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Preference-based EMOAs: Motivation

Incorporation of the DM'’s preferences into EMOA is oriented toward construction
and/or selection of the DM’s most preferred solution.
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Desirable characteristics of
a preference-based EMOA
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Comparison of different EMOAs
incorporating preference learning
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Figure: The role of a preference model in example preference-based Evolutionary
Multiple Objective Optimization algorithms.
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Figure: The role of a preference model in example preference-based Evolutionary
Multiple Objective Optimization algorithms.



IEMO/D: Preference model and a form of
preference judgements

( Preference model R
o\ 1/a
Lw(s/,z) = (Z’e{l ~~~~~ M} ’W’ ( [ z’)‘ ) for o < co,
max;_1,.. M{|W,(s’ z)|} for a = 0o
s/ is a solution, w is a normalized weight vector such that 3°;_ Lomwi =1
and z = [z1,22,...,2um] is a reference point. The less the distance of s/ from
2 (LX(¢,z)), the better. )
( Form of preference judgements: Pairwise comparisons h

) LY(s,2) < Lr{(sk,z).
(¢ =sf)eH

We assume that z and « are fixed and only objective weights w decide whether
2 particular model instance is consistent with the DM'’s decision examples.
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IEMO/D: Robustness analysis

( Compatible model instances

e |[EMO/D exploits a set of all compati-
ble preference functions by deriving from the
uniform distribution a subset of compatible
instances of the L,-norm;

e [EMO/D employs such compatible func-
tions to define the search directions in the
evolutionary process.
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IEMO/D: Robustness analysis

Space of objective weights

x

xx % *x x ox %
“ X x x X x xR
xX %x x xg X% X w

H *xx
x x

¥y Ex
In order to maximize the success rate of #
the sampling method, IEMO/D reduces the ®
search space. *

’s.

XX *

XX
"} Space of compatible objective weights j.’;,

x  incompatible objective weights
°o  compatible obj;

tive weights



IEMO/D: lteratively Constrained
Rejection Sampling With Upsampling

( Reduction of the search space )
IEMO/D uses Hit-and-Run [1] algorithm to generate a set of can-
didate weight vectors from a uniform distribution over the following
convex space:

oW _ Zi:l,..,M w; =1,
wi < w; <w.
i=1,..,M —
IEMO/D systematically approximates the bounds of candidate
weights, hence reducing the space of weight vectors to be exploited
\and decreasing the rejection rate. )

T. Tervonen, G. van Valkenhoef, N. Basturk, and D. Postmus, “Hit-and-Run enables efficient weight generation for
simulation-based multiple criteria decision analysis,” European Journal of Operational Research, vol. 224, no. 3,

pp. 552 - 559, 2013.



IEMO/D: lteratively Constrained
Rejection Sampling With Upsampling
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Figure: The Iteratively Constrained Rejection Sampling method with (/ICRSU,Q = 15)
or without (/ICRS, Q = 5) upsampling (the number of samples used by IEMO/D to
define the search directions is equal to 5).



IEMO/D: lteratively Constrained
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Figure: The Iteratively Constrained Rejection Sampling method with (/ICRSU,Q = 15)
or without (/ICRS, Q = 5) upsampling (the number of samples used by IEMO/D to
define the search directions is equal to 5).



IEMO/D: The replacement of

optimization goals.
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Figure: The replacement of optimization goals.



Experimental evaluation

( Experimental setting

e DTLZ1-7 and WFG1-2 benchmarks with 2 — 5 objectives.

e The number of generations G was set to 300 except for DTLZ3 (G = 900), DTLZ6
(G =900) and WFG1 (G = 1500)

e The DM was asked to compare pairwise solutions from the current population.

o The number of preference elicitation iterations was limited to a realistic level of 12, and
hence El = G/12.

e a in the preference model used by IEMO/D as well as o®" employed for simulating a
decision model LZZZ of an artificial DM were set to 5.

e z was set to a utopian point.

e Tournament selection of size 5 for NSGA-Il and NEMO methods. We used a random
selection of a pair of solutions for MOEA/D and IEMO/D.

e Simulated binary crossover (probability of 1.0) with a distribution index of 10.0 and
a polynomial mutation with a distribution index of 10.0 and probability of 1/dv, where
dv is a number of decision variables.




Experimental results
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Figure: Bounds of objectives weights (w and W) approximated with ICRSU (Q = 1000
and T = 100000) throughout 300 generations for DTLZ2 with M = 3 objectives,
averaged over 100 runs.



Experimental results
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Figure: Solutions constructed by the algorithms throughout the evolutionary search for
DTLZ2 with M =3 (wPM =[1/3,1/3,1/3]).
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Evaluation strategy

( Artificial DMs and optimal solutions

For each test problem, we simulated 100 artificial DMs with the ran-
. . . DM

domly selected weight vectors wPM incorporated into LYpm and found

the optimal solutions s°P* for such DMs:
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Figure: Optimal solutions st for DTLZ1 with 3 objectives.



Evaluation strategy

Reported measures

For each run with a unique artificial DM, we reported the following measures
for the compared algorithms:

© BRSD: a relative score difference of the best constructed solution s/ € P to
. . . ) DM
the optimal solution s;thM according to the DM's model: BRSD(P, L¥py) =

3 DM
mingep{ (Ltow (52 2) = Lo (5,2)) / Leom (st 2)};

o ARSD: an average relative score difference of all constructed solutions to
. . . , DM
the optimal solution soPt according to the DM's model: ARSD(P, L%y ) =
w «

(Z(aﬁ&”(s"*ﬁan 0 (59.2)) /Litow (5575.2) )/P|

sieP

To aggregate the results from the experimental runs involving different ar-

tificial DMs, we computed the mean values of BRSD and ARSD along

with the standard deviations (StD) as well as with the averaged ranks R
\attained by different algorithms.
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Experimental results

Table: Average BRSD (first row) and ARSD (second row) for the populations
generated in the last iteration by six algorithms for the DTLZ and WFG test problems

with M = 2,3, 4, and 5 objectives. Average ranks R attained by the algorithms

according to either BRSD or ARSD.

NSGA-II MOEA/D NEMO-0-L., NEMO-II-L,, IEMO/D
M | Mean StD R Mean StD R Mean StD R Mean StD R | Mean StD R
17.59 1833 472 | 17.33 3849 386 | 1782 80.70 3.27 | 0.01 0.01 158 | 002 002 157 T
3409.85 1707.38 4.47 | 3320.65 1548.83 4.53 | 39.63 133.33 2.82 | 3.82 2093 178 | 0.02 003 1.40
~ 3 88.24 62.50 4.66 25.13 48.19 3.54 | 208.46 552.48 3.62 0.17 0.42 1.82 | 0.11 0.28 136 4
N 3051.18  992.21  4.88 | 2561.79 851.06 4.10 | 21345 55456 2.48 | 18.07 5469 204 | 385 839 150
E 4 | 49853 36408 475 | 2451 39.13 323 | 394.81 649.79 3.85 | 0.74 126 182 | 048 093 135 T
5802.20 1459.48 5.00 | 2133.01 526.03 3.97 | 399.37 65141 241 | 99.37 14860 2.05 | 31.18 5296 1.57
5 703.14 46365 4.70 | 11.42 1883  3.03 | 455.72 561.80 3.95 | 1.55 351 205] 078 151 127 [ .
7055.04 1317.63 5.00 | 1825.73 339.62 3.95 | 470.68 564.63 2.43 | 208.68 178.94 215 | 63.95 99.67 1.47




Experimental results

Table: Average ranks R attained by the algorithms according to either BRSD or ARSD
for all test problems.

NSGA-II MOEA/D NEMO-0-L, | NEMO-II-L, IEMO/D

l Mean StD | Mean StD | Mean StD | Mean StD | Mean StD
—~ 9 459 031 | 3.07 069 | 313 038 | 185 044 | 236 0.69
3 469 023 | 424 026| 260 025 | 168 027 | 179 0.36
v 3 469 038 | 325 044 | 353 013 | 181 029 | 172 0.33
E 483 021 | 412 021 | 263 0.11 | 187 019 | 155 0.13

8 4 466 053 | 318 029 | 363 024 | 194 017 | 1.60 0.38

o 495 009 | 400 008 | 247 010 | 205 0.08 | 153 0.10
% 5 467 056 | 312 033 | 368 021 | 201 0.17 | 152 041
497 006 | 396 0.09 | 232 017 | 219 0.14 | 155 0.19




Experimental results

Table: Average ARSD for the populations constructed in the final generation by
IEMO/D using different preference models L, with various artificial DM's models
L,om (p =3), for DTLZ2 with M = 3. Average ranks R attained by different variants
of IEMO/D according to ARSD.

aPT=75 P =7 aPM =9 aPM =11 aP =0

Mean StD R ‘ Mean StD R | Mean StD R | Mean StD R | Mean StD Mean StD R
DTLZ2, M=3,p=5

0.07 019 1.74 | 055 1.90 307 467 3176 3.30 ‘ 751 4847 372 | 270 547 377 | 10.03 1985 3.71
033 083 293 | 038 084 279 075 288 310 074 145 320| 180 410 344 | 626 044 359
048 160 321 | 038 001 206 063 126 314 081 160 286 | 063 093 315| 475 640 3.25
0.54 121 400 | 057 110 353 0.79 230 3.07 097 237 318 | 114 256 292 | 418 6.16 3.08
0.94 259 389 | 098 214 372 092 2.00 345 1.24 435 328 | 093 164 3.03 | 4.23 5.99 3.20
378 1210 5023 | 226 441 403 | 307 510 404 ] 320 531 474 343 566 469 | 776 1025 417

|

2 Ho~ows




Summary

-

We proposed an interactive evolutionary multiple objective optimization

algorithm IEMO/D implementing the paradigm of decomposition.
L decomposition

J

-

IEMO/D generates a set uniformly distributed instances of L,-norms that
are compatible with the DM'’s indirect pieces of preferences. This process
involves the Monte Carlo simulation based on a suitably adapted rejection

sampling method.
N

-

Our experimental results proved that both an evolutionary mechanism

and a robustness preoccupation had a strong impact on the results of the
interactive optimization.

b

.

We demonstrated that the results are vastly improved when IEMO/D em-
ploys L,-norm was highly consistent with the DM’s judgement policy.

-

.

Avenues for future research: dynamic model adjustment, dynamic inter-
action patterns (when to interact, selection of solutions to be compared).

J
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