Discovering generalized episodes using minimal occurrences.
Proc. of the 2nd Int’ l Conference on Knowledge Discovery and Data Mining (1996)

10.Srikant R., Agrawal R.: Mining Generalized Association Rules. Proc. of the 21st Int’ l Conf.
on Very Large Data Bases, Zurich, Switzerland (1995)

11.Srikant R., Agrawal R.: Mining Sequential Patterns: Generalizations and Performance
Improvements. Proc. of the 5th Int’ l Conf. on Extending Database Technology (1996)

