
The Role of Behavioral Diversity and Difficulty of
Opponents in Coevolving Game-Playing Agents

Marcin Szubert, Wojciech Jaśkowski, Paweł Liskowski, and Krzysztof Krawiec

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
{mszubert,wjaskowski,pliskowski,kkrawiec}@cs.put.poznan.pl

[Preprint – this paper has been accepted for presentation at EvoApplications 2015]

Abstract Generalization performance of learning agents depends on the
training experience to which they have been exposed. In game-playing
domains, that experience is determined by the opponents faced during
learning. This analytical study investigates two characteristics of oppo-
nents in competitive coevolutionary learning: behavioral diversity and
difficulty (performance against other players). To assess diversity, we
propose a generic intra-game behavioral distance measure, that could be
adopted to other sequential decision problems. We monitor both charac-
teristics in two-population coevolutionary learning of Othello strategies,
attempting to explain their relationship with the generalization perfor-
mance achieved by the evolved solutions. The main observation is the
existence of a non-obvious trade-off between difficulty and diversity, with
the latter being essential for obtaining high generalization performance.
Keywords: behavioral diversity, diversity maintenance, test difficulty,
competitive coevolution, generalization performance, games, Othello.

1 Introduction

Competitive coevolution has been regarded as an appealing alternative to con-
ventional evolutionary algorithms in domains where the objective function is
difficult to define or expensive to compute. Instead of relying on a static fitness
function, in coevolution individuals are evaluated on the basis of interactions
with each other [1]. This approach is particularly suitable to games where it is
natural to assess the skills of a given game-playing agent by inspecting how it
performs against a set of opponents.

One of the main motivations behind using coevolution in games is the belief
that it is able to encourage arms race between competing individuals and thus
provide a pedagogical series of increasingly complex challenges [2]. However,
even if coevolution succeeds in providing progressively more difficult opponents,
it can still suffer from undesired phenomena known as coevolutionary pathologies
[3,4]. For instance, recent works on Othello demonstrate that in the long-term
perspective coevolution tends to overspecialize on beating the strong players
while forgetting how to deal with the weaker ones, so that in the end the resulting
strategies do not generalize well [5]. Consequently, in terms of generalization
performance, coevolution has been found less effective than simple evolution
with fitness evaluated against a set of random opponents [6].

In this paper, we attempt to improve the generalization performance of
Othello-playing agents by promoting the diversity among the coevolving oppo-
nents. In contrast to many genotypic diversity maintenance techniques studied
in the past [7,8,9], here we focus on the behavioral characteristics of individuals.
For this purpose, we define a simple behavioral distance measure, applicable not
only to Othello but to any sequential decision making problem. We hypothesize
that by promoting both difficulty and behavioral diversity in the population of
tests (opponents), coevolution can outperform the evolutionary algorithm with
random sampling of opponents. To verify this thesis, we investigate the interplay
between the behavioral diversity and difficulty of coevolving opponents as well
as the relationships of these two issues with the generalization performance of
evolved solutions.

2 Diversity Maintenance Techniques

In analogy to the key role played by diversity of living organisms in the theory
of natural selection, maintaining diversity of candidate solutions in a population
has been long perceived as crucial for the effectiveness of evolutionary algo-
rithms [7]. Lack of diversity has been linked to major problems, including slow
progress and premature convergence to suboptimal regions of the search space.
In response, numerous diversity maintenance techniques have been proposed to
sustain exploration of the search space.

The most popular approaches to diversity maintenance include crowding and
fitness sharing [9], which both modify the selection process by promoting the
individuals that are most different from the rest of population. For instance,
fitness sharing consists in dividing fitness values by the niche count to demote
the individuals which are similar to each other (i.e., occupy the same niche).
Techniques like these do not directly manipulate genotypes and are thus often
referred to as implicit ; alternatively, diversity can be stimulated explicitly by
simply increasing the strength of a mutation operator.

In the context of competitive coevolution, deficit of diversity can be linked
with frequently reported pathologies such as overspecialization, mediocre stable
states [3] or disengagement (loss of fitness gradient [4]). For instance, a popula-
tion of opponents that has converged to a single difficult opponent may present
a too demanding challenge for the candidate solutions and so disengage from
them. Besides the conventional fitness sharing, a number of diversity mainte-
nance techniques tailored for coevolution have been employed to remedy such
situations. Examples include competitive fitness sharing [10] and reduced par-
asite virulence [11]. The impact of these techniques on the performance of a
single-population coevolution was investigated by Chong et al. [12].

Most of diversity maintenance techniques rely on measuring some form of
distance between the evolving individuals. Typically, the distance measure is
defined in the original search space, i.e., at the level of genotypes. For instance,
for solutions represented as vectors of real parameters, the Euclidean distance
may be used to assess their similarity.

PREPRINT April 6, 2015

However, if the mapping between genotypes and phenotypes/behaviors is
complex, which is often the case in nontrivial problems like games, individu-
als that are apart according to a genotypic distance measure can exhibit very
similar behaviors. And vice versa: a minute modification of the genotype can fun-
damentally alter individual’s behavior. For instance, consider the popular WPC
strategy representation studied in this paper (cf. Section 4.1). Scaling of the
entire genotype (weight matrix) has no effect on strategy behavior whatsoever,
because it does not change the ordering of evaluations of board states (cf. Eq.
2). On the other hand, a small modification of a weight associated with, e.g., one
of the central board locations, can change the way a strategy plays the opening
of a game and so diametrically change its performance.

Promoting genotypic diversity does not guarantee thus diverse behaviors.
Since it is the behavior that matters in the end, recent works [13,14] promote
diversity by measuring distance directly in the space of behaviors. Although
assessing behavioral distance typically requires defining a task-specific measure,
generic measures for the entire class of sequential decision problems have been
also proposed, based on, e.g., normalized compression distance [15].

In coevolutionary algorithms, competitive fitness sharing [10] can be seen as
a step towards behavior-based diversity maintenance, as it measures the distance
between individuals with respect to the results of their interactions with individ-
uals in population. For instance, in the context of game-playing, it will promote
the strategies winning with the opponents that few other strategies can beat.

In this paper, we consider two-population coevolutionary algorithm and, in
contrast to most of the past works, focus on the behavioral diversity in the pop-
ulation of tests (opponents) and its relationship with the generalization perfor-
mance in the population of solutions. To that aim, we devise a novel intra-game
behavioral distance measure that compares players with respect to the decisions
they make in particular game states. To the best of our knowledge, the only
work that employs a comparable behavioral distance in competitive coevolution
is the recent paper by Gomes et al. [16]. The authors define a task-specific dis-
tance measure for the predator-prey pursuit problem and apply it to promote
behavioral novelty in both coevolving populations. In this context, the measure
proposed in the next section has the advantage of being problem-independent.

3 Measuring Distance between Game-Playing Agents

In order to maintain behavioral diversity, we propose a measure of behavioral
distance between two game-playing agents. This measure relies on comparing
actions the given agents would make in each of a predefined set of game states.

3.1 Behavior Characterization Vector

In sequential decision making problems [17], an agent can be identified with
a policy π : S → A that, for each possible state of the environment s ∈ S
produces an action a ∈ A. Assuming that the environment has the Markov

April 6, 2015 PREPRINT

property, current state of the environment provides enough information to take
an action, i.e., the history of previous states and actions is irrelevant. Therefore,
the behavior of an agent can be fully characterized by independently considering
the actions it would take in every possible state of the environment. Assuming a
finite space of m states, the behavior of an agent t equipped with policy πt can
be thus expressed as a vector:

βt = 〈πt(s1), πt(s2), ..., πt(sm)〉 ,

which is referred to as as behavior characterization vector [16,13]. We denote an
agent by ‘t’ to emphasize that in this paper we are ultimately interested in the
behaviors of tests in a two-population coevolutionary algorithm.

β captures the complete account of agent’s behavioral characteristics: noth-
ing more can be said about its behavior, because all possible states have been
taken into account. In practice however, m is often prohibitively large (≈ 1028

for the game of Othello considered in this paper), so a technically realizable
behavioral analysis needs to sacrifice the completeness by relying on a reason-
ably sized subset S′ ⊆ S of representative states. How informative a particular
implementation of β is, depends on the actual choice of S′. In board games like
Othello, an interaction episode (game) between players always starts from the
same initial state. Certain states are thus much more likely to be visited than
others, and this observation will motivate the particular choice of S′ we describe
in the experimental section.

3.2 Mean Behavioral Distance

We employ the behavior characterization vector as a means to measure the
diversity in a population of agents – game strategies. Given the behavior char-
acterization vectors βt and βt′ of two game-playing agents (strategies) t and t′,
determined on the same subset of m distinct states, we define the behavioral
distance between them as:

d(t, t′) = DHamming(βt, βt′) =
m∑
i=1

δ (βt[i], βt′ [i]) , (1)

where δ is the Kronecker delta. We resort to the Hamming distance, because
definitions of actions depend on the problem of consideration. Without referring
to problem-specific knowledge, it is impossible to judge how similar two actions
are; the only statement that can be made for certain is whether they are identical
or not. This is particularly true for Othello where actions are discrete and refer
to different board positions. Obviously, in domains with continuous actions (e.g.,
A = R), other ways of comparing individuals would apply (and, as a matter of
fact, would be unavoidable, as two continuous actions are almost always distinct).

With d as a means for pairwise comparison of agents’ behaviors, we define
the internal diversity of any nonempty set of agents T as the average behavioral

PREPRINT April 6, 2015

distance between a pair agents in T , i.e.,

d(T) =
2

|T |(|T | − 1)

∑
t,t′∈T, t 6=t′

d(t, t′).

By definition, d(T) ∈ [0,m].

4 Experimental Setup

In the following, we detail key elements which constitute the conceptual frame-
work of this study: the definition of the game along with representation of its
strategies, the algorithms that learn to play the game, and the performance mea-
sures used to assess quality and diversity of the obtained game-playing agents.

4.1 Othello and WPC representation

Othello Othello is a deterministic, perfect information, zero-sum board game
played by two players on an 8× 8 board. It involves black and white pieces. At
the beginning of the game, each player has two pieces placed diagonally in the
center of the board. The players take turns by placing one new piece on an empty
board field. The black player moves first. A move is legal if the newly placed
piece makes one or more of the opponent’s pieces enclosed from both ends of a
horizontal, vertical or diagonal segment. The enclosed pieces are then changed
to the opposite colors. The game ends when neither player has a legal move. A
player who has then more pieces on the board wins, or if both players have the
same number of pieces, the game ends in a draw.

Strategy representation Our agents are represented by position-weighted
piece counter (WPC), which is arguably the simplest state evaluation function
for Othello [18]. WPC assigns a weight wi to board location i and uses scalar
product to calculate the utility f of a board state b:

f (b) =

8×8∑
i=1

wibi, (2)

where bi is 0, +1 or −1 for, respectively, an empty location, black piece, or white
piece. The game-playing agents interpret f(b) in a complementary manner: the
black player prefers the moves leading towards the states with higher values,
whereas the lower values are favored by the white player.

We employWPC as a state evaluator in a 1-ply setup, i.e., given a board state,
a game-playing agent generates all legal moves and applies f to the resulting
states. The state gauged as the most favorable determines the move to be made,
while ties are resolved randomly.

April 6, 2015 PREPRINT

4.2 Generalization Performance

Our objective is to find game-playing agents that maximize the expected utility
[19]. We approximate the expected utility by playing a number of games against
random opponents. A random opponent is a player drawn from the solution
space, i.e., the space of all admissible WPCs, by which we mean WPCs with
weights from the interval [−10, 10].

The score awarded for a single game is either 0, 0.5 or 1 for lose, draw or
win, respectively. For symmetry, we employ double games, where both agents
play one game as black and the other as white. The performance measure is the
average score in 25 000 double games against random opponents.

Since this measure tests how an individual generalizes over the space of all
possible players, it is also referred to as generalization performance [6].

4.3 Learning Algorithms

Two evolutionary algorithms are employed to learn WPC weights. Both are
driven by the interactions that take place between game-playing agents. Each
evolutionary run consists of 500 generations, in each of them 5 000 games (2 500
double games) are played, which adds up to the total effort of 2 500 000 games
per run.

Coevolutionary Learning The first algorithm is a two-population competitive
coevolutionary learning (cel) [2], which maintains individuals separated into
two populations: i) candidate solutions, and ii) tests. Tests act as opponents
that challenge the candidate solutions. The fitness of a candidate solution is
defined as the average result of interactions (i.e., double games) with all tests
in the second population, while calculating the fitness of an opponent involves
behavioral fitness sharing detailed in Section 4.4.
Both populations employ the (µ, λ)-evolutionary strategy [20], where µ = 25,
λ = 50. Initially, they both contain λ randomly generated individuals — real
vectors of WPC weights drawn from [−0.2, 0.2]. The mutation operator perturbs
all the weights using additive noise. The WPC weight w

′

i of an offspring is
obtained by adding a small random value to the corresponding weight wi of the
parent:

w
′

i = wi + δ · U(−1, 1), (3)

where U(−1, 1) is a real value drawn uniformly from the range [−1, 1] and δ
is the mutation strength. Weights resulting from mutation are clamped to the
interval [−10, 10] effectively making the value equal to the respective bound, e.g.,
if |w′i| > 10, we set w′i := 10. Consequently, the search space of strategies is a
[−10, 10]64 hypercube. For the population of candidate solutions we use δs = 0.1,
while for tests we consider multiple values δt = {0.1, 1.0, 5.0, 10.0}.

PREPRINT April 6, 2015

Random Sampling Evolutionary Learning We compare cel with the
random sampling evolutionary learning (rsel) [6]. rsel maintains a single pop-
ulation of candidate solutions bred in the same way as in cel and differs from
it only in fitness evaluation. In rsel, the fitness of each candidate solution is
computed as an average result of interactions with a sample T of random oppo-
nents, which is drawn once per generation. For fair comparison with cel, we set
|T | = λ = 50.

Notice that the fitness employed in rsel is an unbiased estimator of the
generalization performance of the game-playing agent (cf. Section 4.2). rsel has
been found to surpass both one- and two-population coevolution on generaliza-
tion performance for 1-ply Othello [6,5].

4.4 Diversity Maintenance Techniques

We equip cel with two mechanisms that can promote diversity in the population
of opponents: 1) increasing strength δt of the mutation operator, which can
explicitly stimulate genotypic diversity, and 2) Behavioral Fitness Sharing (BFS)
that implicitly promotes behavioral diversity (see Section 2).

BFS augments fitness sharing with behavioral distance between the oppo-
nents in the population of tests. The fitness f ′i of an opponent i is given by:

f ′i =
fi∑

jmax(0, 1−
dij
σ)

, (4)

where fi is the conventional fitness defined as an average interaction outcome be-
tween the opponent i and the coevolving candidate solutions, dij is the behavioral
distance between opponent i and opponent j (Eq. 1), and σ is the niche radius.
Individuals whose distance to each other is lower than σ share the fitness. We use
σ = {0, 10, 20, 30, 40, 50, 60, 70} and employ BFS in combination with the uni-
form mutation operator (Eq. 3) and mutation strength δt = {0.1, 1.0, 5.0, 10.0}.
Note that by setting σ to 0 we completely turn off fitness sharing.

Computing dij involves inspecting the behavior of both strategies on a num-
ber of states (cf. Section 3.1). For this purpose, we use a set of allm = 71 distinct
Othello states reachable in the first 4 moves of the game.

4.5 Opponent Population Measures

Apart from the generalization performance of candidate solutions , we probe the
populations of opponents in cel with additional ‘instruments’.

The first of them is the behavioral diversity in the population of oppo-
nents, expressed as the mean behavioral distance (Eq. 3.2). For two-population
coevolution, this measure changes over time, since the population of opponents
evolves. rsel, in contrast, draws the opponent uniformly from the WPC space.
Assuming that random WPCs are equally likely to make every admissible move
in each of the 71 considered initial states, we can calculate the expected behav-
ioral distance between any two opponents t and t′ used by rsel analytically:

April 6, 2015 PREPRINT

E [d(t, t′)] = E

[
m∑
i=1

δ (βt[i], βt′ [i])

]
=

m∑
i=1

E [δ (βt[i], βt′ [i])] = m (1− 1

bf
) ≈ 53.25,

wherem = 71 and bf is the branching factor (i.e., the average number of possible
actions from each state), which at the early stages of the game of Othello is
approximately equal to 4.

The second indicator of interest is opponent difficulty. In recent years, a
significant amount of work has been devoted to study the population of oppo-
nents (a.k.a. tests or parasites), which play the role of evaluation set in two-
population coevolution [6,21,5]. Noteworthy, it has been found that the effec-
tiveness of the evaluation set (or population of tests) depends on its difficulty
[22]. That is why, we employ it as another gauge in this study.

Since the game of Othello is symmetric, meaning that the roles of candidate
solutions and tests are interchangeable, the difficulty of an opponent (test) boils
down to its generalization performance (see Section 4.2). In other words, the
better the opponent (generalization performance) the more difficult it is to beat
(opponent difficulty). Technically, by opponents’ difficulty we mean the average
generalization performance of the players in the second co-evolving population.

5 Results

We performed 100 experimental runs of the cel algorithm for each combination
of δt and σ parameters and 100 runs of the rsel algorithm. For each generation,
we measured the generalization performance of the individual with the highest
fitness in the population of solutions. Additionally, in the case of cel, we assessed
also the behavioral diversity and difficulty in the population of opponents.

The averaged results of all experiments are illustrated in Figure 1. The figure
visualizes the impact of applying particular diversity maintenance techniques
with different parameters on the generalization performance of solutions as well
as on the behavioral diversity and difficulty of the coevolving opponents. The first
observation is that both diversity preserving mechanisms result in improving the
generalization performance. In particular, applying sufficiently strong mutation
can lead to outperforming the rsel algorithm (illustrated by the black curve in
the plots). Fitness sharing alone does not attain that performance level, but it
clearly benefits from moderate niche count (while low values of this parameter
are clearly less advantageous).

Besides generalization performance, the figure confirms also that both consid-
ered diversity preservation methods succeed in increasing the behavioral diver-
sity in the population of opponents. Finally, the last row of plots demonstrates
the significant effect of diversity maintenance techniques on the difficulty of the
coevolved opponents. One general observation is that the influence of behav-
ioral fitness sharing technique and its niche radius parameter (σ) is much larger
in the case of moderate mutation strength (δt). If the mutation is strong, the
population becomes explicitly diversified even without fitness sharing.

PREPRINT April 6, 2015

δt = 0.1 δt = 1.0 δt = 5.0 δt = 10.0

0.70

0.75

0.80

0.85

0.90

20

30

40

50

0.50

0.55

0.60

0.65

0.70

0.75

0.80

generalization perform
ance

opponent behavioral diversity
opponent difficulty

0 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 500

Generation

σ 0 10 20 30 40 50 60 70

Figure 1. The generalization performance of solutions vs. behavioral diversity and dif-
ficulty of opponents as a function of the number of generations, for different parameters
of diversity maintenance techniques. The black series correspond to the rsel algorithm.

April 6, 2015 PREPRINT

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

● ●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●●

●

●

● ●

●●

●

●

●● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●
●

●●

●

●●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

RSEL0.5

0.6

0.7

0.8

10 20 30 40 50

Behavioral Diversity

D
iff

ic
ul

ty

test mutation
strength

●

●

●

0.1

0.5

1.0

2.5

5.0

10.0

0.75

0.80

0.85

0.90

generalization
performance

Figure 2. The relationship between difficulty and diversity of the coevolving opponents
and their impact on the generalization performance of solutions. Each point corresponds
to the mean difficulty and diversity in the final generation of tests coevolved in a single
evolutionary run. Shapes of points illustrate the strength of mutation operator operat-
ing in the population of tests. Colors reflect the generalization performance obtained
by the corresponding population of solutions.

To better visualize the relationship between the behavioral diversity and the
difficulty of opponents, we prepared a scatter plot shown in Figure 2. Altogether,
there are 3200 points in the plot, each of which corresponds to the final popu-
lation of a single run of coevolutionary algorithm (each of 32 combinations of
(σ, δt) parameters times 100 experimental runs). Additionally, an artificial point
was added to the plot to illustrate the mean performance obtained with the rsel
algorithm. The coordinates of this point correspond to the expected values of
difficulty and diversity in a random sample of opponents.

The figure evidences a trade-off between behavioral diversity and difficulty.
The employed algorithms were unable to provide final populations of opponents
that were both difficult and diverse at the same time (albeit it is not certain if
such sets of opponents exist in the first place). Using small mutation strength
lead to evolving populations of difficult opponents that behave very similarly to
each other. Increasing the mutation strength allows to obtain richer repertoire of
opponent behaviors but their mean difficulty simultaneously decreases. Impor-
tantly, the highest generalization performance was obtained by coevolutionary
algorithms that maintained very diversified population of opponents that were
on average slightly, albeit consistently, more difficult than the random ones.

PREPRINT April 6, 2015

6 Conclusions

Encouraging the behavioral diversity, rather than the genotypic one, has been
recently successfully applied to improve the performance of evolved robot con-
trollers [13,14]. In this study we have adopted this idea to coevolution of Othello-
playing agents, in order to verify whether learning against opponents that are
both challenging (difficult) and behaviorally diverse can improve the general-
ization performance of developed strategies. We expected that the difficulty of
opponents would arise naturally due to coevolutionary arms races. To main-
tain behavioral diversity, we have employed a novel measure of distance between
game-playing agents which was integrated with the conventional fitness sharing
method. Apart from that we also stimulated diversity explicitly by increasing
the genotypic variation among opponents.

Although both methods of sustaining diversity in the population of opponents
succeeded in improving behavioral diversity and resulted in higher generalization
performance of solutions, they also lead to reduced difficulty of opponents. Due
to this trade-off, diverse and simultaneously difficult opponent populations did
not emerge, and we were not able to fully verify the initial hypothesis. While
failing to provide such populations, behavioral diversity turns out to be a much
stronger determinant of performance than difficulty. Though in part anticipated,
the extent of this disproportion is rather striking: note that the populations of
opponents that secure the best performance of host strategies are only slightly
more difficult than the random ones (difficulty 0.6 or less). On the other hand,
the high performance of rsel is consistent with this observation.

Acknowledgments

This work has been supported by the Polish Ministry of Science and Higher
Education, grant No. 09/91/DSMK/0568. W. Jaśkowski has been supported by
the Polish National Science Centre grant no. DEC-2013/09/D/ST6/03932.

References

1. Popovici, E., Bucci, A., Wiegand, R.P., de Jong, E.D.: Coevolutionary Principles.
In Rozenberg, G., Bäck, T., Kok, J.N., eds.: Handbook of Natural Computing.
Springer (2012) 987–1033

2. Nolfi, S., Floreano, D.: Coevolving Predator and Prey Robots: Do "Arms Races"
Arise in Artificial Evolution? Artificial Life 4(4) (1998) 311–335

3. Ficici, S.G., Pollack, J.B.: Challenges in Coevolutionary Learning: Arms-race Dy-
namics, Open-endedness, and Medicocre Stable States. In: Proceedings of the Sixth
International Conference on Artificial Life. ALIFE, Cambridge, MA, USA, MIT
Press (1998) 238–247

4. Watson, R.A., Pollack, J.B.: Coevolutionary Dynamics in a Minimal Substrate. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2001), Morgan Kaufmann (2001) 702–709

April 6, 2015 PREPRINT

5. Jaśkowski, W., Liskowski, P., Szubert, M.G., Krawiec, K.: Improving Coevolution
by Random Sampling. In: Proceeding of the Fifteenth Annual Conference on
Genetic and Evolutionary Computation Conference. GECCO ’13, New York, NY,
USA, ACM (2013) 1141–1148

6. Chong, S.Y., Tino, P., Ku, D.C., Yao, X.: Improving Generalization Performance
in Co-Evolutionary Learning. IEEE Transactions on Evolutionary Computation
16(1) (2012) 70–85

7. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Proceedings of the Second International Conference
on Genetic Algorithms and Their Application, Hillsdale, NJ, USA, L. Erlbaum
Associates Inc. (1987) 41–49

8. Mahfoud, S.W.: Niching Methods for Genetic Algorithms. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL (1995)

9. Sareni, B., Krahenbuhl, L.: Fitness sharing and niching methods revisited. IEEE
Transactions on Evolutionary Computation 2(3) (1998) 97–106

10. Rosin, C.D., Belew, R.K.: New Methods for Competitive Coevolution. Evolution-
ary Computation 5(1) (1997) 1–29

11. Cartlidge, J., Bullock, S.: Combating coevolutionary disengagement by reducing
parasite virulence. Evolutionary Computation 12(2) (2004) 193–222

12. Chong, S.Y., Tino, P., Yao, X.: Relationship Between Generalization and Diversity
in Coevolutionary Learning. IEEE Transactions on Computational Intelligence and
AI in Games 1(3) (2009) 214–232

13. Lehman, J., Stanley, K.O.: Abandoning Objectives: Evolution through the Search
for Novelty Alone. Evolutionary Computation 19(2) (2011) 189–223

14. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary
robotics: An empirical study. Evolutionary Computation 20(1) (2012) 91–133

15. Gomez, F.J.: Sustaining diversity using behavioral information distance. In: Pro-
ceedings of the 11th Annual Conference on Genetic and Evolutionary Computation.
GECCO ’09, New York, NY, USA, ACM (2009) 113–120

16. Gomes, J.C., Mariano, P., Christensen, A.L.: Novelty search in competitive coevo-
lution. In: Proceedings of the 13th International Conference on Parallel Problem
Solving from Nature - PPSN XIII, Ljubljana, Slovenia (2014) 233–242

17. Moriarty, D.E., Schultz, A.C., Grefenstette, J.J.: Evolutionary Algorithms for
Reinforcement Learning. Journal of Artificial Intelligence Research 11 (1999) 241–
276

18. Lucas, S.M., Runarsson, T.P.: Temporal Difference Learning Versus Co-Evolution
for Acquiring Othello Position Evaluation. In Louis, S.J., Kendall, G., eds.: Pro-
ceedings of the 2006 IEEE Symposium on Computational Intelligence and Games,
CIG 2006, IEEE (2006) 52–59

19. de Jong, E.D.: The MaxSolve Algorithm for Coevolution. In: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation. GECCO ’05, New
York, NY, USA, ACM (2005) 483–489

20. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction.
Natural computing 1(1) (2002) 3–52

21. de Jong, E.D., Pollack, J.B.: Ideal Evaluation from Coevolution. Evolutionary
Computation 12(2) (2004) 159–192

22. Szubert, M.G., Jaśkowski, W., Liskowski, P., Krawiec, K.: Shaping Fitness Func-
tion for Evolutionary Learning of Game Strategies. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation. GECCO ’13, New
York, NY, USA, ACM (2013) 1149–1156

PREPRINT April 6, 2015

