Discovering Frequent Episodesin Sequences
of Complex Events"

Marek Wojciechowski

Poznan University of Techndogy
Institute of Computing Science
ul. Piotrowo 3a, 60-965Poznan, Poland
Mar ek. Wj ci echowski @s. put . poznan. pl

Abstract. Data mlleded in many applicaions have aform of sequences of
events. One of the popuar data mining problems is discovery of frequently
occurring episodes in such sequences. Efficient algorithms discovering all
frequent episodes have been propaosed for sequences of simple events asociated
with basic event types. But in many cases events are described by a set of
atributes rather than by just one event type atribute. The solutions handing
such complex events proposed so far assume that a user provides a template of
episodes to be discovered. This assumption daes nat all ow users to discover al
surprising relationships between event attributes. In this paper, we propaose
extensions to algorithms initialy designed for simple events making them
cgpable of handling complex eventsin the same manner.

1 Introduction

Data mining, also cdled knowledge discovery in databases, consists in efficient
discovery of previously unknown and paentialy useful knowledge from large sets of
data. One of the most important data mining problems is discovery of frequently
occurring patterns in event sequences. Applicaion areas for this problem include
analysis of telecommunicaion systems, discovering frequent buying patterns, user
interfacestudies, etc.

The problem of mining frequent episodes was introduced in [8] in the context of
analysis of telecommunicaion networks. The input dataset was a sequence of
notifications (alarms) recorded during the operation of the system. The goa was to
find al colledions of events occurring close to ead other frequently enough Each
event in the source data sequence had an assciated event type end its occurrence
time. There was a set of predefined event types, where eat event type culd
correspond to the cetain type of signal sent from a cetain module. An episode was
considered frequent if its number of occurrences or a percentage of windows of a
user-defined size ®ntaining the eisode was above a user-defined threshold. An
episode muld provide such information like “event of type A is followed by event of

* This work was partidly suppated by the grant no. KBN 431309 from the
State Committeefor Scientific Research (KBN), Poland.

type B 30 times in the event sequence” or “events of type A, B, and C occur together
in 5% of windows of 60 time units’.

The aove formulation was not sufficient since usualy events are described by a
set of attributes rather than by a single basic event type. For example, alarms coming
from telecommunicaion systems might be described by alarm type, module type and
element id. Of course, one muld trea concaenation of attribute values as event types
and use the gproach mentioned above without any modifications. Unfortunately, in
that case it would be imposdble to dscover potentialy interesting relationships
between subsets of attributes describing events. An example of an episode build from
subsets of event attributes in the context of telecommunicaion network alarms could
be: “aarm type A in the module M1 is followed by an alarm in the dement #123 30
times in the event sequence”. Elements of such episodes are not fully spedfied events,
which makes them nore general and pcssbly more frequent and interesting.
Discovery of episodes like the one @ove was passble in the goproadhes presented in
[6] and [9]. The model discussed there mnsidered episodes build from various unary
and hinary predicaes but assumed that a user spedfies a template for episodes to be
discovered. This limitation made the discovery process smilar to querying rather than
mining. Moreover, relying on user's expedations makes discovery of some
unexpeded patternsimpaossble.

In this paper, we propase extensions to algorithms initially designed for simple
events making them capable of handling complex events in the same manner. In our
approach we do not exped from a user any knowledge ancerning relationships
between events. We extend the dgorithms presented in [8] by adding an initial phase
consisting in finding al frequently occurring combinations of event attribute values.
Episodes considered in our model are build from such frequent combinations of event
attribute values, which we cdl event descriptions.

The paper is organized as follows. Sedion 2 presents the related work. In Sedion 3
we introduce several definitions and formalize the problem of mining frequent
patterns in sequences of complex events. Sedion 4 presents the dgorithm for the
discovery process In Section 5 we evaluate performance and scdability of our
algorithm. Sedion 6 contains ©me @ncluding remarks.

2 Rdated Work

The problem of mining frequent episodes in event sequences was introduced in [8].
The episodes could have different type of ordering: full (seria episodes), none
(parallel episodes) or partia and had to appea within a user-defined time window.
They were mined over a single source data sequence and their statistica significance
(frequency) was measured as a percentage of windows containing the gisode or as a
number of occurrences. Each event in a source data sequence had an associated event
type and its occurrence time. Efficient algorithms were presented for serial and
parallel episodes. The dgorithms were based on the Apriori agorithm [2] introduced
for association rules discovery [1] and exploited the property that an episode can be
frequent if and only if all of its subepisodes are frequent.

In [9], the model was extended to handle events described by a set of attributes.
Episodes mined in sequences of such events were build of a set of unary and hinary
predicates on event attributes. To make discovery of such complex episodes feasible,
it was asaumed that a user has to spedfy a dassof interesting patterns by providing a
template. In [6], alanguage cgable of spedfying episodes of interest based on logicd
predicaes was presented and a few further extensions to the model were alded.

In [5], an isue of mining sequential relationships between events in a time
sequence involving multiple time granuarities was addressed. The events forming a
source data sequence were occurrences of event types. It was assumed that a user
spedfiesa dassof interesting relationships by providing a“roughpattern”.

Another approach to the problem of mining frequent patterns in sequential data
was presented in [3]. The gproach was motivated by the discovery of frequent
buying patterns in data wlleded by companies <lling various products. The dassof
patterns considered there, cdled sequential patterns, had a form of sequences of sets
of items. The source database had a form of a set of sequences where eat sequence
contained sets of items bought in subsequent transadions by one austomer. The
statisticd significance of a pattern (cdled suppart) was measured as a percentage of
data sequences containing the pattern. In [11], the problem was generalized by adding
taxonomies (is-a hierarchies) on items and time mnstraints sich as minimum and
maximum gap between adjacent el ements of a pattern.

Many ideas implemented in algorithms for discovery of frequent patterns in
sequential data were first introduced in the ntext of aswociation rules [1]. The
problem of mining association rules was motivated by market basket analysis. Most
approaches to aswociation rules discovery involve discovery of frequently occurring
sets of items. The mgjority of algorithms performing this task are variants of Apriori
[2]. For ead frequent set Apriori considers al its subsets, which makes Apriori-like
agorithms ineffedive when discovered patterns are long. In [4] a new agorithm
cdled Max-Miner was proposed for efficient discovery of long patterns from
databases.

In [7] and [10], the problem of mining multi ple-level association rules was gudied.
In both cases, the goal was to discover asociation rules at high concept levels. In [10]
concept hierarchies (taxonomies), having a form of trees, were stored as eparate
objeds in the database. In the initial phase of the discovery process information
stored in taxonomies was used to supplement transadions with all ancestors of items
present in a given transadion. Then the Apriori algorithm was used. Such an approach
was reasonable becaise the number of ancestors of an item was snall. The idea of
taxonomies was also applied to the problem of mining sequentia patterns mentioned
ealier. A dightly different approach to discovery of association rules at different
concept levels was presented in [7], where items were described by a set of attributes.
Each attribute crresponded to a cetain concept level. The dgorithm started with the
discovery of rules at the highest concept level. Then additional attributes were taken
into acount and more spedfic rules were discovered. It was assumed that there is
only one optima order in which attributes cen be alded to form more spedfic
meaningful descriptions.

3 Problem Statement

Definition 1. Given the set R = {A,, ..., Ay} of event attributes with domains Dy, ...,
D, an event e over R is a (m+1)-tuple (ay, ..., an, t), where g; [JD; and t is ared
number, the occurrencetime of e.

Definition 2. An event sequence S = <ey, ..., &> is a @lledion of events over R
ordered acmrding to their occurrence times. The total number of events forming an
event sequenceis cdl ed the length of the event sequence

Definition 3. An event description ed over R is a set of (attribute, value) pairs { (A,
V1), ..., (Al Vi)}, where Ay, TR and for all p # g we have A, # Aq and for all p=1..kv,
[J Dj,. The @ove definition implies that [ed| < m. We dso require that |ed| > 0. (led| is
cdled the size of adescription). Let ED be the set of all possgble event descriptions.

An event description provides information on the nature of an event. Informaly, it is
a non-empty set of event attribute values, where for ead attribute we can have &
most one value (some dtributes can be omitted). If we take into account values of all
the dtributes of a given event, we have afull description of its nature. But in some
cases, more general descriptions that take into account only a subset of al possble
attributes can also be useful. More general descriptions apply to more events, hence
they can be used to discover statisticdly significant relationships (episodes) in the
source e/ent sequence

Definition 4. An event description ed = {(Ai1, V1), ..., (A, Vi)} describes an event e =
(&, ...,am, 1), iff for eat p=1..k we have g, = v,.

Informally, a description describes an event if and only if, for ead attribute included
in the description, values of the dtribute in the description and the event are the same.

Definition 5. An episode ¢ = (V, <, g) isaset of nodesV, apartia order <onV, and a
mappingg: V — ED aswciating ead node with an event description.

According to the @ove definition, an episode can be seen as a direded acyclic graph.
The interpretation of an episode is that the events described by descriptions associated
with the nodes have to occur in the order defined by <. Our definition of an episodeis
a variation of the one from [8]. In its original form, nodes are mapped to basic event
types. Sincein our approach there is more than one &tribute asciated with an event,
we map the nodes to event descriptions.

The most important classes of episodes are parall el and seria episodes. An episode
is pardléd if the partial order relation <is empty (no ordering constraints are spedfied
on elements of the gisode). An episode is seria if the partial order relation <is a
total order. Paralel and serial episodes are important becaise they are eay to
interpret by end users and they can be discovered efficiently from long event
sequences. Moreover, any complex partialy ordered episode could be seen as a

reaursive combination of parallel and serial episodes. Thus, recognition of partialy
ordered episodes can be reduced to recognition of simple parallel and seria episodes.

Definition 6. An episode ¢ = (V, <, g) occursin an event sequence S= <ey, ..., &>,
iff there exists an injedive mappingh: V - {1, ..., n} such that g(v) describes e,y for
al v OJVandforal v, w [JV with v <w, h(v) < h(w).

The occurrence of an episode is taken into account only if events corresponding to
event descriptions forming the episode occur close enoughin time, i.e. within a user-
defined time window. An episode is considered interesting if it occurs frequently
enough The measure of statisticd significance of episodes is a number of occurrences
of an episode in the whole erent sequence (The gproac presented in the paper can
eally be aapted for other statisticd measures like eg. frequency, defined as a
percentage of time windows in which a given episode occurs. We mnsider here the
number of occurrences as a basic measure, becaise frequency favors episodes
occurringin time spans sgnificantly shorter then the window size)

Problem Formulation. Given an event sequence S a desired class of episodes
(paralel or serid), a user-defined window sizewin and a minimal required number of
occurrences for an episode to be cdled frequent min_fr, discover al frequent episodes
fromS

4 Discovery Process

In this ®dion we present a framework of the discovery algorithm for the problem
formulated in Sedion 3. The discovery of frequent episodes in a sequence of complex
events requires two steps:
1) discovery of frequently occurring combinations of event attribute values (event
descriptions),
2) discovery of frequent episodes buil d from frequent event descriptions.
For the second step algorithms introduced in [8] are dmost diredly appliceble.
However, in our case the dgorithms dart with a set of frequent descriptions (not event
types as in case of simple events) and they use different criteria for chedking whether
a given episode occurs in the event sequence (cheding is done acording to
Definition 6). Although implementation details are different for different classes of
episodes (paralle or serial), the basic ideas underlying the dgorithms from [8] are the
same. They start with episodes containing one event description and then iteratively
generate and verify candidate episodes of larger sizes. In k-th iteration candidate
episodes of size k (containing k event descriptions) are generated from frequent
episodes of sizek-1. In ead iteration, occurrences of candidate episodes in the event
sequence ae counted. Candidates that do not occur frequently enoughare filtered out.
The process $ops when no candidates can be generated or no candidates of a cetain
size aefound to be frequent.

Sincewe do not introduce any other innovations in the second step of the discovery
process we concentrate here on the first step that consists in discovering all frequent

combinations of event attribute values (cdled event descriptions). A straightforward
solution for that problem is counting occurrences of al possble mmbinations of
event attribute values in a single database scan. The only problem is that in many
cases the number of such combinations may be too large. (There ae (|D4| + 1) * (D,
+1)* ... * (|Dy| + 1) - 1 posshle mmbinations of event attribute values. We ald 1 to
sizes of attribute domains snce agiven attribute may not be present in a description,
we subtrad 1 from the resulting product since we require that at least one dtribute is
spedfied in adescription.)

To address the @ove limitation we propose an Apriori-like dgorithm which
requires sveral pases over source event sequence but does not have to ched all
possble cmbinations of event attribute values. The dgorithm starts with a set of all
candidate descriptions of size one (the set of al event attribute values). In k-iteration
(k>1) candidate descriptions of size k are built from frequent descriptions of size k-1,
and their occurrences in the database ae wunted. The dgorithm stops if, for some k,
no candidates of size k can be generated o no candidates of size k are found to be
frequent.

Apriori-like solutions may be inefficient when patterns to be discovered are long
but in our case the maximal length of a description is limited by a number of
attributes, which is not likely to be large. In fad, knowing the upper bound on the size
of a description we know the maximal possble number of iterations in this phase of
the episode discovery process In k-th iteration of the Apriori-like dgorithm,
candidate descriptions of sizek are analyzed. Since the maximal size of a description
is the number of attributes m, the maximal number of iterations of the Apriori-like
agorithm is m. Of course, for a given frequency threshold, the adua number of
iterations can be lessthan m, if no candidate descriptions of a cetain size (lessthan
m) turn out to be frequent.

The detailed Apriori-like dgorithm for discovery of frequent event descriptions is
presented below.

F, = {frequent (attribute, value) pairs in S};
for (k=2; F«.1 # 0 and k <= m; k++) do
begi n
Cc = cand-desc-gen(Fy.1);
forall events e O S do
begi n
Cy = describing(G, e);
forall candidates ¢ O C do

C. count ++;
end;
Fk ={ c OGCG | c.count = mn_fr};
end;

Answer = Oy Fy;

The function cand-desc-gen is given a set of frequent event descriptions having k-1
(attribute, value) pairs and returns a set of description candidates having k (attribute,
value) pairs such that for ead description candidate its elements concern different
attributes and al of its subsets of sizek-1 are frequent.

The function describing has two parameters: a set of event descriptions C, and an
event e, and returns a subset of C, containing descriptions describing event e.

Candidate generation isdone in two phases:

1) generation of candidates by merging pairs of descriptions of size k-1 having k-2
(attribute, value) pairs in common and dffering in (attribute, value) pairs concerning
different attributes,

2) pruning out candidates having at least one subset that is not frequent.

To guarantee uniqueness of candidates generated in the first of the éove phases, we
keep (attribute, value) pairs forming a description sorted lexicographicdly acording
to attribute names, and merge descriptions having the first k-2 pairs in common and
differing in their last pair. This procedure guarantees completeness of the candidate
generation process and is common for al variants of Apriori [2]. The only thing
spedfic to aur problem is that we have to guarantee that elements of a candidate
concern diff erent attributes.

Let us consider the foll owing example. We ae given a short event sequence presented
in Table 1. The event sequence has aform of alog containing rotifications of possble
malfunction of system modules. Three dtributes are used to describe the nature of
events: module name, type of notification and severity. For ead event, its occurrence
time is remembered. Let us assume that a user wants to discover seria episodes that
occurred at leest two times (min_fr = 2). In addition, only occurrences ganning over
no more than 10 time units are to be taken into acount (win = 10).

Table 1. Example event sequence

Time Modue name (M) Notification type (N) Severity (S)
105 ml10 t27 1
108 m20 t54 2
112 m10 t27 3
113 m20 t30 3
119 m30 t54 2
126 m40 t54 3

The process of discovering frequent episodes garts with the discovery of frequently
occurring event descriptions. In this phase, only min_fr constraint is used. The first
iteration of the Apriori-like dgorithm finds all frequent (occurring at least min_fr
times) attribute values. In our case we get: {(M, m10)}, {(M, m20)}, {(N, t27)}, {(N,
t54)}, {(S, 2)}, and {(S, 3)}. In the second iteration, candidates of size 2 are
generated: {(M, m10), (N, t27)}, {(M, m10), (N, t54)}, {(M, m10), (S, 2)} {(M,
m10), (S, 3)} {(M, m20), (N, t27)} ,{(M, m20), (N, t54)},{(M, m20), (S, 2)} {(M,
m20), (S, 3)}.{(N, t27), (S, 2)} .{(N, t27), (S, 3)} .{(N, t54), (S, 2)}, and {(N, t54), (S,
3)}. Next, in the database passoccurrences of generated candidates are counted. Only
two of them turn out to be frequent (describing at least 2 events): {(M, m10), (N,
t27)} and {(N, t54), (S, 2)}. In the third iteration, the dgorithm tries to generate
candidates of size 3. The discovery of frequent descriptions ends here, becaise no
candidates of size 3 can be generated. The resulting frequent event descriptions ({ (M,
m10)}, {(M, m20)}, {(N, t27)}, {(N, t54)}, {(S, 2)}, {(S, 3)}, {(M, m10), (N, t27)}

and {(N, t54), (S, 2)}) are then used to discover frequent episodes. An example of a
serial episode that can be found in the event sequence from Table 1 is an episode
saying that notificaion t27 from module m10 is followed by notificaion t54 with
severity level of 2 coming from some module.

5 Performance Analysis

To assss the performance of our Apriori-like dgorithm for discovery of frequent
event descriptions we performed several experiments on synthetic data using a PC
with Pentium 133VIHz processor and 64MIB of main memory. The data resided in a
flat file and were generated so that the maximal size of a frequent description to be
discovered was aways equal to the number of event attributes. Due to the aove
congtraint, our algorithm in ead run hed to perform the maxima possble number of
iterations (we mnsider the worst case). In the experiments we measured exeadution
times for various number of attributes, attribute domain sizes and database sizes
(expres=d as a total number of events forming the source event sequence). We dso
counted the number of candidates that our Apriori-like dgorithm had to verify, and
compared it to the number of al possble descriptions that can be build from a given
number of attributes and their domain sizes.

The goal of one of the experiments was to find out how our algorithm scaes with
the size of the database. Since the meaning of our frequency measure min_fr (the
number of occurrences) depends on the length of the event sequence, in the
experiments we expressed the required statisticd significance of event descriptions as
a ratio of min_fr to the length of the event sequence All the experiments were
conducted for two frequency thresholds: 2% of the sequence length and 10% of the
sequence length. Results applying to runs of our Apriori-like dgorithm with these
frequency thresholds in the following table and charts are labeled Apriori2% and
Aprioril0% respedively.

Table 2. Numbers of candidates analyzed by the Apriori-like dgorithm

Candidates Candidates The total number
analyzed analyzed of posshle event
by Apriori2% | by Aprioril0% descriptions
NATR =3, NVAL =10 331 34 1330
NATR =3, NVAL =15 721 49 4095
NATR =3, NVAL =20 1261 64 9260
NATR =3, NVAL =25 1951 79 17575
NATR =3, NVAL =30 2791 94 29790
NATR =4, NVAL =10 645 51 14640
NATR =5 NVAL =10 1066 76 161050
NATR =6, NVAL =10 1602 117 1771560
NATR =7, NVAL =10 2269 190 19487170

Table 2 presents numbers of candidates analyzed by the Apriori-like dgorithm for
different numbers of event attributes (denoted as NATR) and their domain sizes
(denoted as NVAL). For simplicity, in al the experiments we cnsidered attributes

having the same domain sizes. The number of possble event descriptions grows
exponentially with the number of attributes, which leads to huge numbers of possble
descriptions even for relatively small sizes of attribute domains. The number of
candidates analyzed hy the Apriori-like dgorithm remains reasonably small (of
course, exad numbers depend on the nature of the input database).

Figures 1 and 2 show exeaution times of the Apriori-like dgorithm for different
database sizes. Figure 1 shows results for the sequence of events having 3 attributes,
Figure 2 - for the sequence of events having 7 attributes. In both cases the dtribute
domain sizefor all attributes was 10. The dgorithm scdes linealy with the database
size As the database size becomes larger, there ae more events to real in eah
database pass but the number of candidates to processremains the same, because it
depends on the distribution of attribute values in the database and not on the database
size

140

Apriori 2% 1000
— Apriorl —— Apriori 2%
1 Apriori 10% / 00+ Apriori 10% /.
800
100 700 /
_— z 0
60 [
- 400 /
40 // - 300
- -
/ 200 _ e
2 : 100 —
0 0 T T T T
100000 200000 300000 400000 500000 100000 200000 300000 400000 500000
Database size (Number of events) Database size (Number of events)
Fig. 1. Exeaution time for different Fig. 2. Exeaution time for different

database sizes (NATR =3, NVAL =10) database sizes (NATR = 7, NVAL = 10)

Figures 3 and 4 show how exeaution times change with the number of attributes and
sizes of their domains for the same database size of 100000events. The experiments
show that the scdability of the dgorithm with these two parameters is a bit worse
than linea. The lower the frequency threshold, the more rapidly the exeaution time
grows. This is not surprising, becaise if the frequency threshold is low, in eadh
iteration many candidates are found to be frequent, which in turn leas to a large
number of candidates generated in the next iteration.

200 180

160 L roren o — o0 L= e
160 140 /
140 120 /
_ 120 -
) — ;‘::
£ £
o 50 //
40 / " 40 /
20 - 20 — —
0 0
3 4 5 6 7 10 15 20 25 30
Number of attributes Number of attribute values
Fig. 3. Exeaution time for diff erent Fig. 4. Exeaution time for diff erent

number of attributes (NVAL = 10) attribute domain sizes (NATR = 3)

6 Concluding Remarks

We discussed the problem of mining frequent episodes in sequences of events
described by sets of attributes. An algorithm for discovery of frequent episodes build
from multi-attribute descriptions was presented. The dgorithm uses previously
propased methods for episode discovery in sequences of simple events after the initial
phase that consists in finding al frequently occurring combinations of event attribute
values. Since the draightforward approach to that initial phase by cheding
occurrences of all posdble event descriptions in a single database scan may not be
feasible when the number of event attributes and their possble values are large, we
propased an Apriori-like dgorithm to address this problem. Experiments dow that
our Apriori-like dgorithm scdes linealy with the size of the database and amost
linealy with the number of event attributes and sizes of attribute domains.

The gproach presented in the paper could be alapted for discovery of sequential
patterns, where patterns are mined in a set of data sequences containing sets of items.
In that case, items would be described by a set of attributes and patterns would be
sequences of elements having the form of sets of item descriptions. The only problem
to be solved would be handling situations when within an element of a pattern one
item description is a subset of some other item description. One possble solution
would be cnsidering descriptions that are subsets of some other item description
from the same pattern element as redundant and removing them from the pattern.

References

1. Agrawa R., Imiglinski T., Swami A.: Mining Association Rules Between Sets of Items in
Large Databases. Proc. of the 1993ACM-SIGMOD Conf. on Management of Data (1993

2. Agrawa R., Srikant R.: Fast Algorithms for Mining Association Rules. Proc. of the 20th
Int’'l Conf. onVery Large Databases (1994

3. Agrawd R., Srikant R.: Mining Sequentia Patterns. Proc. of the 11th Int'l Conference on
Data Engineaing (1995

4. Bayardo R. J.: Efficiently Mining Long Patterns from Databases. Proc. of the 1998 ACM-
SIGMOD Conf. on Management of Data (1998

5. Bettini C., Wang X.S., JgjodiaS,, Lin J.: Discovering Frequent Event Patterns with Multiple
Granularities in Time Sequences. |EEE Transadions on Knowledge and Data Engineeing,
Vol. 10, No. 2, March/April 1998(1999

6. Guranik V., Wijesekera D., Srivastava J.: Pattern Direded Mining of Sequence Data. Proc.
of the 4th Int’l Conference on Knowledge Discovery and Data Mining (1998

7. Han J., Fu Y.: Discovery of Multiple-Level Asociation Rules from Large Databases. Proc.
of the 21st Int’'l Conf. onVery Large Data Bases, Zurich, Switzerland (1995

8. MannilaH., Toivonen H., Verkamo A.l.: Discovering frequent episodes in sequences. Proc.
of the 1st Int'l Conference on Knowledge Discovery and Data Mining (1995

9. Mannila H., Toivonen H.: Discovering generalized episodes using minimal occurrences.
Proc. of the 2ndInt’| Conference on Knowledge Discovery and Data Mining (1996

10.Srikant R., Agrawa R.: Mining Generalized Asociation Rules. Proc. of the 21st Int’| Conf.
onVery Large Data Bases, Zurich, Switzerland (1995

11Srikant R., Agrawal R.: Mining Sequential Patterns: Generdizaions and Performance
Improvements. Proc. of the 5th Int’| Conf. on Extending Database Techndogy (1996

