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Evolutionary Algorithms for MOO

~

Mimic the process of naturall evolution
to solve optimization problems

Advantages of EMO:

— can be applied to problems having
complex fitness landscapes

— the computational complexity can be
reduced since solutions are optimized in
an interrelated manner
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Preference-based EMOAs: Motivation
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Preference-based EMOAs

Observation: it is not practical to ap-
proximate an entire PF since the DM is
interested in finding only relevant solu-
tions to him or her

Incorporation of the DM'’s preferences

into EMOA is oriented towards finding

a region in the Pareto front, being highly
L preferred to the DM.
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Preference vs. non preference-based
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EMOAs

Advantages

The preference information can be used
to constraint the search space, thereby
reducing the complexity of the problem.

The preference information can be used

to impose an additional selection pres-

sure, driving population of solutions to-

wards region in the PF, being highly
L preferred to the DM




Scheme of an interactive EMOA

’ Decision Maker ‘

A
Evolutionary Algorithm
’ preference example ‘
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use the model's indications | preference model ‘
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P evolutionary pressure
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Scheme of a simple EA for MOO
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Proposed algorithms: CDEMO and
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DCEMO

Properties of CDEMO and DCEMO

> Interactive

> Based on pairwise comparisons

> Use an Achievement Scalarizing Func-
tion to model DM’s preferences

> Use preference cones to indicate pre-
ferred region in the objective space




Proposed algorithms: CDEMO and
DCEMO

Preference model

CI(S, W,Z): X TaxM{w,-|s,-—z,-\}+p E (W,'|S,'—Z,'|)7
i=1,...,
i=1,...,M

where w is an objective weight vector, z is a reference point, and p is an
augmentation multiplier.

Form of DM'’s preferences
Pairwise comparisons of solutions: s? > s?

Space of compatible model instances
Objective weight vector w is compatible if V., b4 d(s?, w,2z) < d(s®, w, z)

The following question arises:
how to exploit the preference model in order to bias the evolutionary search?
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Achievement Scalarizing Function —

ASF with w = [0.4,0.6], =0, p=0
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Isoquants

ASF — Isoquant & its direction

Isoquant — a curve representing a set of
points being equally evaluated according
to some function (e.g., ASF).

Direciton of isoquant — a line passing
through a reference point z and a corner
of the isoquant.
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Achievement Scalarizing Function —
Isoquants & Eliminated Region
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Boundary isoquant

A boundary isoquant evaluates two solu-
tions compared by the DM equally.

Graphically, a direction of a boundary
isoquant separates the eliminated region
and a region preferred by the DM
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How to check if some solution is
in the region of interest?
(example for s€)

1) Find a line passing through s©

2) Check if an ASF parametrized with
w is in agreement with the DM'’s pair-
wise comparison, i.e., d(s®,w,z) <
d(s8,w,z)




Achievement Scalarizing Function —
Isoquants & Eliminated Region
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The proposed RANK procedure based on
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preference cones

( RANK procedure based on

preference cones

Imagine that the DM provided thee
pairwise comparisons in the following
order:

1) 57 = sb (the oldest example)

2) s¢ = s¢ (the middle example)

3) s° = s’ (the newest example)

For a given solution s, RANK equals:

> RANK = 1 if s is in each preference
cone;
> RANK = 2 if s is in each preference
cone, except the newest one;
> RANK = 3 if s is in each preference
cone, except the two newest ones;

\_> RANK =4 ...
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RANK & Non-dominated sorting
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CDEMO & DCEMO variants

RANK  /RANK 7 RANK
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0.8 1 / 89
A
A
[ ) s € Fy
H scr
i S A SEF:
0.0 asp—4 — 2]
00 02 04 06 08 1.0

r

CDEMO

1) Primary: RANK

2) Secondary: Non-dominated sorting

-

Example order: (s?) = (s9) =
(s7,58) > (s°) = (s°) > (%)

r

DCEMO

1) Primary: Non-dominated sorting
2) Secondary: RANK

-

Example order: (s?) = (s€) = (s7) =
(s9) > (s°) > (s, %)

J




Scheme of CDEMO & DCEMO

’ Decision Maker ‘

A
Evolutionary Algorithm
T
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optimize construct preference cones | preference model ‘

sort solutions according to
non-dominance sorting and RANK
imposed by preference cones
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Novel visualization method for EMO:
Trace for Evolutionary Multiple-objective
Optimization (TEMO)

Drawbacks of traditional visualization techniques

1) Illustrate solutions constructed in the final generation, or after few pre-selected
numbers of generation

2) Concern only single run of the method

Features of TEMO

1) lllustrates solutions constructed throughout whole evolutionary run

2) Aggregates populations constructed for many independent method'’s runs



TEMO - Basic concept

Statistics derived from a single run

A generation=126 : : : :
generation=127$ B -------

Default implementation:

store the lowest (earliest) generation
> indicating when a region was discovered

-



TEMO - Basic concept

Averaging many independent runs

Compute 101 98 :
""" 1”2”77771”2”67}72777 . _ statistic 103 110! 114§

(default = average)

Having derived statistics, TEMO uses a pre-defined color pattern to illustrate the
average performance of the analyzed method.



Experimental Evaluation

Experimental Setting

1) To simulate the answers of a real-world DM, we constructed an artificial DM
modeled with ASF incorporating some pre-defined objective weight vector wPM.

2) During the preference elicitation phase, two distinct non-dominated solutions
were selected form the population and compared as imposed by the preference
function of the artificial DM.

3) The interactions were performed 10 times, at regular intervals.

4) The methods were run 100 times. For each run, the artificial DM incorporated

different objective weight vector wPM.

5) For each artificial DM and each benchmark problem, before running the experi-
ments, we found an optimal solution. This solution helped us to assess the perfor-
mance of the EMOA. Specifically, we computed a relative score difference between
the optimum and (BRSD) the best solution in the population and (ARSD), on
average, each solution in the population.



Convergence plots for CDEMO and
DCEMO

DTLZ1 with 3 objectives
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Convergence plots for CDEMO and
DCEMO

DTLZ1 with 5 objectives
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Example numerical results

Average BRSD (first row) and ARSD (second row) for the populations generated in
the last iteration by five algorithms for the DTLZ2 with M = 2,...5 objectives.
Average ranks R attained by the algorithms according to either BRSD or ARSD.

NSGA-II CDEMO sr DCEMO asr

M Mean StD R Mean StD R Mean StD R
5 0.0065 0.0066 2.98 | 0.0002 0.0003 1.35 | 0.0002 0.0008 1.67
0.3588 0.1520 3.00 | 0.0044 0.0103 1.41 | 0.0061 0.0123 1.59
a3 0.0154 0.0127 2.66 | 0.0108 0.0237 1.72 | 0.0105 0.0234 1.62
N 0.3261 0.0879 3.00 | 0.0282 0.0334 151 | 0.0312 0.0371 1.49
E 4 0.0515 0.0349 2.62 | 0.0118 0.0231 1.72 | 0.0132 0.0238 1.66
0.5788 0.1361 3.00 | 0.0427 0.0322 1.52 | 0.0431 0.0348 1.48
5 0.0722 0.0482 2.86 | 0.0112 0.0171 1.58 | 0.0116 0.0175 1.56
0.6987 0.1451 3.00 | 0.0503 0.0371 1.54 | 0.0424 0.0298 1.46




Application of TEMO

NSGA-II and CDEMO run for DTLZ2 and wP" = [0.5,0.5]
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Application of TEMO

CDEMO and DCEMO run for DTLZ2 and wP™ = [0.5,0.5]

1.5 200 1.5

7 200
1.24 R
: 150 150
_________ W i
091 e i
& 7 100 £ 100
g
0.6 : AN >
2
\ 50 5
0.3 : \ 50
0.0 i i ey 0 0.0 i i i — 0
00 03 06 ; 09 12 15 00 03 06 09 12 15
J1

uo1IRIAUSS



CDEMO and DCEMO run for DTLZ2 an

oy

1.5

1.2

0.9 1

0.6

0.3

0.0

0.

0 03

200

UOIJRIAUIS

f2

d wPM = [0.7,0.3]

Application of TEMO

1.5

1.2

0.9

0.6

0.3

0.0+

200

UOIPRIIUDS



Application of TEMO
TEMO with different coloring pattern
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Application of TEMO

lllustrating the preference cones

L5t 200 The simulation used 3 pre-defined
pairwise comparisons for the
1.21 150 preference elicitation phase:
0.9 - Oé% 50th generatitl):: sla =
~ % [1.20;0.35] > s*° = [1.35,0.20].
@& 0 2 [ ] [ ]
061 g' 100t generation: 522 =
- [0.85;1.10] > s = [0.70, 1.25].
0.3 1
150t generation: s32 =
0.0 0 [0.85;0.85] = s3b = [1.35,0.20].




Comparison with different methods

NEMO-0

NEMO-II

> Interactive

> Interactive

> Based of pairwise comparisons

> Based of pairwise comparisons

> Generational evolutionary base

> Generational evolutionary base

> Use an Additive Value Function (AVF)
to model DM'’s preferences

> Use an Additive Value Function (AVF)
to model DM'’s preferences

> Sort solutions according to (1) non-
dominated sorting (2) representative ad-
\_ ditive value function

> Sort solutions according to (1) fronts
of potential optimality (2) crowding-
\__distance




Comparison with different methods

NEMO-0 method NEMO-II method
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Comparison with different methods

Average BRSD (first row) and ARSD (second row) for the populations generated in
the last iteration by different methods for the DTLZ2 with M = 2,...5 objectives.
Average ranks R attained by the algorithms according to either BRSD or ARSD.

Artificial DM modeled with a Weighted Sum

CDEMO 57 ECC-MRWasr NEMO-IT CP =2 NEMO-0 CP =2

Mean StD R Mean StD R Mean StD R Mean StD R
0.0016  0.0039 2.70 | 0.0100 0.0297 3.46 | 0.0000 0.0001 1.11 | 0.0040 0.0110 2.73

0.0136  0.0209 2.47 | 0.0737 0.0985 3.39 | 0.0032 0.0064 1.40 | 0.0392 0.0627 2.74
0.0487 0.0504 2.36 | 0.1483 0.1523 3.37 | 0.0215 0.0192 1.71 | 0.1019 0.1308 2.56

DTLZ2C

o s wnlZ

0.0960 0.0913 246 | 0.1915 0.1616 3.14 | 0.0569 0.0379 1.84 | 0.1446 0.1656 2.56

Artificial DM modeled with a Chebyshev Function

CDEMO 157 ECC-MRWasr NEMO-1l CP =5 NEMO-0 CP =5

‘ Mean StD R Mean StD R Mean StD R Mean StD R

0.0044 0.0103 1.28 | 0.0641 0.0870 2.32 | 0.3207 0.1404 391 | 0.0856 0.1136 2.49

0.0282 0.0334 1.60 | 0.0690 0.0893 2.17 | 0.2988 0.0917 3.89 | 0.0899 0.1043 2.34

0.0427 0.0322 1.75 | 0.0824 0.0929 2.17 | 0.5647 0.1538 4.00 | 0.0785 0.0828 2.08

DTLZ2

a s wnZ

0.0503 0.0371 1.92 | 0.0810 0.0981 2.15 | 0.6965 0.1422 4.00 | 0.0636 0.0705 1.93




CDEMO vs. ECC-MRW

DTLZ2; DM modeled with a Chebyshef function incorporating wP" = [0.5,0.5].
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Interaction patterns

STR

START-ESI°'" pattern — 1 (51 = 150

1) STR interactions are performed in O. ggﬁgggg;

the first generation; —0— START-ESI‘}
—&— START-ESI®
—A— START-ESI®

2) the remaining 10 — STR —A— START-ESI'

. . — ~O— START-ESI®

interactions are evenly distributed —B— START-ESI®

throughout optimization. —8— START-ESI"

WFG1 with M = 3 objectives
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Interaction patterns
ESIPSS pattern

1) interactions are evenly distributed

throughout optimization. —— ESI' (EI = 150)
—0— ESI? (EI = 300)
. . . —o— ESI° (EI =750
2) during each interaction, PCS ( 50)
pairwise comparisons are provided by

the DM.
WFG1 with M = 3 objectives

history size [H|

average relative score difference
3
7

. . "
0 500 1000 1500 10

generation 0 500 1000 1500

generation



PP-ESICEN pattern

1) the preference elicitation is
postponed until GEN generation

2) after GEN generation, interactions
are evenly distributed throughout
evolutionary search.

WFG1 with M = 3 objectives

: Wil
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PP-ESICEN pattern

1) the preference elicitation is

postponed until GEN generation

2) after GEN generation, interactions
are evenly distributed throughout

evolutionary search.

WFG1 with M = 5 objectives

history size [H|

[
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500 1000
generation

Interaction patterns
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RDS™ pattern

Preference elicitation is triggered when

the ratio of parent solutions being
dominated by at least one offspring
solution is lesser than a threshold th.

WFG1 with M =5 objectives

history size |H|
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Conclusions

> We proposed a novel family of interactive evolutionary algorithms — CDEMO
and DCEMO methods — for multiple-objective optimization.

> CDEMO and DCEMO are based on pairwise comparisons and, throughout the
evolutionary search, use the preference information to construct preference
cones indicating preferred region in the objective space.

> CDEMO and DCEMO proved to perform well on a large set of benchmark
problems involving from 2 to 5 objectives.

> CDEMO and DCEMO proved to perform better than selected state-of-the-art
interactive algorithms based on pairwise comparisons, when the DM'’s decision
policy is compatible with the preference model incorporated by the proposed
methods.

> We showed that the consistency between the preference model used to model
the DM'’s preferences and the model incorporated by the method is essential for
finding the best possible recommendation.

> We proposed a novel visualization technique, called TEMO, which illustrates
average, i.e., expected, evolutionary run performed by an EMOA.

> We proposed several interaction patterns — static and dynamic — for
interactive EMOAs. The results indicate that, usually, the interactions should be
evenly distributed throughout optimization. However, due to problem’s
characteristics, sometimes the interactions should be distributed in another way
in order to improve the results.



