
EURO 2024

Java framework for Evolutionary Computation and

Decision-Making (JECDM)

Michał Tomczyk Miłosz Kadziński

Institute of Computing Science

Poznan University of Technology, Poland

michal.tomczyk@cs.put.poznan.pl
www.cs.put.poznan.pl/mtomczyk/

M. Tomczyk, M. Kadziński EURO 2024

Research scope + about me

My research interests include:

• multi-objective optimization (solving real-world problems)

• evolutionary algorithms,

• multi-criteria decision aiding (preference learning)

I'm primarily focused on developing advanced, interactive

metaheuristics for solving real-world optimization problems.

M. Tomczyk, M. Kadziński EURO 2024

Research scope + about me

BSc
 (Engineering

Thesis)

Primary school MSc PhD

Code

Now

• Programming (data structures/algorithms/AI/etc.) has been one of my hobbies (?).

interests since I was a kid. I notice many similarities between LEGO and programming ☺.

• I hate shortcuts. I prefer taking the longer way instead (especially in technical sciences):

low effort and low reward vs high effort and high reward.

• Code incrementation/maintenance/reusability/high abstraction/etc (modularity).

Collaboration with M. Kadziński

What next?

Studies

M. Tomczyk, M. Kadziński EURO 2024

Motivations

Framework release

Project #1 Project #2 Project #3 Project #4

Motivation – a strategic decision:

• doing things simultaneously

• boost for own research

• creating own environment (sandbox) that will be shared (research

transparency, reusability, self-promotion, potential collaboration)

• Next focus: other projects

• The future framework's updates will result from the progress made when

realizing other projects (less frequent but more substantial updates).

less frequent but more substantial updates

M. Tomczyk, M. Kadziński EURO 2024

About the framework

• The framework is written in Java (v. 1.0 uses Java 17). Motivations for Java are:

▪ Need to maintain an extensive (> 1000 classes, > 150000 lines of code), but highly

structured project (object-oriented programming, software engineering, etc.)

▪ Fast (runtime, not startup)

▪ Memory optimization or direct memory addressing is not of concern.

• High-level abstractions and code reusability...

• but still focused on efficiency in those places when the performance is critical.

• It follows good practices delineated by software engineering practitioners but can also be

deemed high-quality from the viewpoint of specialists in algorithms and data structures.

• Self-sufficiency (low use of eternal libraries, currently only 4 small, technical libraries are used).

• The framework is maintained using the IntelliJ IDEA software (shared on GitHub and as copied &

pasted sources).

• Primary focus: architecture, not methods.

M. Tomczyk, M. Kadziński EURO 2024

About the framework

Thank you Denmark☺

Instead of the product on the left, I am focused on developing a product on the right.

The pictures were borrowed from the LEGO store: https://www.lego.com/

(+) Easy to comprehend

(-) Low reusability

(-) Low potential for extensions

(-) More difficult to comprehend

(+) High reusability

(+) High potential for extensions

The framework will be discussed and explained (how to use it) in a series

of tutorials (PDF + accompanying source codes).

M. Tomczyk, M. Kadziński EURO 2024

About the framework

Are there other
frameworks?

• For MCDA: the existing software is mainly focused on using existing methods (there are some

exceptions, e.g., https://www.decision-deck.org/project/)

• EMO + MCDA: not at this scale (focus on integrating state-of-the-art from both fields)

• EMO: yes, but they have some flaws (strange architectural decisions, not so flexible for extensions,

some hardcoding). For example:

• Pymoo https://www.pymoo.org/news.html

• MOEA Framework http://moeaframework.org/

• JMetal https://jmetal.sourceforge.net/

M. Tomczyk, M. Kadziński EURO 2024

Main modules

Utils

Visualization

DecisionSupport

Experimentation

Projects Tutorials

EvolutionaryComputation

Core

Extras

M. Tomczyk, M. Kadziński EURO 2024

The visualization module

• Developed from scratch (almost).

• High-level integration with other framework's

components.

• Supports 2D (Java Swing; processing on CPU)

and 3D rendering (OpenGL; processing on GPU).

• Highly efficient. The main focus was to develop

visualization components that can work well

with dynamically updating data. The GUI

processing is separated from more costly

operations, which are executed on separate

threads in a dedicated queuing system.

• Highly flexible with a high potential for various

adaptations.

M. Tomczyk, M. Kadziński EURO 2024

The visualization module

M. Tomczyk, M. Kadziński EURO 2024

The evolutionary computation module

The evolutionary computation (algorithm) is built on the

concept of phases processed by the upper-level class.

Interface: IPhase

Abstract class: AbstractPhase

InitStarts ConstructInitialPopulation AssignSpecimensIDs Evaluate Sort

InitEnds PrepareStep ConstructMatingPool SelectParents Reproduce Merge Remove

FinalizeStep UpdateOS

M. Tomczyk, M. Kadziński EURO 2024

The evolutionary computation module

• The phases are managed and executed by the upper-level

class (EA)

• The overall design should suit most cases well (regular

implementations/algorithms)

• The default implementations will probably do almost

90% of the job. The programmer will usually have to

overwrite some particular methods and decide upon the

exclusion/inclusion of some phases.

• Some phases are somewhat technical, and there will be no

reason to re-implement them (e.g., AssignSpecimensIDs);

some must be implemented (e.g., solution evaluation).

M. Tomczyk, M. Kadziński EURO 2024

The evolutionary computation module

Abstract class: AbstractPhase
Class: Evaluate

Interface: IEvaluate

M. Tomczyk, M. Kadziński EURO 2024

The decision support module

• The decision support module is more like an addition to the

evolutionary computation module than an equivalent

component.

• The decision support module's strategic focus is to facilitate

the integration of both areas rather than attempting to

implement all existing MCDA methods. It will also focus

mainly on preference-learning methods and value models.

• The module is implemented in the same spirit as the module

for evolutionary Computation, and is oriented around a top-

level decision-support component that can handle various

aspects of the decision-reaching process, e.g., collecting

preferences, requesting preferences, exploiting preference

models, handling inconsistencies, evaluating solutions given

the Decision Maker's preferences, and so on.

M. Tomczyk, M. Kadziński EURO 2024

The decision support module

Note that implementing a computational sandbox-like framework is not an easy task due to three reasons:

▪ Human dependency raises ambiguity when it comes to implementation.

▪ Many of the MCDA components are incompatible, which raises issues regarding generalization.

▪ Concepts<->methods: MCDA content is shifted more towards methods than concepts.

M. Tomczyk, M. Kadziński EURO 2024

The experimentation module

Defining experimental scenarios

A. Problems: DTLZ1-7, WFG1-9, .;

B. Algorithms, NSGA-III, NEMO-II, IEMO/D, ...

C. Objectives: 2-5;

D. Interactions: 5-10.

E. ...

Defining 1-level read-only basic data

Executing 1-level operations

E.g., no. trial runs, data for optimization problems,

or the main folder path

E.g., creating top-level folders

• The module is implemented in the same spirit

as the module for evolutionary computation.

• Template-like.

• Highly structured with default way of

processing (3 levels, automation) and data

organization provided.

• Efficiency, especially memory efficiency, is of

high priority.

M. Tomczyk, M. Kadziński EURO 2024

The experimentation module

For each trial run (e.g., 100, 3 level):

1. Instantiate the algorithm

2. Run the algorithm and store the intermediate

and final results

Defining 2-level (scenario-dependent) read-only data

Finalize 3-level

For each tuple that defines a scenario; (A, B, C, D, E, …)

Finalize 2-level

Finalize 1-level

• Supports providing new performance indicators

(implementing an interface)

• Supports parallelization of the 3-level processing.

• Supports providing new file processors (store

results on disc)

• Supports providing new finalizers (construct

experiment summary).

E.g., performance indicators, the numer of generations,

the population size, read-only operators, etc.

M. Tomczyk, M. Kadziński EURO 2024

Mailing list

The framework is currently under development, but I plan to release it in around 3 months. See my website:

https://www.cs.put.poznan.pl/mtomczyk/index.php/jecdm, where you can join a mailing list that will be used

to send the notification about the release.

michal.tomczyk@cs.put.poznan.pl

Thank you for your attention!

M. Tomczyk, M. Kadziński EURO 2024

	EURO 2024
	Research scope + about me
	Motivations
	About the framework
	About the framework
	About the framework
	Main modules
	The visualization module
	The evolutionary computation module
	The decision support module
	The experimentation module
	Mailing list

