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Preference-based EMOAs: Motivation

Incorporation of the DM’s preferences into EMOA is oriented toward construction
and/or selection of the DM’s most preferred solution.
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Motivation
The preference information can be used
to constraint the search space, thereby
reducing the complexity of the problem.

The preference information can be used
to impose an additional selection pres-
sure, driving population of solutions to-
ward the most relevant region of PF.



Desirable characteristics of
a preference-based EMOA

Interactiveness
• a priori
• a posteriori
• interactive

Evolutionary base
• dominance
• indicator
• decomposition

Preference model
• an additive value function
• a Chebyshef function
• ...

DM’s judgements
• direct (e.g., objective weights)
• indirect (e.g., pairwise comparisons)

Robustness analysis
• single representative model instance
• control the spread of solutions
• exploit a whole space of compatible
model instances



Comparison of different EMOAs
incorporating preference learning
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(a) A single representative preference
model instance (e.g., NEMO-0)
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(b) All compatible preference model
instances (e.g., NEMO-II based on
NSGA-II)

Figure: The role of a preference model in example preference-based Evolutionary
Multiple Objective Optimization algorithms.



Comparison of different EMOAs
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(c) A subset of all compatible preference model instances (e.g., IEMO/D based on
MOEA/D)

Figure: The role of a preference model in example preference-based Evolutionary
Multiple Objective Optimization algorithms.



IEMO/D: Preference model and a form of
preference judgements

Preference model

Lw
α (s j , z) =


(∑

i∈{1,...,M}

∣∣∣wi
(
s j

i − zi
)∣∣∣α)1/α

for α <∞,
maxi=1,...,M{|wi (s j

i − zi )|} for α =∞.

s j is a solution, w is a normalized weight vector such that
∑

i=1,...,M wi = 1,
and z = [z1, z2, . . . , zM ] is a reference point. The less the distance of s j from
z (Lw

α (s j , z)), the better.

Form of preference judgements: Pairwise comparisons

∀
(s j � sk) ∈ H

Lw
α (s j , z) < Lw

α (sk , z).

We assume that z and α are fixed and only objective weights w decide whether
a particular model instance is consistent with the DM’s decision examples.



IEMO/D: Robustness analysis

Compatible model instances
• IEMO/D exploits a set of all compati-
ble preference functions by deriving from the
uniform distribution a subset of compatible
instances of the Lα-norm;
• IEMO/D employs such compatible func-
tions to define the search directions in the
evolutionary process.

Space of objective weights

Space of compatible objective weights

incompatible objective weights

compatible objective weights



IEMO/D: Robustness analysis

In order to maximize the success rate of
the sampling method, IEMO/D reduces the
search space.

Space of objective weights

Space of compatible objective weights

incompatible objective weights

compatible objective weights



IEMO/D: Iteratively Constrained
Rejection Sampling With Upsampling

Reduction of the search space
IEMO/D uses Hit-and-Run [1] algorithm to generate a set of can-
didate weight vectors from a uniform distribution over the following
convex space:

Cww =


∑

i=1,..,M wi = 1,
∀

i=1,...,M
wi ≤ wi ≤ wi .

IEMO/D systematically approximates the bounds of candidate
weights, hence reducing the space of weight vectors to be exploited
and decreasing the rejection rate.

T. Tervonen, G. van Valkenhoef, N. Basturk, and D. Postmus, “Hit-and-Run enables efficient weight generation for

simulation-based multiple criteria decision analysis,” European Journal of Operational Research, vol. 224, no. 3,

pp. 552 - 559, 2013.



IEMO/D: Iteratively Constrained
Rejection Sampling With Upsampling
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(a) first iteration (ICRS)
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(b) first iteration (ICRSU)
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Figure: The Iteratively Constrained Rejection Sampling method with (ICRSU,Q = 15)
or without (ICRS, Q = 5) upsampling (the number of samples used by IEMO/D to
define the search directions is equal to 5).



IEMO/D: Iteratively Constrained
Rejection Sampling With Upsampling
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(b) second iteration (ICRSU)
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Figure: The Iteratively Constrained Rejection Sampling method with (ICRSU,Q = 15)
or without (ICRS, Q = 5) upsampling (the number of samples used by IEMO/D to
define the search directions is equal to 5).



IEMO/D: The replacement of
optimization goals.
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Figure: The replacement of optimization goals.



Experimental evaluation

Experimental setting
• DTLZ1-7 and WFG1-2 benchmarks with 2 – 5 objectives.
• The number of generations G was set to 300 except for DTLZ3 (G = 900), DTLZ6
(G = 900) and WFG1 (G = 1500)
• The DM was asked to compare pairwise solutions from the current population.
• The number of preference elicitation iterations was limited to a realistic level of 12, and
hence EI = G/12.
• α in the preference model used by IEMO/D as well as αDM employed for simulating a
decision model LwDM

αDM of an artificial DM were set to 5.
• z was set to a utopian point.
• Tournament selection of size 5 for NSGA-II and NEMO methods. We used a random
selection of a pair of solutions for MOEA/D and IEMO/D.
• Simulated binary crossover (probability of 1.0) with a distribution index of 10.0 and
a polynomial mutation with a distribution index of 10.0 and probability of 1/dv , where
dv is a number of decision variables.



Experimental results
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Figure: Bounds of objectives weights (w and w) approximated with ICRSU (Q = 1000
and T = 100000) throughout 300 generations for DTLZ2 with M = 3 objectives,
averaged over 100 runs.



Experimental results

(a) NEMO-0-Lα
(b) IEMO/D

Figure: Solutions constructed by the algorithms throughout the evolutionary search for
DTLZ2 with M = 3 (wDM = [1/3, 1/3, 1/3]).



Experimental results

(a) NEMO-0-Lα

(b) IEMO/D

Figure: Solutions constructed by the algorithms throughout the evolutionary search for
DTLZ2 with M = 3 (wDM = [0.2, 0.3, 0.5]).



Evaluation strategy

Artificial DMs and optimal solutions
For each test problem, we simulated 100 artificial DMs with the ran-
domly selected weight vectors wDM incorporated into LwDM

αDM and found
the optimal solutions sopt for such DMs:
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Figure: Optimal solutions sopt for DTLZ1 with 3 objectives.



Evaluation strategy

Reported measures
For each run with a unique artificial DM, we reported the following measures
for the compared algorithms:

• BRSD: a relative score difference of the best constructed solution s j ∈ P to
the optimal solution sopt

wDM according to the DM’s model: BRSD(P, LwDM

αDM ) =
mins j ∈P{

(
LwDM

αDM (sopt
wDM , z)− LwDM

αDM (s j , z)
)
/LwDM

αDM (sopt
wDM , z)};

• ARSD: an average relative score difference of all constructed solutions to
the optimal solution sopt

wDM according to the DM’s model: ARSD(P, LwDM

αDM ) =∑
s j ∈P

(
LwDM

αDM (sopt
wDM , z)− LwDM

αDM (s j , z)
)
/LwDM

αDM (sopt
wDM , z)

/|P|.
To aggregate the results from the experimental runs involving different ar-
tificial DMs, we computed the mean values of BRSD and ARSD along
with the standard deviations (StD) as well as with the averaged ranks R
attained by different algorithms.



Experimental results
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Figure: Convergence plot for average BRSD and ARSD for different algorithms applied
to DTLZ2 with M = 3.



Experimental results

Table: Average BRSD (first row) and ARSD (second row) for the populations
generated in the last iteration by six algorithms for the DTLZ and WFG test problems
with M = 2, 3, 4, and 5 objectives. Average ranks R attained by the algorithms
according to either BRSD or ARSD.

NSGA-II MOEA/D NEMO-0-Lα NEMO-II-Lα IEMO/D
ρ

M Mean StD R Mean StD R Mean StD R Mean StD R Mean StD R

D
T

LZ
2

2 17.59 18.33 4.72 17.33 38.49 3.86 17.82 80.70 3.27 0.01 0.01 1.58 0.02 0.02 1.57 43409.85 1707.38 4.47 3320.65 1548.83 4.53 39.63 133.33 2.82 3.82 20.93 1.78 0.02 0.03 1.40

3 88.24 62.50 4.66 25.13 48.19 3.54 208.46 552.48 3.62 0.17 0.42 1.82 0.11 0.28 1.36 43051.18 992.21 4.88 2561.79 851.06 4.10 213.45 554.56 2.48 18.07 54.69 2.04 3.85 8.39 1.50

4 498.53 364.08 4.75 24.51 39.13 3.23 394.81 649.79 3.85 0.74 1.26 1.82 0.48 0.93 1.35 45892.20 1459.48 5.00 2133.01 526.03 3.97 399.37 651.41 2.41 99.37 148.60 2.05 31.18 52.96 1.57

5 703.14 463.65 4.70 11.42 18.83 3.03 455.72 561.80 3.95 1.55 3.51 2.05 0.78 1.51 1.27 47055.04 1317.63 5.00 1825.73 339.62 3.95 470.68 564.63 2.43 208.68 178.94 2.15 63.95 99.67 1.47



Experimental results

Table: Average ranks R attained by the algorithms according to either BRSD or ARSD
for all test problems.

NSGA-II MOEA/D NEMO-0-Lα NEMO-II-Lα IEMO/D
Mean StD Mean StD Mean StD Mean StD Mean StD

Av
er

ag
e

ra
nk

s
(R

) 2 4.59 0.31 3.07 0.69 3.13 0.38 1.85 0.44 2.36 0.69
4.69 0.23 4.24 0.26 2.60 0.25 1.68 0.27 1.79 0.36

3 4.69 0.38 3.25 0.44 3.53 0.13 1.81 0.29 1.72 0.33
4.83 0.21 4.12 0.21 2.63 0.11 1.87 0.19 1.55 0.13

4 4.66 0.53 3.18 0.29 3.63 0.24 1.94 0.17 1.60 0.38
4.95 0.09 4.00 0.08 2.47 0.10 2.05 0.08 1.53 0.10

5 4.67 0.56 3.12 0.33 3.68 0.21 2.01 0.17 1.52 0.41
4.97 0.06 3.96 0.09 2.32 0.17 2.19 0.14 1.55 0.19



Experimental results

Table: Average ARSD for the populations constructed in the final generation by
IEMO/D using different preference models Lα with various artificial DM’s models
LαDM (ρ = 3), for DTLZ2 with M = 3. Average ranks R attained by different variants
of IEMO/D according to ARSD.

αDM = 3 αDM = 5 αDM = 7 αDM = 9 αDM = 11 αDM =∞
Mean StD R Mean StD R Mean StD R Mean StD R Mean StD R Mean StD R

α DTLZ2, M = 3, ρ = 5
3 0.07 0.19 1.74 0.55 1.90 3.07 4.67 31.76 3.30 7.51 48.47 3.72 2.70 5.47 3.77 10.03 19.85 3.71
5 0.33 0.88 2.93 0.38 0.84 2.79 0.75 2.88 3.10 0.74 1.45 3.22 1.80 4.10 3.44 6.26 9.44 3.59
7 0.48 1.60 3.21 0.38 0.91 2.96 0.63 1.26 3.14 0.81 1.69 2.86 0.63 0.93 3.15 4.75 6.40 3.25
9 0.54 1.21 4.00 0.57 1.10 3.53 0.79 2.30 3.07 0.97 2.37 3.18 1.14 2.56 2.92 4.18 6.16 3.08

11 0.94 2.59 3.89 0.98 2.14 3.72 0.92 2.00 3.45 1.24 4.35 3.28 0.93 1.64 3.03 4.23 5.99 3.20
∞ 3.78 12.10 5.23 2.26 4.41 4.93 3.07 5.10 4.94 3.29 5.31 4.74 3.43 5.66 4.69 7.76 10.25 4.17



Summary
We proposed an interactive evolutionary multiple objective optimization
algorithm IEMO/D implementing the paradigm of decomposition.

IEMO/D generates a set uniformly distributed instances of Lα-norms that
are compatible with the DM’s indirect pieces of preferences. This process
involves the Monte Carlo simulation based on a suitably adapted rejection
sampling method.

Our experimental results proved that both an evolutionary mechanism
and a robustness preoccupation had a strong impact on the results of the
interactive optimization.

We demonstrated that the results are vastly improved when IEMO/D em-
ploys Lα-norm was highly consistent with the DM’s judgement policy.

Avenues for future research: dynamic model adjustment, dynamic inter-
action patterns (when to interact, selection of solutions to be compared).


	Introduction
	Preference-based evolutionary EMO
	Desirable characteristics of a preference-based EMOA
	Comparison of different EMOAs incorporating preference learning

	Proposed method: IEMO/D
	IEMO/D: Preference model and a form of preference judgements
	IEMO/D: Robustness analysis
	IEMO/D: Iteratively Constrained Rejection Sampling With Upsampling 

	Experimental evaluation
	Evaluation strategy
	Experimental results
	Summary


