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ABSTRACT
In evolutionary learning of game-playing strategies, fitness
evaluation is based on playing games with certain oppo-
nents. In this paper we investigate how the performance
of these opponents and the way they are chosen influence
the efficiency of learning. For this purpose we introduce a
simple method for shaping the fitness function by sampling
the opponents from a biased performance distribution. We
compare the shaped function with existing fitness evalua-
tion approaches that sample the opponents from an unbiased
performance distribution or from a coevolving population.
In an extensive computational experiment we employ these
methods to learn Othello strategies and assess both the abso-
lute and relative performance of the elaborated players. The
results demonstrate the superiority of the shaping approach,
and can be explained by means of performance profiles, an
analytical tool that evaluate the evolved strategies using a
range of variably skilled opponents.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets, Parameter learning; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—
Heuristic methods; J.m [Miscellaneous]:

General Terms
Algorithms

Keywords
Shaping, Fitness Evaluation, Coevolution, Othello

1. INTRODUCTION
The main motivation for this study originates from the

question: what can be done to improve the results of an
optimization algorithm on a given problem with respect to
a specific performance measure? A typical approach is to
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modify the algorithm by tuning the parameters that affect
its behavior. In particular, evolutionary algorithms involve
numerous settings (including population size, variation oper-
ators, selection scheme) that need to be configured properly
to attain satisfactory performance. Since devising such a
configuration manually is usually nontrivial, various ‘rule-of-
thumb’ recommendations, good practices and several tech-
niques of automated parameter tuning have been proposed
in the past [8]. Ultimately, if the configured algorithm still
does not achieve the expected performance, it can be en-
tirely replaced by a different one. Such a choice between
a number of algorithms can also be done automatically by
hyper-heuristics [3].
It may seem that, apart from searching the space of al-

gorithms and/or their parameters, there are no alternative
answers to the question posed in the beginning. Indeed,
of the three abovementioned elements (algorithm, problem,
performance measure), only the first one appears to be in
experimenter’s control. However, there is another option:
instead of adjusting the algorithm for a particular prob-
lem, we can take a complementary approach and modify
the problem to make it easier to solve by a particular al-
gorithm. Such approach corresponds to the idea of shaping
— a core concept of behavioral psychology [24] that already
proved useful in, among others, reinforcement learning [21].
Shaping consists in a meaningful modification of the learn-
ing problem that brings the learner closer to reaching the
behavior of ultimate interest [9]. We adopt shaping here as
an umbrella term that characterizes our approach.
In case of evolutionary algorithms and optimization prob-

lems, shaping can be applied to two elements of problem
definition. First, the search space, which can be shaped by,
for instance, adjusting genetic encoding of solutions. Sec-
ond, the fitness function, which may be purposefully differ-
ent from the original objective performance measure in order
to distort the evaluation of individuals and drive evolution
through advantageous paths in the search space.
In this paper, we focus on shaping fitness function for

evolutionary learning of game-playing strategies where the
objective is to maximize the expected utility, i.e. the aver-
age outcome against all possible opponents. We investigate
three different fitness assessment methods. Two of them
are commonly used for such problems and employ random
sampling of opponents [5] and coevolution [20]. The third
method is a straightforward shaping approach, which we in-
troduce in this paper. The idea is to shape the fitness func-
tion by sampling the opponents used for evaluation from a
biased performance distribution. We show that using such



a function leads to more effective learning and results in
stronger players both in absolute and relative terms. In or-
der to verify whether it is actually shaping that drives the
evolution towards better solutions, we also consider hybrid
fitness evaluation methods which combine the three above
approaches. This investigation is conducted with perfor-
mance profiles [13], a novel tool that allows us to analyze
the performance of a player with respect to opponents of
different strength.

2. METHODS
Learning game-playing strategies is an example of a test-

based problem [2, 11], in which candidate solutions are eval-
uated on a number of test cases such as environments, oppo-
nents or examples. In most real-world problems of this class,
the large number of possible tests precludes computationally
feasible calculation of objective performance measure. For
this reason, solving test-based problems with evolutionary
computation requires substituting the original performance
measure with a computationally cheaper counterpart that
drives the search process towards a possibly similar (and
preferably the same) goal.
In the case of games, fitness is usually computed by aver-

aging the results achieved against a limited number of tests,
i.e., opponent strategies. The question that one needs to
answer when designing such a fitness function is: how to
choose the opponent strategies? The answer to this ques-
tion is of utmost importance, as it is exactly the choice of
these opponents that allows us to shape the fitness function
and, accordingly, guide the learning process.
The set of evaluating opponents and the corresponding

fitness function can be either static or dynamic. A static
function employs a fixed pool of predefined players (e.g.,
expert strategies), and thus remains constant throughout
evolution. A dynamic function, in contrast, uses a set of
opponents that changes in every generation. By exposing
players to different opponents each generation, learning al-
gorithms that use dynamic evaluation function can be ex-
pected to produce players that win against a wider range of
opponents. Here we confront three ways of dynamic oppo-
nent selection: random sampling, coevolution, and shaped
sampling, the last being the main conceptual contribution
of this study.
Before we discuss the algorithms that employ these meth-

ods, we need to present the game of Othello, which we use
as our testbed, and the representation of strategies for this
game. The latter is particularly important, since it directly
determines the spaces of possible solutions and tests.

2.1 Othello and the WPC representation
The game of Othello is a deterministic, perfect informa-

tion, zero-sum board game played by two players on an 8×8
board. There are 64 identical pieces which are white on one
side and black on the other, with the colors representing
players. The game starts with the four central squares of
the board occupied with two black and two white pieces
(see Fig. 1). Players make moves alternately by placing
their pieces on the board until it is completely filled or until
neither of them is able to make a legal move. The position
to place a piece on has to fulfill two conditions. Firstly, it
must be adjacent to an opponent’s piece. Secondly, the new
piece and some other piece of the current player must form
a vertical, horizontal, or diagonal line with a continuous se-

Figure 1: The initial board state of Othello

quence of opponent’s pieces inbetween. After placing the
piece, all such opponent’s pieces are flipped. A legal move
requires flipping at least one of the opponent’s pieces. The
objective of the game is to have the majority of own pieces
on the board at the end of the game. If both players have
the same number of disks, the game ends in a draw.
From the previously applied Othello-playing strategy rep-

resentations such as multi-layer neural networks [1], spa-
tial neural networks [4], and n-tuple networks [17, 16], we
employ the simplest of them, the position-weighted piece
counter (WPC) [18, 23]. WPC is a linear weighted board
evaluation function which implements the state evaluator
concept, i.e., it is explicitly used to evaluate how desirable a
given board state is. It assigns weight wi to board location
i and uses scalar product to calculate the value f of a board
state b:

f (b) =
8×8∑
i=1

wibi,

where bi is 0 in case of an empty location, +1 if a black
piece is present or −1 in case of a white piece. The players
interpret f(b) in a complementary manner: the black player
prefers moves leading towards states with a higher value,
whereas lower values are favored by the white player.
All methods considered in this paper employ WPC as a

state evaluator in 1-ply setup: given the current state of the
board, the player generates all legal moves and applies f
to the resulting states. The state gauged as the most valu-
able determines the move to be made. Ties are resolved at
random. WPC is used to represent the candidate solutions
to the learning problem as well as the opponent strategies
employed by a fitness function.

2.2 Random Sampling Evolutionary Learning
The approach we refer here to as Random Sampling Evo-

lutionary Learning (RSEL) was proposed by Chong et al.
[5] under the name of Improved Coevolutionary Learning.
This learning procedure is inspired by a (µ + λ) genera-
tional evolutionary strategy. The algorithm begins with a
population of µ randomly generated individuals (vectors of
64 real-valued weights of WPC strategies in our case). In
every generation, each of the µ fittest individuals produces
λ/µ offspring through a mutation operator (thus, all popu-
lations except for the initial one consist of µ parents and λ
offspring of those parents).
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Figure 2: Fitness evaluation based on sampling opponents
from a set with certain performance distribution.
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Figure 3: Performance distribution of randomly sampled
WPC opponents

The fitness function used in RSEL is based on random
sampling of opponents. A sample is drawn once per eval-
uation phase (i.e., once per generation for a generational
evolutionary algorithm) by generating a set of WPC strate-
gies. Afterwards, each individual in the population plays
against all the opponents in the sample, and the average
score determines its fitness. Consequently, the fitness cal-
culated in RSEL is an unbiased estimator of the expected
utility objective function.
Figure 2 schematically illustrates this type of fitness eval-

uation procedure. The figure highlights the fact that the
performance in the population (statistical population), from
which the sample is drawn, has certain distribution. This
distribution affects the expected strength of evaluating op-
ponents in the sample.
We conducted a preliminary experiment to estimate this

distribution. Illustrated in Fig. 3, it was obtained by sam-
pling 500,000 random strategies (in the same way as in
RSEL) and calculating their performance as the average
game outcome against another set of 1,000 random oppo-
nents. Clearly, the performance distribution resembles a
normal one with a mean value of 50.2% and a standard de-
viation of 7.91%.
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Figure 4: Performance distribution of shaped opponents

2.3 Shaped Sampling Evolutionary Learning
The performance distribution of evaluating opponents in

RSEL (Fig. 3) indicates that the majority of WPC strate-
gies achieve mediocre performance. Strong strategies are
few and far between. As RSEL samples the opponents uni-
formly from this distribution, it is unlikely for an individual
to face a strong opponent in the evaluation phase. For this
reason, fitness function will be often unable to differentiate
between two strategies that, e.g., play equally well against
the average players but one of them is much better at beat-
ing the strong ones. This is unfortunate as, preferably, we
would like to lead the evolution towards the strategies that
are able to win with skilled players without losing the capa-
bility of winning with the opponents of average strength.
Therefore, we propose a method called Shaped Sampling

Evolutionary Learning (SSEL), which operates largely like
RSEL. The only exception is the fitness assessment phase
(cf. Fig. 2), which uses a biased sample of opponents, i.e.,
a sample that is drawn from a different performance dis-
tribution. Here, such a shaped sample contains only the
opponents that achieve the performance of more than 60%.
We populate it in a similar manner in which Fig. 3 was
obtained. Its performance distribution is shown in Fig. 4.
In each fitness assignment phase, the set of evaluating op-
ponents is randomly selected from the pool.
SSEL’s rationale is to shape the fitness function in such

a way that it promotes game-playing skills needed for de-
feating the strong opponents. In this context, RSEL can be
considered as a reference, unshaped approach, where the set
of evaluating opponents is an unbiased sample of the entire
set of WPC strategies, and the performance distribution in
the sample follows the the performance distribution of all
WPC strategies.

2.4 Coevolutionary Learning
In both evolutionary approaches presented above, the fit-

ness function is designed to reflect individual’s absolute per-
formance (whether using an unbiased or biased sample of
opponents). Individual’s absolute performance is, by defi-
nition, independent of other individuals in the population.
In coevolutionary algorithms, by contrast, fitness function
measures the relative performance of individuals with re-



spect to other evolving individuals. From many variants of
this scheme proposed in past studies, we employ competitive
coevolution, which is particularly useful when an objective
evaluation function is unknown or difficult to compute. This
is the case when learning game strategies: it is computation-
ally infeasible to objectively assess the quality of a strategy,
but it is easy to let the individuals interact by playing games.
The outcomes of such games determine fitness, which in this
context is often called competitive fitness.
An important aspect of fitness evaluation in coevolution

is the interaction scheme that determines which individuals
should interact. For symmetrical problems such as the game
of Othello, a popular approach is one-population coevolution
[19] which consists in evolving individuals in a single, ho-
mogeneous population, making them compete directly with
each other. Although one-population coevolution has been
praised for problem solving advantages and intensely ex-
ploited in the context of games, some results suggest that it
can be useful to maintain simultaneously two populations of
strategies [7, 14]. Each population contains the opponents
used for evaluating strategies in the other population — the
interactions occur only between individuals that belong to
different populations.
In this paper, CEL employs the two-population interac-

tion scheme illustrated in Fig. 5. In contrast to RSEL
and SSEL, where fitness assessment involved sampling op-
ponents from a fixed, predefined distribution, here the set
of evaluating opponents is coevolving with the population
of solutions. Thus, apart from the initial opponent popula-
tion which is sampled randomly (i.e., from the performance
distribution shown in Fig. 3), the distribution of opponents
in CEL is not explicitly defined and may vary across gen-
erations. Because this influence is reciprocal, the resulting
competitive fitness function is thus not only dynamic but
also adaptive (details on fitness definition in both popula-
tion will be provided in the experimental part).
From the shaping perspective, coevolution can be consid-

ered as a form of autonomous shaping performed on the ba-
sis of the current state of the candidate solution population.
This stays in contrast to SSEL, where shaping is realized by
manual and permanent modification of the opponent pool,
and consequently, its performance distribution.
Since mixing multiple learning gradients can speed up

learning and make the resulting solutions generalize better
[15], we consider also a hybrid fitness evaluation method (see
Fig. 5) that combines the competitive fitness employed in
CEL with the fitness based on sampling opponents from the
performance distributions used in RSEL or SSEL (cf. Fig-
ures 3 and 4). These approaches are referred to as CEL-RS
and CEL-SS, respectively.

3. THE EXPERIMENT
The objectives of the experiment are twofold. Firstly, we

want to determine which of the considered methods (RSEL,
SSEL, various configurations of CEL, and hybrids thereof)
yields best performing Othello players given a fixed compu-
tational budget. To this aim, we employ the expected utility
performance measure and a round-robin tournament. Our
second goal is to explain the anticipated differences by pro-
filing the behavior of strategies using opponents of varying
difficulty.
In order to fairly compare the algorithms, we set them

up so that their total computational effort as well as the
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Figure 5: Fitness evaluation employed in coevolutionary
learning and in the hybrid approach.

computational effort per one generation are equal among
methods. Following other studies [7, 6, 15], we identify the
computational effort with the number of games played in
interactions among individuals.
A single interaction is a double game, where both individ-

uals play one game as black and one game as white player.
In each game, one point is to be divided between players:
the winner gets one point and the loser zero points, or they
get 0.5 point each in the case of draw. Each evolutionary
run consists of 200 generations, in each of them 5, 000 games
are played (2, 500 double games), which adds up to the total
effort of 1, 000, 000 games per run.
All methods start with an initial population filled with in-

dividuals whose weights are randomly drawn from [−0.2, 0.2].
They also share the same simple mutation operator that per-
turbs all the weights using additive noise. The WPC weight
w

′
i of the offspring is obtained by adding a small random

value to the corresponding WPC weight of the parent:

w
′
i = wi + 0.1 · U [−1, 1],

where U [−1, 1] is a real number drawn uniformly from
the interval [−1, 1]. Weights resulting from mutation are
clamped to the interval [−10, 10], effectively making the
value equal to the respective bound. Consequently, the
space of strategies we consider is a [−10, 10]64 hypercube.
Some of the setups and performance assessment methods

employ random WPC players. Each such player is obtained
independently by drawing weights uniformly from the inter-
val [−10, 10]. In the following, by ‘random player/opponent’
we mean a WPC player generated in this way.



We emphasize that in all setups the evolutionary opera-
tors of selection and mutation and their parameters are the
same. The differences between them lie only in the way fit-
ness is assigned to individuals. In the following subsections
we detail the setups of particular algorithms while Figs. 2
and 5 illustrate their interaction schemes.

3.1 RSEL setup
RSEL is a straightforward implementation of Random

Sampling Evolutionary Learning algorithm described in Sec-
tion 2.2, where µ = 25 and λ = 25. During the evaluation
phase, each individual is evaluated against a set of ρ ran-
dom WPC opponents obtained through random sampling
of the space of strategies. The outcomes of these double
games are summed to determine individual’s fitness. To fix
the effort at 5, 000 games per generation, we set ρ = 50
(50 × 50 × 2 = 5000). Figure 2 illustrates this configura-
tion. We emphasize that a collection of random opponents
is drawn anew every generation.

3.2 SSEL setup
SSEL works in the same way as RSEL. The only differ-

ence between them lies in the fitness evaluation phase (cf.
Fig. 2) which uses a different, biased distribution of oppo-
nent strategies. The modified player performance distribu-
tion contains exclusively the opponents that achieve perfor-
mance of more than 60%. In order to acquire the strategies
that meet this condition, we filtered a set of 500, 000 ran-
domly sampled players, which resulted in a shaping pool of
54, 454 players, with performance distribution illustrated in
Fig. 4. Individual’s fitness is determined on the basis of
outcomes of double games with the set of ρ = 50 opponents
randomly selected from the pool. Note that the computa-
tional cost of creating the shaping pool is not included in
our results.

3.3 CEL setup
CEL is a two-population competitive coevolutionary al-

gorithm in which individuals are bred in two separate pop-
ulations. The first population contains candidate solutions,
while the second one maintains tests. Here, tests take the
form of opponent strategies that challenge players from the
candidate solutions population.
The fitness of a candidate solution is the sum of points it

obtains in double games with all tests. Tests, in turn, are
rewarded for making distinctions between candidate solu-
tions [10]. Test’s fitness is the weighted number of points it
receives for making distinctions. A test makes a distinction
for a given pair of candidate solutions if the games it played
against them gave different outcomes. To maintain diver-
sity in the population, we employ a variant of competitive
fitness sharing [22]; each point awarded for a distinction is
weighted by the inverse of the number of tests that made
that distinction. This extension promotes diversity in pop-
ulation, since a test that uniquely makes a distinction is
rewarded more than the one that shares its distinction with
many other tests.
To guarantee a fair comparison among all the studied algo-

rithms, the selection scheme in the population of candidate
solutions is the same as in RSEL and SSEL. The population
of tests uses (µ+λ) evolutionary strategy, where µ = 25 and
λ = 25. Figure 5 illustrates how the fitness is assigned to a
candidate solution in CEL.

3.4 Hybrid setups
The hybrid setups, referred to as CEL-RS and CEL-SS,

combine the competitive fitness with the fitness based on
sampling opponents from the performance distribution used
in RSEL and SSEL respectively. Technically, each individ-
ual is evaluated on the basis of double games played against
25 individuals from the population of tests (as in CEL) and
25 random opponents drawn either from a uniform distri-
bution (CEL-RS) or from the shaping pool (CEL-SS). This
configuration is illustrated in Fig. 5. Note that while the
population of candidate solutions still consists of 50 individ-
uals, the population of tests is limited to 25 individuals.

4. RESULTS
We performed 120 runs for each method. In the following,

the best-of-generation individual is the individual with the
highest fitness in the population. By the best-of-run player
we mean the best-of-generation player of the last generation.
We identify method’s performance with the performance of
its best-of-generation players.

4.1 Absolute Performance
To objectively assess the individuals we use the approxi-

mate measure of expected utility. This performance measure
is the percentage of points (with 1.0 point for winning the
game and 0.5 for a draw) obtained in 25, 000 double games
(50, 000 games in total) against the random WPC players,
generated by drawing weights uniformly from the interval
[−10, 10]. From now on, the term ‘performance’ refers to
this absolute measure.
Figure 6 shows the performance of each method as a func-

tion of computational effort (which is here proportional to
the number of generations). Each point in the plot is the per-
formance of method’s best-of-generation players averaged
over 120 runs. Additionally, Table 1 compares the methods
to RSEL in terms of average performance of the best-of-run
individuals accompanied by 95% confidence intervals.
The results demonstrate that CEL is definitely the worst

algorithm on this performance measure — it struggles to
reach the level of 80% while all the other methods easily
go beyond 85%. Moreover, its best-of-run players’ perfor-
mance varies the most, which we attribute to its adaptive
fitness function. As anticipated from the previous research
[5], RSEL performs significantly better than CEL on the
expected utility criterion because it employs an unbiased
estimator of this measure as a fitness function. Intuitively,
the hybrid of CEL and RSEL constructed by averaging their
fitness functions (cf. Fig. 5) could be expected to result in
averaging their performances as well. However, it turns out
that CEL-RS is able to keep up with RSEL, even though
it employs a smaller number of random opponents in the
fitness evaluation phase.
Both shaping-based approaches (SSEL and CEL-SS) stay

very close to each other throughout the entire evolution, and
are the best methods in the comparison.
Although the shaped fitness function employed by SSEL is

designed to encourage winning against stronger opponents,
it appears that such redefinition allowed evolution to find
the strategies that are generally better with respect to the
expected utility measure. This is somewhat surprising be-
cause, technically, it is RSEL that is tailored to maximize
this measure by utilizing the precise estimate of expected



Table 1: Performance comparison of best-of-run players

Method Performance [%] t-value p-value
SSEL 87.30 ± 0.23 4.94 7.41 × 10−7

CEL-SS 87.20 ± 0.26 4.10 2.79 × 10−7

RSEL 86.46 ± 0.25 - -
CEL-RS 86.44 ± 0.26 -0.9 0.46
CEL 79.97 ± 0.58 -20.53 6.62 × 10−7
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Figure 6: Performance of players over time.

utility to steer evolution — it learns from the same distri-
bution of opponents on which it is later assessed. Yet it
fares significantly worse than SSEL which employs a hand-
crafted, biased probability distribution of opponents during
learning. Thereby, it may be beneficial to distort the fit-
ness function of the learning problem, even if the objective
function is known and can be precisely approximated. This
observation forms major rationale for shaping.

4.2 Performance Profiles
To understand the characteristics of particular methods

we use performance profiles [13] that break down the ex-
pected utility measure into more detailed information on
how a strategy copes with the opponents of different strength.
To prepare a performance profile, we randomly generate
500, 000 players (opponents) using the same method as for
generalization performance, i.e., by sampling WPC weights
uniformly and independently from the [−10, 10] interval.
Next, the performance of each opponent is estimated by
playing 1, 000 double games with random WPC strategies
(generated on the fly). The range of possible performance
values, i.e., [0, 1], is then divided into 100 bins of equal
width, and each opponent is assigned to one of these bins
according to its performance.
The ensemble of opponents partitioned into bins forms the

basis for building the profile. The assessed strategy plays
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Figure 7: Performance profile plot illustrating the average
percentage score against opponents of different performance.

double games against all opponents from each bin, and the
average game outcome is plotted against the bins.
We apply the performance profiling to inspect the best-

of-run individuals of all algorithms considered in this paper
and present them in Fig. 7. Since we have 120 runs per
method, we average the profiles over 120 best-of-run play-
ers. A point of coordinates (x, y) in a plot means that the
best-of-run individuals have on average performance y when
playing against the opponents of performance x. For exam-
ple, the performance of most methods is about 90% for the
opponents with performance of 40%.
In Fig. 7 the whiskers mark 95% confidence interval. No-

ticeably, they tend to widen towards the ends of plots. This
is because it is hard to randomly generate the opponents
that are very strong or very weak, so the extreme bins con-
tain relatively few opponents. For the same reason we re-
moved the points with the confidence intervals that were
larger than 20% or were computed on a basis of less than
120 double games played. The decreasing trend in each data
series demonstrates that it is generally harder to win with
the stronger opponents than with the weaker ones.
The performance profile plots shed a new light on compar-

ison between RSEL and CEL conducted by Chong et al. [5]
and reproduced in Section 4.1. The plot explains the reason
of the observed significant difference between these methods
with respect to the expected utility measure. RSEL plays
much better with the weak and mediocre opponents that
occur frequently among the random WPC players. CEL, in
contrast, learns to play against the strong opponents but
at the same time underperforms against the weaker ones.
The performance profile of CEL shows that it is the worst
method in the entire space of considered opponents. We sup-
pose that the performance distribution in a coevolving pop-
ulation of tests is biased even more than in SSEL — as solu-
tions get better, their opponents (tests) must acquire more



competence to distinguish between them. This challenges
the solutions to perform even better, and so the feedback
loop closes. Investigating how the performance distribution
of opponents, and consequently the fitness function, is adap-
tively shaped by coevolution is an interesting direction for
the future work.
Apart from CEL, all other methods perform similarly when

evaluated against the players of performance lower than 50%
(Fig. 7). Above this value, the profiles start to diverge and
RSEL is the method that loses the most when the opponents
get more challenging. To explain this fact, let us recall that
the performance distribution of random WPC players (see
Fig. 3) contains mainly the mediocre players. For this rea-
son, RSEL can be seen as specialized to play with the oppo-
nents of average skills. Given the shaped performance distri-
bution of opponents used for fitness evaluation (see Fig. 4),
SSEL is analogously focused on defeating the highly skilled
players. However, this method manages to maintain also
the capability to play with the weaker players, albeit not as
well as, e.g., RSEL. This is particularly interesting, knowing
that SSEL’s learners never meet players weaker than 60%.
This may suggest that, at least for the game of Othello, it
is enough to learn from the master opponents to obtain a
well-playing strategy.

4.3 Relative Performance
In our final experiment we perform a round-robin tour-

nament among all methods. This assessment determines a
relative ranking of methods [12] by playing matches between
the teams of players. Here, each team consists of 120 best-
of-run players produced by an algorithm. Thus, a single
match in the tournament involves 120 × 120 = 14400 double
games. Winning games against all opponent teams gives a
method the round-robin performance of 100%.
In order to gain better insight into the results, let us

first explain the nature of the round-robin tournament. In
contrast to the absolute performance measure (Section 4.1)
which evaluates an individual on a set of random opponents,
in a round-robin tournament each individual faces only the
individuals from the other teams. And, judging from the
expected utility attained by particular methods (see Table
1), these players tend to be strong.
Table 2 presents the results of the tournament. SSEL

is clearly the best algorithm in the relative comparison.
Thanks to employing a handcrafted pool of evaluating oppo-
nents with shaped performance distribution, it is substan-
tially biased towards competing with the highly skilled op-
ponents. Considering the fact that the tournament is held
between the relatively strong players, such a good result of
SSEL could be anticipated. Furthermore, RSEL, which is
specialized at beating mediocre opponents, inevitably loses
in head-to-head matches to all other methods except CEL.
The benefits of using a shaped performance distribution

of opponents can be also observed when comparing CEL-RS
with CEL-SS. According to Table 1, the difference in abso-
lute performance between these methods is minor. However,
in the round-robin tournament there is a 5% performance
gap in favor of CEL-SS. This fact can be explained by an-
alyzing Fig. 7 which demonstrates that the performance
profile of CEL-SS is considerably more leveled than that of
CEL-RS. Certainly, this results in better play against the
strong tournament opponents.

Table 2: Round robin tournament

Method SS
E

L

C
E

L
-S

S

C
E

L
-R

S

C
E

L

R
SE

L

F
in

al
re

su
lt

SSEL - 55.4% 62.0% 60.6% 65.6% 60.9%

CEL-SS 44.6% - 56.3% 57.3% 58.8% 54.3%

CEL-RS 38.0% 43.7% - 53.9% 53.2% 47.2%

CEL 39.4% 42.7% 46.1% - 48.0% 44.0%

RSEL 34.4% 41.2% 46.8% 52.0% - 43.6%

Another interesting observation is that the hybrid method
of CEL-RS wins in direct confrontation with its both con-
stituents — CEL and RSEL. This raises the question about
the ratio between the random and population opponents
that are sampled in the CEL-RS method. The presented
results may suggest that sampling half of the evaluating op-
ponents from the coevolving population is enough to learn
to defeat strong players (RS-based opponents are on average
much weaker than the population ones). However, whether
a lower fraction would suffice as well, and what would hap-
pen if that fraction would be greater than 0.5, remains to
be verified.

5. CONCLUSIONS
Let us rephrase here the original research question with

which we began this paper: how can we improve the results
of evolutionary algorithms on a problem of learning Othello-
playing strategies with respect to the performance measure
of expected utility? In this study we have attempted to
answer this question by referring to the concept of shap-
ing, borrowed from behavioral psychology. Specifically, we
have modified the fitness function in the learning problem
by changing the selection of the opponents used for strategy
evaluation. By doing so we expected to shape the function
and make it easier for an algorithm to explore the particu-
larly desirable areas in the solution space.
The goal of improving the final learning results was at-

tained. Both investigated methods of fitness function shap-
ing — modifying the distribution of opponent performance
a priori (SSEL) and autonomously by coevolution (CEL) —
proved to influence the learning process and lead to signifi-
cantly different results than the reference RSEL method.
An interesting direction for the future work is to investi-

gate the performance distribution of opponents bred in co-
evolutionary learning. Knowing how this distribution evolves
across generations could better explain the reported results
and help to design a more effective method of adaptive fit-
ness function shaping. Moreover, the analysis of opponent
performance distributions provided by coevolution could help
with understanding the coevolutionary pathologies [25]. Cur-
rently, our focus is on extending the algorithms considered in
this paper with archives of historical opponents [22]. We an-
ticipate that such long-time memory will sustain the learn-
ing progress and prevent forgetting the game-playing skills
that allow defeating the weaker opponents.
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