Robust indicator-based algorithm for interactive
evolutionary multiple objective optimization

Michat Tomczyk, Mitosz Kadzinski

Laboratory of Intelligent Decision Support Systems
Institute of Computing Science

Poznan University of Technology

July 15, 2019

<« ) FRAGUE




€< fg

Evolutionary Multiple-objective
Optimization (EMO)
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Evolutionary Algorithms for MOO

~

Mimic the process of naturall evolution
to solve optimization problems

Advantages of EMO:

— can be applied to problems having
complex fitness landscapes

— the computational complexity can be
reduced since solutions are optimized in
an interrelated manner
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EMOAs

Preference-based EMOAs

Observation: it is not practical to ap-
proximate an entire PF since the DM is
interested in finding only relevant solu-
tions to him or her

Incorporation of DM'’s preferences

Preference information can be used to
constrain the search space, thereby re-
ducing the complexity of the problem

The preference information can be used
to impose an additional selection pres-
sure, converging a population of solu-
tions towards a region of PF being

L highly preferred to the DM




The proposed method — IEMO/I

Characteristics of the proposed method, called IEMO/I

> is interactive

> asks the DM to holistically compare some pairs of solutions

> employs a relatively simple preference model in a form of a Chebyshef function
> implements a robustness concern

> uses an indicator-based evolutionary framework



Scheme of an interactive EMOA

Decision Maker

Evolutionary Algorithm
ask for preferences prcference example
) Y (pairwise comparison) a pairwise comparison
interact?
N ————
use the model's indications preference model
optimize to impose additional a Chebyshev function
evolutionary pressure
"""" EMO Layer ~ Integration Layer  Preference Learning Layer



Preference modeling in IEMO/I, which

Preference model
We assume that the DM'’s value system can be modeled with a Chebyshef function:

FCF(s) = {max }w,-s,-
ie{1,....M

Parameters: weights

Preference example
The DM is presented a pair of solutions form the current population. (S)he is asked to
compare them, i.e., judge which one (s)he prefers more.

s7-sP 5  max ws?< max ws’
ie{l,..,M} ie{L,...,M}



Preference modeling in IEMO/I

Set of constraints Compatible model instances
The decision examples can be used to
constrain the weight space:

weight space

max W,.Sl? < max w; SIP’ an cxmupic:bl
sa-sben i€{l,...,M} ie{1,...,M} :}\’,ﬁgl‘;‘{’,ﬁc:m_e
M
E wi = 1: constrained space,
i—1 imposed by example s% = s”
- pairwise comparison
i >0
ie{1,...,M}

an example
compatbile
- weight vector

Sy




Preference modeling in IEMO/I

Set of constraints
The decision examples can be used to
constrain the weight space:

\v/ max wis? < max  ws’
sas-sbe ief{l,....,M} ie{1,...,M}
M
E w; =1,
i=1
w; >0

i

Compatible model instances

weight space




Preference modeling in IEMO/I

Set of constraints Compatible model instances
The decision examples can be used to

constrain the weight space:

weight space
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Preference modeling in IEMO/I

how different methods exploit a set of compatible model instances?

Representative model instance
Some methods select only one representa-
tive model instance, using some selection
policy. For instance, they select the most
discriminative model instance:

maximize ¢

subject to:

max  w;s] + €<  max W,-s,-b

sa-sben ie{l,...,M} ie{1,...,M}
M
E w; =1,
i=1
wij > 0

weight space

constrained space,
imposed by example ¢ = s®
pairwise comparison

RS

a representative
model
instance




Preference modeling in IEMO/I

how different methods exploit a set of compatible model instances?

Example method: NEMO-0!

NEMO-0 sorts solutions according to (primary sorting criterion) non-dominated
sorting and (secondary sorting criterion) selected representative model instance.

weight space 1.0
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how different methods exploit a set of compatible model instances?

Example method: NEMO-0!
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Preference modeling in IEMO/I

how different methods exploit a set of compatible model instances?

Robustness preoccupation

Some methods concern a whole set of compatible model instances. In this regard,
they are prudent since they do not neglect any compatible model instance.
Furthermore, they approximate a set of Pareto optimal solutions being potentially the

most relevant (optimal) to the DM.



Preference modeling in IEMO/I

how different methods exploit a set of compatible model instances?

Example method: NEMO-II*

NEMO-II partitions a population into (primary sorting criterion) fronts of potential
optimality and (secondary sorting criterion) sorts according to crowding-distance.

weight space 1.0

== Pareto front

== PF/Potentially optimal
B NEMO-II (first front)
O NEMO-II (second front)
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Preference modeling in IEMO/I

how different methods exploit a set of compatible model instances?

Example method: NEMO-II*

NEMO-II partitions a population into (primary sorting criterion) fronts of potential
optimality and (secondary sorting criterion) sorts according to crowding-distance.
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Preference modeling in IEMO/I

Comparison of IEMO/I and NEMO methods

| NEMO-0 NEMO-II IEMO/I
Interactive Yes v~
Preference information Pairwise comparisons v~
Preference model Additive value function ‘ Chebyshef function (CF)
Robustness preoccupation No X Yes v~ Yes v~

Evolutionary base Dominance-based X ‘ Indicator-based v~



Comparison of IEMO/I and NEMO-II

‘ NEMO-II IEMO/I
Evolutionary scheme generational steady-state
Secondary sorting criterion crowding-distance (fast) hypervolume 2
Verification of potential optimallity solving LP Monte Carlo simulation
weight space 1.0
— = Pareto front
== PF/Potentially optimal
W First front
O  Second front
0 5% - s
<2 0.5 o
\ , | |
'= | . © ;
/ compatible | ! u s¢ -5
i model instances’ i n
P S - 0.0 0
S 5% s 0.0 0.5 1.0
e f

2J. Bader and E. Zitzler. 2011. “HypE: An Algorithm for Fast Hypervolume-based Many-objective
Optimization”. Evolutionary Computation 19, 1 (2011), 45-76.



Experimental setting

Evaluated methods

A posteriori methods | NSGA-II HypE
Non-robust methods NEMO-0 ECC-MRW 3
Robust methods NEMO-II IEMO/I

Benchmark problems

> WEFG test suite
> The number of objectives M ranged from 2 to 5

Evolutionary setting

> The population size was made dependent on M

> The number of generations was set according to the difficulty of underlying problem
> To generate offspring, we used SBX and PM operators

3M. Kadzinski, M. K. Tomczyk, and R. Stowinski. 2018. “Interactive Cone Contraction for Evolutionary
Mutliple Objective Optimization. In Advances in Data Analysis with Computational Intelligence Methods:
Dedicated to Professor Jacek Zurada, A. E. Gaweda, J. Kacprzyk, L. Rutkowski, and G. G. Yen (Eds.). Springer
International Publishing, Cham, 293-309."



Experimental setting
Simulating DM's answers
> We modeled the DM'’s value system either with:
e a Chebyshef function (fc"VFDM) or

e a Weighted Sum (fV"l‘;SDM)

> The preference elicitation was performed 10 times at regular intervals.

> During preference elicitation, two non-dominated solutions were selected from the
current population and compared as imposed by the underlying preference function of
the artificial DM
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Experimental setting

Evaluation strategy

> Each method was run 100 times (for each scenario, i.e., benchmark problem,
number of objectives, etc.), each time interacting with a different artificial DM
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Experimental setting

Evaluation strategy

> To assess the performance of the method, we computed relative score differences
between generated solutions and the best option to the DM.
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Experimental evaluation

Visualization of constructed solutions

Comparison of robust and non-robust method
Population constructed by ECC-MRW applied to WFG3 with M = 3. The DM's value
system was modelled with fg:DM =[1/3,1/3,1/3].
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(a) generation = 50 (b) generation = 150 (C) generation = 250 (d) generation = 500
(after 1 interaction) (after 3 interactions) (after 5 interactions) (after 10 interactions)

ECC-MRW (non-robust) explored different regions in objective space, instead of
converging towards the preferred region...



Experimental evaluation

Visualization of constructed solutions

Comparison of robust and non-robust method
Population constructed by IEMO/I applied to WFG3 with M = 3. The DM’s value
system was modelled with fC"‘,’__DM =[1/3,1/3,1/3].
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(a) generation = 50 (b) generation = 150 (C) generation = 250 (d) generation = 500
(after 1 interaction) (after 3 interactions) (after 5 interactions) (after 10 interactions)

...while IEMO/I (robust) progressively constrained search space, constructing highly
preferred solutions



Experimental evaluation
Verification of performance o IEMO/I

We assumed that the DM would judge:

> [1.0,0.0,0.0] > [0.0,2.0,3.0]
in the 1%t generation;

> [0.0,2.0,0.0] > [0.0,0.0, 6.0]
in the 151" generation;

> [0.0,0.0,3.0] > [0.0,4.0,0.0]
in the 251" generation;

It constrains the weight space in the following way (according to the Chebyshev
function): [wo > wy V wz > wi] A [wz > 0.5un] A [wr > 0.5w3].

IEMO/I constructed a fine approximation of the region in objective space imposed by
the constraints on the weight space



Experimental evaluation

Visualization of constructed solutions

Comparison with HypE

Populations constructed by IEMO/I and HypE applied to different benchmark
problems.
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IEMO/I was able to find DM's preferred option, outperforming in this regard
a posteriori method — HypE



Experimental evaluation

Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.

relative score difference
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Experimental

evaluation

Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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NSGA-II and HypE attained poor ARSD. When compared to IEMO/I, BRSD attained
by these methods is also not satisfactory.



Experimental evaluation

Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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ECC-MRW (non-robust method) could not focus the search on DM’s preferred region

in the objective space.



Experimental evaluation

Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.

10°

Qoooooooooooooc
e

10—1 4

10—2 4

relative score difference

1073 T T T
0 125 250 375 500
generation

NSGA-II BRVD
NSGA-IT ARVD
HypE BRVD
HypE ARVD
ECC-MRW BRVD
ECC-MRW ARVD
IEMO/I BRVD
IEMO/T ARVD

IEMO/I (robust method) attained the best BRSD and ARSD, outperforming in this
regard the non-robust ECC-MRW and a posteriori methods.



Experimental evaluation
Comparative study: NEMO methods vs. IEMO/I

Average ARSD and BRSD throughout 500 generations for different algorithms applied
to WFG4 with M = 3. The artificial DM was modeled with a Chebyshev function.
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IEMO/I outperformed NEMO methods, which are based on the diminance principle
and an additive value function.



Experimental evaluation
Comparative study: NEMO methods vs. IEMO/I

Average ARSD and BRSD throughout 500 generations for different algorithms applied
to c(WFG4 with M = 3. The artificial DM was modeled with a weighted sum.
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NEMO-II BRSD
NEMO-II ARSD
—— IEMO/I BRSD
------ IEMO/T ARSD

relative score difference
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IEMO/I was outperformed by NEMO-II due to incorporating a preference model being
inconsistent with the DM'’s decision policy.



Conclusions

We propose a novel preference-based EMOA, IEMO/I, which

> is interactive

> asks the DM to holistically compare some pairs of solutions

> employs a simple preference model in a form of a Chebyshef function
> implements a robustness concern

> uses an indicator-based evolutionary framework

The conducted experiments prove that:

> IEMO/I can find a highly preferred region of the PF with a limited number of
interactions,

> IEMO/I outperforms some selected state-of-the-art methods which also
incorporate pairwise comparisons, but select only one compatible model instance
to promote solutions during evolutionary search

> the performance of an interactive EMOA can be improved, when the assumed
preference model aligns with the DM’s value system
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