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Evolutionary Multiple-objective
Optimization (EMO)
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Evolutionary Algorithms for MOO
Mimic the process of naturall evolution
to solve optimization problems

Advantages of EMO:
– can be applied to problems having
complex fitness landscapes
– the computational complexity can be
reduced since solutions are optimized in
an interrelated manner



Preference vs. non preference-based
EMOAs
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Preference-based EMOAs
Observation: it is not practical to ap-
proximate an entire PF since the DM is
interested in finding only relevant solu-
tions to him or her

Incorporation of DM’s preferences
Preference information can be used to
constrain the search space, thereby re-
ducing the complexity of the problem

The preference information can be used
to impose an additional selection pres-
sure, converging a population of solu-
tions towards a region of PF being
highly preferred to the DM



The proposed method – IEMO/I

Characteristics of the proposed method, called IEMO/I
. is interactive
. asks the DM to holistically compare some pairs of solutions
. employs a relatively simple preference model in a form of a Chebyshef function
. implements a robustness concern
. uses an indicator-based evolutionary framework



Scheme of an interactive EMOA
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Preference modeling in IEMO/I, which

Preference model
We assume that the DM’s value system can be modeled with a Chebyshef function:

f CF (s) = max
i∈{1,...,M}

wi si

Parameters: weights

Preference example
The DM is presented a pair of solutions form the current population. (S)he is asked to
compare them, i.e., judge which one (s)he prefers more.

sa � sb → max
i∈{1,...,M}

wi sa
i < max

i∈{1,...,M}
wi sb

i



Preference modeling in IEMO/I

Set of constraints
The decision examples can be used to
constrain the weight space:
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Preference modeling in IEMO/I

Set of constraints
The decision examples can be used to
constrain the weight space:
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Preference modeling in IEMO/I
how different methods exploit a set of compatible model instances?

Representative model instance
Some methods select only one representa-
tive model instance, using some selection
policy. For instance, they select the most
discriminative model instance:

maximize ε

subject to:

∀
sa�sb∈H

max
i∈{1,...,M}

wi sa
i + ε < max

i∈{1,...,M}
wi sb

i ,

M∑
i=1

wi = 1,

∀
i∈{1,...,M}

wi ≥ 0.

weight space

constrained space,
imposed by example sa � sb
pairwise comparison

a representative
model
instance



Preference modeling in IEMO/I
how different methods exploit a set of compatible model instances?

Example method: NEMO-01

NEMO-0 sorts solutions according to (primary sorting criterion) non-dominated
sorting and (secondary sorting criterion) selected representative model instance.
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Preference modeling in IEMO/I
how different methods exploit a set of compatible model instances?

Robustness preoccupation
Some methods concern a whole set of compatible model instances. In this regard,
they are prudent since they do not neglect any compatible model instance.
Furthermore, they approximate a set of Pareto optimal solutions being potentially the
most relevant (optimal) to the DM.



Preference modeling in IEMO/I
how different methods exploit a set of compatible model instances?

Example method: NEMO-II1
NEMO-II partitions a population into (primary sorting criterion) fronts of potential
optimality and (secondary sorting criterion) sorts according to crowding-distance.
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Preference modeling in IEMO/I
how different methods exploit a set of compatible model instances?

Example method: NEMO-II1
NEMO-II partitions a population into (primary sorting criterion) fronts of potential
optimality and (secondary sorting criterion) sorts according to crowding-distance.
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Preference modeling in IEMO/I

Comparison of IEMO/I and NEMO methods

NEMO-0 NEMO-II IEMO/I
Interactive Yes

Preference information Pairwise comparisons
Preference model Additive value function Chebyshef function (CF)

Robustness preoccupation No 7 Yes Yes
Evolutionary base Dominance-based 7 Indicator-based



Comparison of IEMO/I and NEMO-II

NEMO-II IEMO/I
Evolutionary scheme generational steady-state

Secondary sorting criterion crowding-distance (fast) hypervolume 2

Verification of potential optimallity solving LP Monte Carlo simulation
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Experimental setting

Evaluated methods
A posteriori methods NSGA-II HypE
Non-robust methods NEMO-0 ECC-MRW 3

Robust methods NEMO-II IEMO/I

Benchmark problems
. WFG test suite
. The number of objectives M ranged from 2 to 5

Evolutionary setting
. The population size was made dependent on M
. The number of generations was set according to the difficulty of underlying problem
. To generate offspring, we used SBX and PM operators

3M. Kadziński, M. K. Tomczyk, and R. S lowiński. 2018. “Interactive Cone Contraction for Evolutionary
Mutliple Objective Optimization. In Advances in Data Analysis with Computational Intelligence Methods:
Dedicated to Professor Jacek Żurada, A. E. Gawȩda, J. Kacprzyk, L. Rutkowski, and G. G. Yen (Eds.). Springer
International Publishing, Cham, 293-309.”



Experimental setting
Simulating DM’s answers
. We modeled the DM’s value system either with:

• a Chebyshef function (f wDM
CF ) or

• a Weighted Sum (f wDM
WS )

. The preference elicitation was performed 10 times at regular intervals.

. During preference elicitation, two non-dominated solutions were selected from the
current population and compared as imposed by the underlying preference function of
the artificial DM
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Experimental setting

Evaluation strategy
. Each method was run 100 times (for each scenario, i.e., benchmark problem,
number of objectives, etc.), each time interacting with a different artificial DM
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Experimental setting

Evaluation strategy
. To assess the performance of the method, we computed relative score differences
between generated solutions and the best option to the DM.
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Experimental evaluation
Visualization of constructed solutions

Comparison of robust and non-robust method
Population constructed by ECC-MRW applied to WFG3 with M = 3. The DM’s value
system was modelled with f wDM

CF = [1/3, 1/3, 1/3].
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ECC-MRW (non-robust) explored different regions in objective space, instead of
converging towards the preferred region...



Experimental evaluation
Visualization of constructed solutions

Comparison of robust and non-robust method
Population constructed by IEMO/I applied to WFG3 with M = 3. The DM’s value
system was modelled with f wDM

CF = [1/3, 1/3, 1/3].
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...while IEMO/I (robust) progressively constrained search space, constructing highly
preferred solutions



Experimental evaluation
Verification of performance o IEMO/I

We assumed that the DM would judge:

. [1.0, 0.0, 0.0] � [0.0, 2.0, 3.0]
in the 1st generation;
. [0.0, 2.0, 0.0] � [0.0, 0.0, 6.0]
in the 151th generation;
. [0.0, 0.0, 3.0] � [0.0, 4.0, 0.0]
in the 251th generation;
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It constrains the weight space in the following way (according to the Chebyshev
function): [w2 > w1 ∨ w3 > w1] ∧ [w3 > 0.5w2] ∧ [w2 > 0.5w3] .

IEMO/I constructed a fine approximation of the region in objective space imposed by
the constraints on the weight space



Experimental evaluation
Visualization of constructed solutions

Comparison with HypE

Populations constructed by IEMO/I and HypE applied to different benchmark
problems.
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(d) WFG4; M = 3
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IEMO/I was able to find DM’s preferred option, outperforming in this regard
a posteriori method – HypE



Experimental evaluation
Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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Experimental evaluation
Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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NSGA-II and HypE attained poor ARSD. When compared to IEMO/I, BRSD attained
by these methods is also not satisfactory.



Experimental evaluation
Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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ECC-MRW (non-robust method) could not focus the search on DM’s preferred region
in the objective space.



Experimental evaluation
Comparative study: Robust vs. non-robust vs. a posteriori methods

Average BRSD and ARSD throughout 500 generations for different algorithms applied
to WFG3 with M = 3. The artificial DM was modeled with a Chebyshev function.
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IEMO/I (robust method) attained the best BRSD and ARSD, outperforming in this
regard the non-robust ECC-MRW and a posteriori methods.



Experimental evaluation
Comparative study: NEMO methods vs. IEMO/I

Average ARSD and BRSD throughout 500 generations for different algorithms applied
to WFG4 with M = 3. The artificial DM was modeled with a Chebyshev function.
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IEMO/I outperformed NEMO methods, which are based on the diminance principle
and an additive value function.



Experimental evaluation
Comparative study: NEMO methods vs. IEMO/I

Average ARSD and BRSD throughout 500 generations for different algorithms applied
to cWFG4 with M = 3. The artificial DM was modeled with a weighted sum.
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IEMO/I was outperformed by NEMO-II due to incorporating a preference model being
inconsistent with the DM’s decision policy.



Conclusions

We propose a novel preference-based EMOA, IEMO/I, which
. is interactive
. asks the DM to holistically compare some pairs of solutions
. employs a simple preference model in a form of a Chebyshef function
. implements a robustness concern
. uses an indicator-based evolutionary framework

The conducted experiments prove that:
. IEMO/I can find a highly preferred region of the PF with a limited number of
interactions,
. IEMO/I outperforms some selected state-of-the-art methods which also
incorporate pairwise comparisons, but select only one compatible model instance
to promote solutions during evolutionary search
. the performance of an interactive EMOA can be improved, when the assumed
preference model aligns with the DM’s value system



Conclusions

We propose a novel preference-based EMOA, IEMO/I, which
. is interactive
. asks the DM to holistically compare some pairs of solutions
. employs a simple preference model in a form of a Chebyshef function
. implements a robustness concern
. uses an indicator-based evolutionary framework
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