# GECCO 2021





イロト イヨト イヨト イヨト

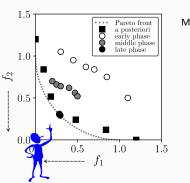
### Interactive evolutionary multiple objective optimization algorithm using a fast calculation of holistic acceptabilities

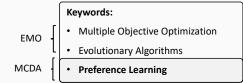
### Michał Tomczyk Miłosz Kadziński

Institute of Computing Science Poznan University of Technology, Poland

> michal.tomczyk@cs.put.poznan.pl www.cs.put.poznan.pl/mtomczyk/

Michał Tomczyk, Miłosz Kadziński GECCO 2021





### Preference learning:

- It is a cooperation between the algorithm and the DM where one participant interactively learns from the other.
- The DM's preferences are inferred via preference disaggregation – deriving a global model from some incomplete preferential structures, e.g., pairwise comparisons.

# Reminder on IEMO/D and EMOSOR

 EMOSOR and IEMOD/D use a functional preference model to represent the DM's preferences mathematically – L-norms:

$$L^w_{\alpha}(s) = \begin{cases} \left[\sum_{i=1}^{M} (w_i s_i)^{\alpha}\right]^{1/\alpha} & \text{for } \alpha < \infty, \\ max_{1,\dots,M\{w_i s_i\}} & \text{for } \alpha = \infty. \end{cases}$$

- α compensation level is provided a priori. Weight vector is uknown.
- Interactively provided pairwise comparisons are used to constrain the model parameter space:

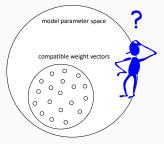
$$\bigvee_{s^j \succ s^k \in H} L^w_\alpha(s^j) < L^w_\alpha(s^k) \to w \text{ is compatible (feasible)}$$

 A fine representation of the compatible weight vectors is used to assess solutions in the population consistently with the DM's preferences.

IEMOD/D: M. K. Tomczyk and M. Kadziński. Decomposition-based interactive evolutionary algorithm for multiple objective optimization. IEEE Transactions on Evolutionary Computation 24, 2 (2020), 320–334

EMOSOR: M. K. Tomczyk and M. Kadziński. EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression. Computers & Operations Research 108, 2019, 134–154

#### How to build recommendations consistent with the DM's preferences?



# Reminder on IEMO/D and EMOSOR

ROBUST ORDINAL REGRESSION - extreme results of the analysis; preservative,

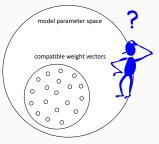
but imposes lower evolutionary pressure. Examples:

- Necessary Preference one solution is considered preferred than another if it attains a better score for each compatible preference model instance.
- Potential Optimality a solution is considered potentially optimal when it attains the best score in the solution set for at least one compatible preference model instance.

STOCHASTIC ORDINAL REGRESSION – results derived by aggregating potential outcomes imposed by each compatible preference model instance; there is a risk (controlled) of making mistakes, but allows better differentiating between solutions. **Examples:** 

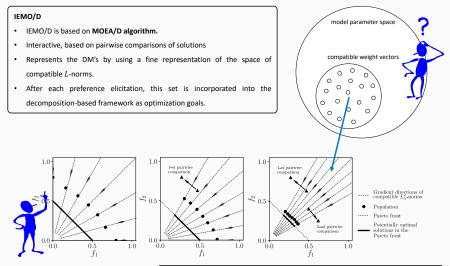
- Pairwise Winning Index the probability that one solution is better than another, estimated by using each compatible preference model instance.
- Rank Acceptability Index the probability that a solution attains j-th rank in the population, estimated by using each compatible preference model instance.

# How to build recommendations consistent with the DM's preferences?



イロン イボン イヨン 一日

## Reminder on IEMO/D



IEMO/D: M. K. Tomczyk and M. Kadziński. Decomposition-based interactive evolutionary algorithm for multiple objective optimization. IEEE Transactions on Evolutionary Computation 24, 2 (2020), 320–334

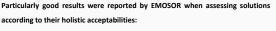
イロト イヨト イヨト イヨト

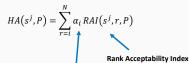
Michał Tomczyk, Miłosz Kadziński GECCO 2021

# Reminder on EMOSOR

#### EMOSOR

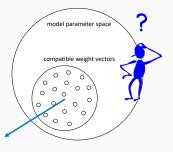
- EMOSOR is based on NSGA-II algorithm.
- · Interactive, based on pairwise comparisons of solutions
- Represents the DM's by using a fine representation of the space of compatible L-norms.
- The representative set is used to assess solutions in the population consistently with the DM's preferences.





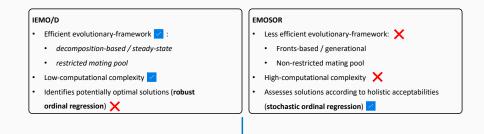
Weighting Scheme, here we consider the inverse scheme: 1/r

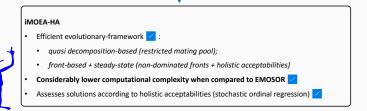
EMOSOR: M. K. Tomczyk and M. Kadziński. EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression. Computers & Operations Research 108, 2019, 134–154



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ──の

# iMOEA-HA = the best from IEMO/D and EMOSOR





# Reminder on EMOSOR

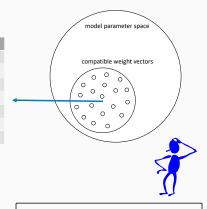
Using the set of compatible L-norms, we can identify the potential ranks a solution may attain:

|                    | 1                     | 2                     | 3              | 4                     | 5              | <br>N              |
|--------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|--------------------|
| $L^{1,w}_{\alpha}$ | $s^4$                 | <i>s</i> <sup>2</sup> | s <sup>N</sup> | s <sup>7</sup>        | s9             | <br>s <sup>5</sup> |
| $L^{2,w}_{\alpha}$ | $S^1$                 | <i>s</i> <sup>2</sup> | s <sup>3</sup> | s <sup>5</sup>        | $s^4$          | <br>s <sup>8</sup> |
| $L^{3,w}_{\alpha}$ | <i>s</i> <sup>2</sup> | $S^1$                 | s <sup>7</sup> | s <sup>5</sup>        | $s^4$          | <br>s9             |
| $L^{4,w}_{\alpha}$ | $s^4$                 | <i>s</i> <sup>2</sup> | $S^1$          | s <sup>N</sup>        | s <sup>3</sup> | <br>s <sup>5</sup> |
| $L^{5,w}_{\alpha}$ | $s^4$                 | $S^1$                 | s <sup>N</sup> | <i>s</i> <sup>2</sup> | s <sup>7</sup> | <br>s <sup>5</sup> |
|                    |                       |                       |                |                       |                | <br>               |
| $L^{G,w}_{\alpha}$ | <i>s</i> <sup>2</sup> | $S^N$                 | $S^1$          | $s^4$                 | $s^3$          | <br>s <sup>5</sup> |

$$HA(s^{j}, P) = \sum_{r=i}^{N} 1/r RAI(s^{j}, r, P)$$

Then, we may compute solutions' holistic acceptabilities – the bigger the score, the better fitness:

|    | <i>s</i> <sup>1</sup> | <i>s</i> <sup>2</sup> | <i>s</i> <sup>3</sup> | s <sup>4</sup> | s <sup>5</sup> | <br>s <sup>N</sup> |
|----|-----------------------|-----------------------|-----------------------|----------------|----------------|--------------------|
| HA | 0.89                  | 0.76                  | 0.54                  | 0.43           | 0.32           | <br>0.02           |



Estimating holistic acceptabilities is computationally demanding

<ロ> <四> <四> <四> <三</td>

# iMOEA-HA: fast calculation of holistic acceptabilities

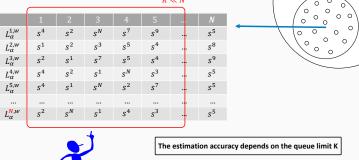
model parameter space

compatible weight vectors

イロン イヨン イヨン 一日

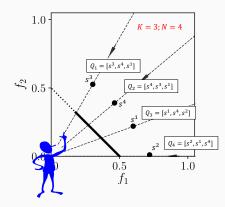
**Observation:** worse ranks may not contribute to the overall HA score relevantly. Therefore, to reduce the computational burden, only K-first ( $K \ll N$ ) ranks may be involved in HA-score estimation.

 $K \ll N$ 



# iMOEA-HA: fast calculation of holistic acceptabilities

Solution: use the maintained compatible model instances as queues of a limited size (K) employed to sort solutions locally. The associated function is used as a sorting criterion. If K is relatively small, the queues can be implemented using the insertion-sort procedure.



- · At the cost of increased memory complexity, the computational complexity is reduced.
- The possible ranks a solution main attain are dynamically updated and stored so that HA-score estimation can be performed quickly.
- · iMOEA-HA is run in a steady-state mode. Therefore it implements two procedures: insertion and deletion for updating queues.

イロト イヨト イヨト イヨト

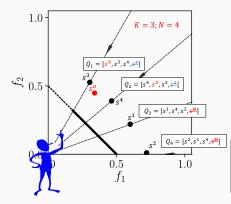
크

#### Auxiliary data structure for storing ranks

| $s^1{:}\left[1{,}1{,}2\right] \to HA =$ | 0.54 |
|-----------------------------------------|------|
| $s^2 \colon [1,0,1] \to HA =$           | 0.33 |
| $s^3 \colon [1,1,0] \to HA =$           | 0.38 |
| $s^4{:}\left[1{,}2{,}1\right] \to HA =$ | 0.58 |

# iMOEA-HA: fast calculation of holistic acceptabilities

Solution: use the maintained compatible model instances as queues of a limited size (K) employed to sort solutions locally. The associated function is used as a sorting criterion. If K is relatively small, the queues can be implemented using the insertion-sort procedure.



- At the cost of increased memory complexity, the computational complexity is reduced.
- The possible ranks a solution main attain are dynamically updated and stored so that HA-score estimation can be performed quickly.
- iMOEA-HA is run in a steady-state mode. Therefore it implements two procedures: insertion and deletion for updating queues.

イロト イヨト イヨト イヨト

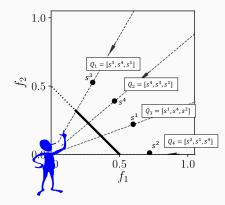
#### Auxiliary data structure for storing ranks

| $s^1: [1,1,0] \rightarrow HA =$    | 0.38 |
|------------------------------------|------|
| $s^2$ : [1,0,1] $\rightarrow HA =$ | 0.33 |
| $s^3: [0,1,1] \rightarrow HA =$    | 0.21 |
| $s^4: [1, 1, 2] \rightarrow HA =$  | 0.54 |
| $s^o\colon [{1,1,0}] \to HA =$     | 0.38 |

Candidate for removal, if  $s^3$  is in the last non-dominated front, it will be removed from the population.

크

# iMOEA-HA: summary



### iMOEA-HA - characteristics:

- interactive, based on pairwise comparisons, represents the DM's preferences as a set of compatible L-norms.
- · is run in a steady-state mode
- sorts solutions according to two criteria:
  - 1. non-dominated fronts (fast calculation)
  - 2. HA-scores (fast calculation)
- in the study, we considered two selection procedures:
  - (nonrestricted) a regular tournament selection
  - (restricted) two random solution from a randomly selected queue

イロン イヨン イヨン イヨン

臣

# Experimental setting

- Evolutionary setting: follows the standards in the literature on EMO
- Decision-making layer:

Interactions: triggered 10 times during a single run, evenly distributed

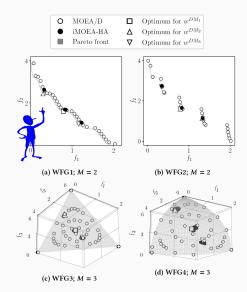
Simulating the DM's answers: the DM's value system was modeled using an L-norm

**Comprehensiveness & reliability of the experiments**: for each setting, the run was repeated 100 times, each time involving a different artificial DM (these were pre-generated by generating uniformly distributed weight vectors).

**Performance evaluation:** solutions in the population were compared against the optimal solution identified in advance using exact or heuristic methods. Specifically, we computed the Best/Average Relative Score Differences (BRSD/ARSD) between the most favored (average for all solutions) and the optimum, where scores were assessed using the artificial DM's internal function.

Statistics: mean, standard deviation, average rank

# Visualization of convergence



Populations constructed by MOEA/D and iMOEA-HA (here, with tournament selection; K=10) run for different DMs, applied to different benchmark problems (the *A*-parameters in WFG3 were set to 1 to make the PF nondegenerated).

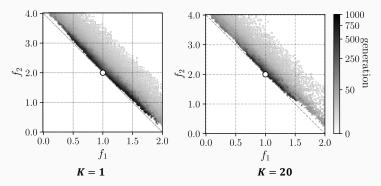
- *M* = 2:
  - $w^{DM_1} = [0.5, 0.5]$
  - $w^{DM_2} = [0.3, 0.7]$
  - $w^{DM_3} = [0.8, 0.2]$
- *M* = 3:

• 
$$W^{DM_1} = \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]$$

- $w^{DM_2} = [0.7, 0.2, 0.1]$
- $w^{DM_3} = [0.2, 0.3, 0.5]$

iMOEA-HA can successfully converge towards different DM's optima

### Performance evaluation for different queue limits



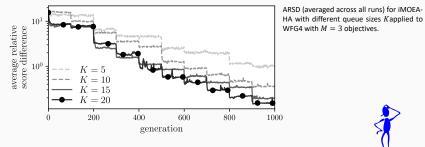
VIPEMO plots for iMOEA-HA with (a) K = 1 and (b) K = 20 run for WFG3 with M = 2 and  $w^{DM} = [0.5, 0.5]$ . The DM's most preferred option is marked with a white dot.

The greater the K, the more accurate the HA-score estimation, and therefore population convergences faster towards the DM's most relevant solution

イロト イヨト イヨト イヨト

VIPEMO: M. Kadziński, M. K. Tomczyk, and R. Słowiński, Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization. Swarm and Evolutionary Computation 52, 100602, 2020.

# Performance evaluation for different queue limits



Average ranks attained by iMOEA-HA with different queue limits K for all test problems considered jointly.

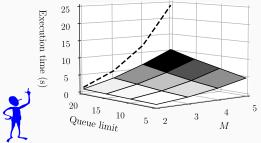
| K  | M = 2 | <i>M</i> = 3 | M = 4 | <i>M</i> = 5 |
|----|-------|--------------|-------|--------------|
| 5  | 2.72  | 2.73         | 2.75  | 2.84         |
| 10 | 2.50  | 2.52         | 2.54  | 2.55         |
| 15 | 2.45  | 2.42         | 2.39  | 2.37         |
| 20 | 2.32  | 2.33         | 2.32  | 2.24         |

Performance improvement

The greater the K, the more accurate the HA-score estimation, and therefore population convergences faster towards the DM's most relevant solution

Image: A mathematical states and a mathem

# Comparison of iMOEA-HA and EMOSOR execution times



Execution times for iMOEA-HA (surface plot) and EMOSOR (dashed line).

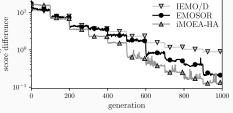
- iMOEA-HA performs significantly faster than its main competitor, EMOSOR
- iMOEA-HA with the queue limit at least of K=15 proved competitive to EMOSOR. Therefore, this variant was employed in the following experiments.

イロン イヨン イヨン イヨン

# Comparison with EMOSOR and IEMO/D

|          |   | EMOSOR |        | ið           | IOEA-HA |                 | IEMO/D       |       |        |      |
|----------|---|--------|--------|--------------|---------|-----------------|--------------|-------|--------|------|
|          | М | Mean   | StD    | R            | Mean    | StD             | R            | Mean  | StD    | R    |
|          | 2 | 1.161  | 9,702  | 1.87         | 1.532   | 13,366          | 1.89         | 1.345 | 11.505 | 2.24 |
| WFG1     | 3 | 2.061  | 17.386 | 2.15         | 0.751   | 4.996           | 1.65         | 1.165 | 6.722  | 2.20 |
| 8        | 4 | 1.366  | 5.079  | 1.87         | 0.984   | 2.229           | 1.63         | 1.873 | 6.771  | 2.50 |
| 2        | 5 | 2.131  | 3,753  | 1.76         | 1.763   | 3,676           | 1.61         | 3,387 | 5.329  | 2.63 |
|          | 2 | 0.702  | 3.092  | 2.02         | 0.362   | 2.101           | 2.33         | 0,305 | 1.285  | 1.65 |
| WFG2     | 3 | 1.465  | 4.526  | 1.94         | 0.797   | 2.371           | 1.93         | 0.970 | 3,146  | 2.13 |
| E        | 4 | 1.418  | 2.674  | 1.75         | 1.840   | 4.605           | 1.94         | 2.684 | 5.532  | 2.31 |
| 2        | 5 | 1.675  | 3,181  | 1.54         | 4,750   | 10.018          | 2.15         | 4.146 | 9,539  | 2.31 |
|          | 2 | 0.053  | 0.373  | 1.72         | 0.304   | 2.846           | 1.93         | 0.147 | 1.146  | 2.35 |
| WFG3     | 3 | 0.280  | 2.393  | 1.92<br>1.81 | 0.124   | 0,967           | 1.73         | 0.168 | 1.193  | 2.35 |
| 8        | 4 | 0.087  | 0.146  | 1.81         | 0.073   | 0.097           | 1.77         | 0.109 | 0.128  | 2.42 |
| 2        | 5 | 0.177  | 0.218  | 1.81         | 0.167   | 0.170           | 1.89         | 0.210 | 0.262  | 2.30 |
|          | 2 | 0.191  | 1.203  | 1.97         | 0.265   | 2.597           | 1.99<br>1.91 | 0.009 | 0.025  | 2.04 |
| WFG4     | 3 | 0.214  | 1.021  | 1.74         | 0.196   | 0.946           | 1.91         | 0.898 | 5.479  | 2.35 |
| <b>E</b> | 4 | 0.834  | 1.963  | 1.77         | 0.831   | 2.402           | 1.78         | 1.901 | 5,490  | 2.45 |
| 2        | 5 | 2.005  | 6.424  | 1.69         | 2.153   | 4.565           | 1.78         | 4.018 | 9.315  | 2.53 |
|          | 2 | 2.608  | 24.164 | 1.84         | 2.659   | 24.168          | 2.02         | 2.654 | 24.167 | 2.14 |
| WFG5     | 3 | 1.253  | 9.948  | 1.74         | 1.284   | 9.847           | 2.01         | 1.497 | 9.497  | 2.25 |
| εı       | 4 | 1.567  | 7,130  | 1.73         | 1.728   | 6.661           | 1.87         | 3,340 | 18.096 | 2.40 |
| 2        | 5 | 2,752  | 6.426  | 1.75         | 3.860   | 6.661<br>15.540 | 1.83         | 5,303 | 14.081 | 2.42 |
|          | 2 | 0.738  | 6.916  | 2.03         | 0.793   | 7.355           | 1.61         | 0.516 | 4.541  | 2.36 |
| WFG6     | 3 | 0,726  | 5.815  | 1.76         | 0.720   | 5,458           | 1.98         | 1.897 | 16.235 | 2.26 |
| £        | 4 | 0.992  | 3.426  | 1.74         | 1.033   | 3.256           | 1.78         | 2.025 | 5.889  | 2.48 |
| 2        | 5 | 2.076  | 4.608  | 1.78         | 2.154   | 5.275           | 1.68         | 5.274 | 13.632 | 2.54 |
|          | 2 | 0.032  | 0.286  | 2.00         | 0.004   | 0.011           | 1.93         | 0.008 | 0.025  | 2.07 |
| WFG7     | 3 | 0.204  | 0.540  | 1.77         | 0.189   | 0.683           | 1.97         | 1.408 | 11.635 | 2.26 |
| 8        | 4 | 0,906  | 3.094  | 1.88         | 1.025   | 4.547           | 1.78         | 1.751 | 6.310  | 2.34 |
| -        | 5 | 2,198  | 8.386  | 1.59         | 2.711   | 14.009          | 1.80         | 4.365 | 15.640 | 2.61 |
|          | 2 | 2.882  | 24.084 | 1.86         | 1.324   | 11.668          | 1.96         | 1.387 | 11.653 | 2.18 |
| WFG8     | 3 | 1.885  | 16,130 | 1.80         | 0.398   | 1.328           | 1.97         | 0.746 | 4.112  | 2.23 |
| £        | 4 | 1.173  | 4.341  | 1.77         | 1.319   | 5.035           | 1.84         | 1.997 | 5,949  | 2.39 |
| =        | 5 | 2.722  | 9.233  | 1.67         | 4.287   | 14.921          | 1.77         | 4.927 | 13.807 | 2.56 |
| -        | 2 | 1.740  | 15.647 | 1.66         | 2.599   | 23,345          | 1.96         | 1.900 | 16.614 | 2.38 |
| 8        | 3 | 1.365  | 10.855 | 1.66<br>1.72 | 0.958   | 6.461           | 1.87         | 3.107 | 27.098 | 2.41 |
| WFG9     | 4 | 2.093  | 11.713 | 1.72         | 2.193   | 9.124           | 1.80         | 2.639 | 10.404 | 2.48 |
| 2        | 5 | 3.096  | 9,908  | 1.64         | 3.515   | 10,770          | 1.80         | 6.241 | 17.072 | 2.56 |

Average ARSD and respective average ranks R attained by different algorithms applied to WFG1–9 problems with M = 2 - 5 objectives.



ARSD (averaged across all runs) for different algorithms applied to WFG4 with M = 3 objectives.

Image: A mathematical states and a mathem

iMOEA-HA with K=15 performs similar to EMOSOR, but significantly better than IEMO/D. Given that iMOEA-HA performs much faster than EMOSOR, it can be considered a better algorithm.

average relative

#### Michał Tomczyk, Miłosz Kadziński GECCO 2021

### Conclusions and avenues for future research

#### Conclusions

- We introduced a novel preference-based iMOEA-HA algorithm implementing the paradigm of preference learning
- iMOEA-HA is based on the up-to-date concepts in EMO and MCDA, i.e., it uses an efficient evolutionary framework and is based on stochastic ordinal regression
- iMOEA-HA introduces a fast procedure for calculating holistic acceptabilities
- iMOEA-HA performs significantly better than IEMO/D and no worse than EMOSOR, i.e., its two
  predecessors, but performing much faster than the latter algorithm

#### Avenues for future research

- we will further enhance the proposed algorithms for maintaining queues by replacing the insertion sort procedure with hybrid approaches
- we will investigate the performance of iMOAE-HA when the DM's preference information is imprecise or when (s)he acts irrationally
- we will apply the proposed algorithm to real-world problems such as portfolio optimization ?

michal.tomczyk@cs.put.poznan.pl

Thank you for your attention! (•





