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Abstract— This paper presents Coevolutionary Temporal Dif-

ference Learning (CTDL), a novel way of hybridizing co-

evolutionary search with reinforcement learning that works

by interlacing one-population competitive coevolution with

temporal difference learning. The coevolutionary part of the

algorithm provides for exploration of the solution space, while

the temporal difference learning performs its exploitation by

local search. We apply CTDL to the board game of Othello,

using weighted piece counter for representing players’ strate-

gies. The results of an extensive computational experiment

demonstrate CTDL’s superiority when compared to coevolution

and reinforcement learning alone, particularly when coevolution

maintains an archive to provide historical progress. The paper

investigates the role of the relative intensity of coevolutionary

search and temporal difference search, which turns out to be

an essential parameter. The formulation of CTDL leads also to

the introduction of Lamarckian form of coevolution, which we

discuss in detail.

I. INTRODUCTION

The past half century of AI research on games demonstrated
that handcrafting well-performing strategies, though feasible,
is challenging and expensive in terms of human and computer
effort. There is growing hope that this will change thanks to
the methods that learn the strategies automatically with little
a priori domain knowledge. Two intensely studied examples
of such methods are Temporal Difference Learning (TDL)
and Coevolutionary Learning (CEL).

TDL is a canonical variant of reinforcement learning,
where the playing agent aims at maximizing a delayed
reward, and is typically trained by some form of gradient-
based method. CEL breeds a population of strategies that
compete with each other and propagate their features using
the principles of simulated evolution. The essential difference
between TDL and CEL is that TDL guides the learning using
the whole course of the game while CEL uses only the final
game outcome. As a result, TDL in general learns faster than
CEL. However, for some domains a properly tuned CEL can
eventually find strategies that outperform those generated by
TDL [1], [2].

Here, we ask the question whether it is possible to combine
the advantages of TDL and CEL in a single algorithm that
would develop better strategies than any of these methods on
its own. To this aim, we propose a hybrid method referred
to as Coevolutionary Temporal Difference Learning (CTDL)
and evaluate it on the game of Othello.

This paper is organized as follows. In Section II we de-
scribe rules, strategy representation, and previous research on
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Fig. 1. The initial board configuration in Othello

learning Othello strategies. Section III reviews TDL and CEL
and introduces CTDL. After describing the experimental
setup in Section IV, we discuss the results in Sections V
and VI, to conclude in Section VII.

II. THE GAME OF OTHELLO

A minute to learn. . . a lifetime to master is the motto of
the game of Othello. Indeed, despite its apparent simplic-
ity, Othello is one of the most challenging board games
with numerous tournaments and regular world championship
matches. The name of the game stems from Shakespeare’s
drama “Othello, the Moor of Venice”, and is meant to
illustrate that the game is full of dramatic reversals caused
by rapid changes in dominance on the board.

A. Game Rules

Othello is played by two players on an 8×8 board. Typically,
pieces are disks with a white and black face, each face
representing one player. Figure 1 shows the initial state of
the board; each player starts with two stones in the middle of
the grid. The black player moves first, placing a piece, black
face up, on one of four shaded locations. Players make moves
alternately until no legal moves are possible.

A legal move consists of placing a piece on an empty
square and flipping appropriate pieces. To place a new piece,
two conditions must be fulfilled. Firstly, the position of the
piece must be adjacent to an opponent’s piece. Secondly, the
new piece and some other piece of the current player must
form a vertical, horizontal, or diagonal line with a contiguous
sequence of opponent’s pieces in between. After placing the
piece, all such opponent’s pieces are flipped; if multiple lines
exist, flipping affects all of them. This feature makes the
game particularly ‘dramatic’: a single move may gain the
player a large number of pieces and swap players’ chances
of winning. A legal move requires flipping of at least one
of the opponent’s pieces. Making a move in each turn is
obligatory, unless there are no legal moves. The game ends
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when both players have no legal moves. The winner is the
player who at the end has more disks; the game can also end
with a draw.

B. Strategy Representation
One of the main issues to consider when learning game
strategy is the architecture of the learner, which is mainly
determined by a strategy representation. There is a multitude
of reasonable strategy representations; here, we rely on a
heuristic assumption that to judge the utility of a particular
board state it is enough to independently consider the occu-
pancy of all board locations. This principle is implemented
by the weighted piece counter (WPC) representation, which
assigns a weight wi to each board location i and uses scalar
product to calculate the utility f of a board state b:

f(b) =
8×8�

i=1

wibi, (1)

where bi is +1, -1, or 0 if, respectively, location i is occupied
by a black piece, white piece, or empty. The players interpret
the values of f in a complementary manner: the black player
prefers moves leading to states with larger values, while
smaller values are favored by the white player. Alternatively,
WPC may be viewed as an artificial neural network com-
prising a single linear neuron with inputs connected to board
locations.

The main advantage of WPC is its simplicity resulting
in a very fast board evaluation. Moreover, a WPC strategy
can be often easily interpreted just by inspecting the weight
values. Table I presents the weight matrix of an exemplary
player that clearly focuses at taking possession of the corners
because they are given the highest values.

C. Previous Research
The game of Othello has been a subject of computational
intelligence research for more than 20 years. The significant
interest in this game may be explained by its large state space
cardinality (around 1028) and high divergence rate causing
that it remains unsolved, that is a perfect Othello player has
not been developed yet.

Conventional programs playing Othello are based on a
thorough human analysis of the game leading to sophisticated
handcrafted evaluation functions. They often incorporate
supervised learning techniques that use large expert-labeled
game databases and efficient look-ahead game tree search.
One of the first examples representing such approach was
BILL [3]. Besides using pre-computed tables of board pat-
terns, it employed Bayesian learning to build in so-called
features into evaluation function. Today, one of the strongest
Othello programs is Logistello [4], which also makes use of
advanced search techniques and applies several methods to
construct evaluation features and learn from previous games.
Nevertheless, it still relies on powerful hardware, which is
one of the main factors that allowed Logistello to beat the
world champion Takeshi Murakami in 1997 [5].

Recently, the mainstream research on Othello has moved
towards better understanding of which types of learning

TABLE I
THE HEURISTIC PLAYER’S STRATEGY REPRESENTED BY WPC

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

algorithms and player architectures work the best. The CEC
Othello Competitions [6] pursued this direction by limiting
the ply depth to one, effectively disqualifying the algorithms
that employ a brute-force game tree search. Although the
WPC representation is among strategy representations ac-
cepted by the competition rules, all the best players submitted
so far to the competition were based on more complex
architectures involving numerous parameters. Examples of
such architectures are: a symmetric n-tuple network, a multi-
layer perceptron (MLP), and a spatial MLP.

The most challenging scenario of elaborating game strat-
egy is learning without any reference to human knowledge
or game strategy given a priori. This task formulation is
addressed by, among others, Temporal Difference Learning
(TDL) and Coevolutionary Learning (CEL), which were in-
vestigated in the context of Othello by Lucas and Runarsson
[2]. That study inspired our research and will be also referred
to in the following section.

III. METHODS

A. Coevolutionary Learning

Coevolutionary algorithms are variants of evolutionary com-
putation where individual’s fitness depends on other individu-
als. The evaluation of an individual takes place in the context
of at least one other individual, and may be of cooperative
or competitive nature. In the former case, individuals share
the fitness they have jointly elaborated, whereas in the latter
one, a gain for one individual means a loss for the other.
Past research has shown that this scheme may be beneficial
for some types of tasks, allowing task decomposition (in the
cooperative variant) or solving tasks for which the objective
fitness function is not known a priori or is hard to compute
(the best example here are games [7], [8]).

Coevolutionary Learning (CEL) follows the competitive
evaluation scheme and typically starts with generating a ran-
dom initial population of player individuals. Individuals play
games with each other, and the outcomes of these confronta-
tions determine their fitness values. The best performing
strategies are selected, undergo genetic modifications such as
mutation or crossover, and their offspring replace some of (or
all) former individuals. Though this general scheme seems
straightforward, it misses many details that need to be filled
in, some of which relate to evolutionary computation (popu-
lation size, variation operators, selection scheme, etc.), while
some others pertain specifically to coevolution (the way the
players are confronted, the method of fitness estimation, etc.).
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No wonder CEL embraces a broad class of algorithms, some
of which we shortly review in the following.

In their influential study, Pollack and Blair [9] used one
of the simplest evolutionary algorithm, a random hill-climber
to successfully address the problem of learning backgammon
strategy. In the referred work [2], Lucas and Runarsson used
(1 + λ) and (1, λ) Evolution Strategies to learn a strategy
for the game of Othello. An important design choice was the
geometrical parent-child recombination: instead of replacing
the parent by the best of the new offspring, the parent strategy
was fused with the child strategy using linear combination.
A self-adapting mutation strength was also considered, but
eventually it was used only for evolving small-board Go
players [1].

Various forms of CEL have been successfully applied to
many two-person games, including Backgammon [10], Chess
[11], Checkers [12], NERO [13], Blackjack [14], Pong [15],
AntWars [16], [17] and a small version of Go [18].

B. Coevolutionary Archives
The central characteristic of CEL is that it refrains from the
use of the objective fitness of individuals. This feature makes
it appealing for applications where objective fitness cannot
be unarguably defined or is costly to compute. Games, often
involving huge numbers of possible strategies, are canonical
representatives of such problems. However, inaccessibility
of the objective fitness implies a serious impairment: there
is no guarantee that an algorithm will progress at all. Lack
of progress can occur when, for instance, player’s opponents
are not challenging enough or much too difficult to beat.
These and other undesirable phenomena, jointly termed co-
evolutionary pathologies, have been identified and studied in
the past [19].

In order to deal with coevolutionary pathologies, coevolu-
tionary archives that try to sustain progress were introduced.
A typical archive is a (usually limited in size, yet diversified)
sample of well-performing strategies found so far. Individ-
uals in a population are forced to play against the archive
members, who are replaced occasionally, typically when they
prove inferior to some population members. Of course, an
archive still does not guarantee that the strategies found by
evolution will be the best in the global, objective sense, but
this form of long-term search memory enables at least some
form of historical progress [20].

In this study we use Hall of Fame (HoF, [21]), one of
the simplest forms of archive. HoF stores all the best-of-
generation individuals encountered so far. The individuals
in population, apart from playing against their peers, are
also forced to play against randomly selected players from
the archive. In this way, individual’s fitness is partially
determined by confrontation with past ‘champions’.

Most of the work quoted above involves a single homoge-
nous population of players, a setup called one-population
coevolution [22] or competitive fitness environment [7], [23].
It is worth to point out that the recent work on coevolution in-
dicates that, even if the game itself is symmetric, it is worth to
maintain in parallel two types of strategies: solutions, which

are expected to improve as evolution proceeds, and tests,
whose main purpose is to differentiate solutions by defeating
some of them. Recent contributions [24], [25], [26] demon-
strate that such design can improve search convergence, give
better insight into the structure of the search space, and in
some settings even guarantee monotonic progress towards the
selected solution concept.

C. Temporal Difference Learning

Temporal Difference (TD), a method proposed by Sutton
in 1988 [27], has become a popular approach for solving
reinforcement learning tasks. Some suggest [28] that the
famous chess playing program by Samuel [29] in 1959 was
in fact taught by a simple version of temporal difference
learning (however others [30] treat it rather as a first example
of coevolution). One of the most spectacular successes of
temporal difference learning in game playing is undoubtedly
Tesauro’s TD-Gammon [31]. This influential work has trig-
gered off a lot of research in reinforcement learning and TD
methods, including their applications to Othello [32], [33].

The TD(λ) learning procedures solve prediction learning
problems that consist in estimating the future behavior of an
incompletely known system using the past experience. TD
learning occurs whenever a system’s state changes over time
and is based on the error between the temporally successive
predictions. Its goal is to make the preceding prediction
to match more closely the current prediction (taking into
account distinct system states observed in the corresponding
time steps).

Technically, prediction at a certain time step t can be
considered as a function of two arguments: the outcome of
system observation P and the vector of modifiable weights
w. A TD algorithm is expressed by the following weight
update rule:

∆wt = α(Pt+1 − Pt)
t�

k=1

λt−k∇wPk, (2)

where λ is the learning rate, Pt is the prediction at time t,
and the gradient ∇wPt is the vector of partial derivatives
of Pt with respect to each weight. This general formulation
of TD takes into account the entire history of the learning
process; in case of TD(0), the weight update is determined
only by its effect on the most recent prediction Pt:

∆wt = α(Pt+1 − Pt)∇wPt. (3)

When applied to the problem of learning Othello strategy
represented by a WPC, Pt estimates the chances of winning
given the game state bt at time t. The WPC function f
computes the dot product of the board state vector bt and
the weight vector w (see Eq. (1)), and the obtained value
is subsequently mapped to a closed interval [-1, 1] using
hyperbolic tangent, so that Pt has the form:

Pt = tanh(f(bt)) =
2

exp(−2f(bt)) + 1
− 1 (4)
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By applying (4) to the TD(0) update rule (3) and calculat-
ing the gradient, we obtain the desired correction of weight
wi at the time step t:

∆wi,t = α(Pt+1 − Pt)(1− P 2
t )bi (5)

If the state observed at time t + 1 is terminal, the exact
outcome of the game is known and may be used instead of
the prediction Pt+1. The outcome value is +1 if the winner
is black, -1 if white, and 0 when the game ends in a draw.

The process of learning consists of applying the above
formula to the WPC vector after each move. The training data
(i.e. collection of games) according to which the presented
algorithm can proceed, may be obtained by self-play. This
is a popular technique whose major advantage is that it does
not need anything besides the learning system itself. During
game play, moves are selected on the basis of the most recent
evaluation function.

Othello is a deterministic game, thus the course of the
game between a particular pair of deterministic players is
always the same. This feature reduces the number of game
trees to be explored and makes learning ineffective. To
remedy this situation, at each turn, a random move is forced
with certain probability. After such a random move, no
weight update occurs.

D. Coevolutionary Temporal Difference Learning
The past results of learning WPC strategies for Othello [2]
and small-board Go [1] demonstrate that TDL and CEL
exhibit complementary features. TDL learns much faster
and converges within several hundreds of games, but then
stucks, and, no matter how many games it plays, eventually
it fails to produce a well-performing strategy. CEL progresses
slower, but, if properly tuned, eventually outperforms TDL.
Therefore, it sounds reasonable to combine these approaches
into a hybrid algorithm exploiting advantages revealed by
each method.

To benefit from the complementary advantages of TDL
and CEL we propose a method termed Coevolutionary
Temporal Difference Learning (CTDL). CTDL maintains a
population of players and alternately performs TD learning
and coevolutionary learning. In the TD phase, each player
is subject to TD(0) self-play. Then, in the CEL phase,
individuals are evaluated on the basis of a round-robin tour-
nament. Finally, a new generation of individuals is obtained
using standard selection and variation operators and the cycle
repeats.

Other hybrids of TDL and CEL have been occasionally
considered in the past. Kim et al. [34] trained a population
of neural networks with TD(0) and used the resulting
strategies as an input for the standard genetic algorithm with
mutation as the only variation operator. In [35], Singer has
shown that reinforcement learning may be superior to random
mutation as an exploration mechanism. His Othello-playing
strategies were 3-layer neural networks trained by interlacing
reinforcement learning phases and evolutionary phases. In the
reinforcement learning phase, a round robin tournament was
played 200 times with network weights modified after every

move using backpropagation algorithm. The evolutionary
phase consisted of a round-robin tournament that determined
each player’s fitness, followed by recombining the strategies
using feature-level crossover and mutating them slightly.
The experiment yielded a strategy that was reported to be
competitive with an intermediate-level handcrafted Othello
player; however, no comparison with preexisting methods
was presented. Also, given the proportions of reinforcement
learning and evolutionary learning, it seems that Singer’s
emphasis was mainly on reinforcement learning, whereas
in our CTDL it is quite the reverse: reinforcement learning
serves as a local improvement operator for evolution.

IV. EXPERIMENTS

We conducted several experiments comparing CTDL, CEL,
TDL, and their extensions with the Hall of Fame (HoF)
archive [21], all implemented using Evolutionary Computa-
tion in Java (ECJ) library [36]. To provide fair comparison,
all runs used the same settings (taken from [2] when possible)
and stopped when the number of games played reached
4, 500, 000. For statistical significance, each experiment was
repeated 30 times.

A. Algorithms and setup

1) TDL: TDL is an implementation of a gradient-descent
temporal difference algorithm TD(0) described in Section
III-C and parametrized as in [2]. The weights are initially
set to 0 and the learner is trained solely through self-play,
with random moves occurring with probability p = 0.1. The
learning rate α = 0.01.

2) CEL: CEL uses a generational coevolutionary algo-
rithm with population of 50 individuals initialized with all
weights set to 01. During mutation, the weights are limited
to the range [−1, 1]. In the evaluation phase, a round-robin
tournament is played between all individuals, with wins,
draws, and losses rewarded by 3, 1, and 0 points, respec-
tively. The evaluated individuals are selected using standard
tournament selection with tournament size 5, and then, with
probability 0.03, their weights undergo Gaussian mutation
(σ = 0.25). Next, they mate using one-point crossover, and
the resulting offspring is the only source of genetic material
for the subsequent generation (there is no elitism). As each
generation requires 50 × 50 games, each run lasts for 1800
generations to get the total of 4, 500, 000 games.

3) CEL + HoF: This setup extends the previous one with
the HoF archive. Each individual plays games with all 50
individuals from the population (including itself) and with
50 randomly selected individuals from the archive, so that its
fitness is determined by the outcomes of 100 games scored
as in CEL. In each generation, the best performing individual
is copied into the archive. The archive serves also as a
source of genetic material, as the first parent for crossover
is randomly drawn from it with probability 0.2. In order to

1Unintuitively, we have found for Othello that initializing the weights
with 0 for all individuals leads to better solutions than when weights were
draw at random from [−1, 1].
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Fig. 2. Average performance of the best-of-generation individuals measured
as a probability of winning against a random player, plotted against the
number of training games played.

attain 4, 500, 000 training games, the number of generations
was set to 900.

4) CTDL = TDL + CEL: CTDL combines TDL and CEL
as described in Section III-D, with the TDL phase parameters
described in 1) and CEL phase parameters described in 2).
It starts with players’ weights initialized to 0 and alternately
repeats the TDL phase and the CEL phase until the total
number of games attains 4, 500, 000. The exact number
of generations depends on the TDL-CEL ratio, which we
define as the number of self-played TDL games per one
generation of CEL. For example, if the TDL-CEL ratio is
1 (default), there are 2, 550 games per generation (including
the round-robin tournament of CEL) and the run lasts for
1765 generations.

5) CTDL+HoF = TDL + CEL + HoF: This setup com-
bines 3) and 4) and does not involve any extra parameters.

B. Measuring strategy quality

In order to monitor progress in an objective way, 50 times
per run (approximately every 90, 000 of games) we assess
the quality of the best-of-generation individual. As learning
game strategy is an example of a test-based problem, an
objective evaluation should take into account games with
all possible players and be based on a particular solution
concept [19]. This approach is impossible to implement in
practice due to the inconceivably high number of possible
strategies for Othello. Thus, following [2], we rely on two
approximate yet computationally feasible quality measures
described below. Both of them estimate individual’s quality
by playing 1, 000 games (500 as black and 500 as white)
against certain opponent(s) and calculating the probability
of winning.

1) Playing against a random player: This method tests
how well the player fares against a wide variety of opponents.
The opponents always choose moves at random, no matter
what the board state is. Notice that this quality measure
estimates the objective quality of an individual according to
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Fig. 3. Average performance of the best-of-generation individuals measured
as a probability of winning against a standard heuristic player (both players
randomized with probability 0.1), plotted against the number of training
games played.

the the solution concept of Maximization of Expected Utility
[19].

2) Playing against the standard heuristic player: This
method tests how well the player copes with a moder-
ately competent opponent using WPC shown in Table I.
Since the game of Othello is deterministic, we force both
players to make random moves with probability � = 0.1
to diversify their behaviors and make the estimated values
more continuous. Though this essentially leads to a different
game definition, following [2], we assume that the ability of
playing such a randomized game is highly correlated with
playing the original Othello.

V. RESULTS

In the first experiment, we compared five methods described
in the previous section. Figure 2 illustrates how the strategies
produced by these algorithms perform on average against a
random player. Note that for the population-based methods
(i.e., all except pure TDL), each graph point represents the
probability of winning of a best-of-generation individual
averaged over 30 experimental runs. The best-of-generation
individual was selected basing on the individuals’ fitness. For
TDL, the graphs show the average performance of the single
solution maintained by the method. It is interesting to observe
that the algorithms cluster into two groups with respect to
the performance they eventually achieve. The non-hybrid
methods (CEL and TDL) are in the long run significantly
worse than the hybrid ones. As expected, in the beginning the
quality of individuals produced by the TDL-based algorithms
is higher than of those produced by methods that do not
involve TDL. In particular, TDL+CEL or TDL+CEL+HoF
look superior, as they quickly achieve good performance and
are best in the long run. Interestingly, CEL+HoF achieves
eventually similar level of play as TDL+CEL(+HoF), but it
learns significantly slower.

Figure 3 illustrates progress measured as the quality of
best-of-generation individuals versus the standard heuristic
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TABLE II
THE RESULTS OF THE ROUND-ROBIN TOURNAMENT OF BEST-OF-RUN

INDIVIDUALS.

Team Games Wins Draws Defeats Points

TDL+CEL+HoF 7200 4918 203 2079 14957
TDL+CEL 7200 4171 209 2820 12722
CEL+HoF 7200 3726 225 3249 11403
TDL 7200 2873 206 4121 8825
CEL 7200 1787 207 5206 5568

player. The results are clear: TDL+CEL+HoF is the best,
then TDL+CEL, TDL, CEL+HoF and CEL, which is the
worst here. It can be also observed that the HoF archive
helps both CEL and TDL+CEL to achieve a higher level
of play. Nevertheless, regarding CEL+HoF setup, it needs
approximately 10 times more games than the simplest hybrid
approach (TDL+CEL), to reach comparable performance.
Once again TDL starts learning rapidly, but it stagnates after
several thousands of games.

A. Round-robin tournament of best-of-run individuals

In order to confirm our results, we performed a round-
robin tournament between all best-of-run individuals, i.e., the
best-of-generation individuals from the last generation. We
created five teams, one for each method, each one composed
of 30 best-of-run individuals (one per run). Next, a round-
robin tournament was played, where each strategy played
against 4× 30 = 120 strategies from the opponent teams for
a total of 240 games (120 as white and 120 as black). The
final score of a team was determined as the sum of points
obtained by its players in overall 7, 200 games.

The results of this competition, presented in Table II,
confirm the former observations: the best method in direct
comparison is TDL+CEL+HoF. Moreover, the ranking of
methods is consistent with the ranking obtained from mea-
suring the quality against a standard heuristic player (Fig. 3).
This may be explained by the fact that in this tournament,
an individual faces exclusively well-performing strategies, so
what matters here is the ability to play against a competent
opponent and not against a random one.

The WPC vector of the best scoring player, who is also
a member of the winner team TDL+CEL+HoF, is shown in
Table III and presented graphically by means of a weight-
proportional grayscale in Fig. 4b (darker squares denote
larger weights, i.e., more desirable locations on the board).
An important observation is that the WPC matrix is quite
symmetric. Similarly to the heuristic player’s strategy, which
is shown graphically in Fig. 4a, the corner locations are the
most desirable, while their immediate neighbors have very
low weights. However, in contrast to the heuristic player, the
edge locations at distance 2 from the corners get very high
weights.

B. TDL-CEL ratio

Preliminary experiments have shown that the TDL-CEL ratio
is an important parameter of CTDL. We have investigated

TABLE III
WEIGHTED PIECE COUNTER VECTOR OF THE BEST EVOLVED PLAYER.

1.02 -0.27 0.55 -0.10 0.08 0.47 -0.38 1.00
-0.13 -0.52 -0.18 -0.07 -0.18 -0.29 -0.68 -0.44
0.55 -0.24 0.02 -0.01 -0.01 0.10 -0.13 0.77

-0.10 -0.10 0.01 -0.01 0.00 -0.01 -0.09 -0.05
0.05 -0.17 0.02 -0.04 -0.03 0.03 -0.09 -0.05
0.56 -0.25 0.05 0.02 -0.02 0.17 -0.35 0.42

-0.25 -0.71 -0.24 -0.23 -0.08 -0.29 -0.63 -0.24
0.93 -0.44 0.55 0.22 -0.15 0.74 -0.57 0.97

this issue by running the best algorithm (TDL+CEL+HoF)
for different TDL-CEL ratios. The probability of the best-of-
generation individual winning against the random player for
different TDL-CEL ratios, presented in Fig. 5, proves that
CTDL performance indeed depends on the TDL-CEL ratio
and that the ratio greater than 1 is detrimental. This figure
demonstrates also the tradeoff between the learning speed
and the ultimate player quality.

In Fig. 6, which illustrates the performance against the
standard heuristic player, different TDL-CEL ratios cause
only slight differences in the long run. This was confirmed
by playing another best-of-run tournament between setups
with different TDL-CEL ratios, which ended with each team
scoring a very similar number of points.

C. Negative learning rate
As we have seen above, the hybrid approach was able to learn
remarkably better strategies than the non-hybrid methods.
An interesting question is whether the purposeful (meaning:
driven towards greater probability of winning) character of
changes brought in by TDL is essential, or TDL plays the
role of a mere random mutation. To verify this, we compared
regular TDL+CEL+HoF to TDL+CEL+HoF with learning
rate α = −0.01, which implies that TDL in the latter method
deteriorates the strategies found by CEL. The results, shown
in Fig. 7, prove that a purposeful TDL is one of the key
factors explaining the success of the hybrid approach.

VI. LAMARCKIAN COEVOLUTION PERSPECTIVE

The algorithm proposed in this paper can be considered as
a form of Coevolutionary Memetic Algorithm. Memetic Al-

(a) The standard heuristic player (b) The best evolved player

Fig. 4. Weighted Piece Counter vectors illustrated as Othello boards with
locations shaded accordingly to corresponding weights.
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gorithms are hybrid approaches coupling a population-based
global search method with some form of local improvement.
Since these algorithms usually employ evolutionary search,
they are often referred to as Lamarckian Evolution or Genetic
Local Search. Technically, they typically alternate genetic
search for the population and local search for individual
solutions.

In this context, our Coevolutionary Temporal Difference
Learning is an example of what might be termed Lamarckian
Coevolution or Lamarckian Coevolutionary Algorithm. The
reinforcement learning phase can be treated as a form of
local search technique, especially as TD(0) we use is a
gradient descent method. In other words, TD(0) combined
with a randomly perturbed self-play serves as a substitute for
a local search guided by the objective fitness function. Thus,
it interestingly turns out that we can do a kind of local search
without objective information about solution performance.
This sounds both puzzling and appealing, as normally an
objective quality measure is an indispensable prerequisite
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Fig. 7. Average probability of winning of the best-of-generation individuals
against a standard heuristic player found by TDL+CEL+HoF for different
learning rates of TDL, plotted against the number of training games played.

for local search. We plan to elaborate on this observation
in further research and hypothesize that some findings from
the Memetic Algorithms literature are potentially applicable
to our approach.

Another observation that supports the analogy between
Lamarckian Evolutionary Algorithms and Lamarckian Co-
evolution is that, in both approaches, the parameters that
control the relative intensity of local learning and popula-
tion learning (called here TDL-CEL ratio) are essential for
effective learning. They define the inherent tradeoff between
exploration and exploitation. Too intensive reinforcement
learning stage (exploitation) can lead to premature con-
vergence to a local optimum, making it difficult for the
coevolutionary stage (exploration) to move towards better
solutions. Too intense coevolution phase, on the other hand,
does not give the reinforcement learning enough ‘time’ to
tune the strategies. The issue of an optimum exploration-
exploitation balance requires more research.

VII. SUMMARY

This study presented CTDL, a novel way of hybridizing
coevolutionary search with reinforcement learning designed
to benefit from mutually complementary characteristics of
both approaches. The experimental results demonstrate that
the fusion of these methods is indeed synergistic, leading
to better performance of the co-evolved players for the
game of Othello. The evolved learners reveal also basic
‘understanding’ of the game, such as the importance of the
board corners. Although we tested CTDL on Othello only,
we hypothesize that CTDL could be also beneficial for other
games where both TDL and CEL can be applied separately.

Apart from the trade-off between exploration and exploita-
tion discussed in Section VI, there are other aspects of this
approach that are worth further investigation. In particular,
using CTDL together with a two-population coevolution,
with solutions and tests bred separately, would open the
possibility of using more advanced coevolutionary archive
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methods such as LAPCA and IPCA [37] and potentially
obtaining better results.
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acknowledges a scholarship from Sectoral Operational Pro-
gramme ‘Human Resources Development’, Activity 8.2 co-
financed by the European Social Fund European Union and
the Government of Poland.

REFERENCES

[1] T. P. Runarsson and S. Lucas, “Co-evolution versus self-play temporal
difference learning for acquiring position evaluation in small-board
Go,” IEEE Transactions on Evolutionary Computation, vol. 9, 2005.

[2] S. M. Lucas and T. P. Runarsson, “Temporal difference learning versus
co-evolution for acquiring othello position evaluation,” in CIG, 2006,
pp. 52–59.

[3] K.-F. Lee and S. Mahajan, “The development of a world class othello
program,” Artif. Intell., vol. 43, no. 1, pp. 21–36, 1990.

[4] M. Buro, “Logistello: A strong learning othello program,” in 19th
Annual Conference Gesellschaft für Klassifikation e.V., 1995.

[5] ——, “Takeshi Murakami vs. Logistello,” 1997.
[6] [Online]. Available: http://algoval.essex.ac.uk:8080/othello/html/Othello.html
[7] P. J. Angeline and J. B. Pollack, “Competitive environments evolve

better solutions for complex tasks,” in Proceedings of the 5th Inter-
national Conference on Genetic Algorithms, S. Forrest, Ed., 1993, pp.
264–270.

[8] Y. Azaria and M. Sipper, “GP-gammon: Genetically programming
backgammon players,” Genetic Programming and Evolvable Ma-
chines, vol. 6, no. 3, pp. 283–300, 2005.

[9] J. B. Pollack and A. D. Blair, “Co-evolution in the successful learning
of backgammon strategy,” Machine Learning, vol. 32, no. 3, pp. 225–
240, 1998.

[10] ——, “Co-evolution in the successful learning of backgammon strat-
egy,” Machine Learning, vol. 32, no. 3, pp. 225–240, 1998.

[11] A. Hauptman and M. Sipper, “Evolution of an efficient search algo-
rithm for the mate-in-N problem in chess,” in Proceedings of the 10th
European Conference on Genetic Programming, ser. LNCS, M. E. et.
al, Ed., vol. 4445, 2007, pp. 78–89.

[12] D. B. Fogel, Blondie24: playing at the edge of AI. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[13] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time neuroevolution
in the nero video game,” Evolutionary Computation, IEEE Transac-
tions on, vol. 9, no. 6, pp. 653–668, 2005.

[14] J. B. Caverlee, “A genetic algorithm approach to discovering an
optimal blackjack strategy,” in Genetic Algorithms and Genetic Pro-
gramming at Stanford 2000, J. R. Koza, Ed. Stanford, California,
94305-3079 USA: Stanford Bookstore, June 2000, pp. 70–79.

[15] G. A. Monroy, K. O. Stanley, and R. Miikkulainen, “Coevolution of
neural networks using a layered pareto archive,” in GECCO 2006:
Proceedings of the 8th annual conference on Genetic and evolutionary
computation, 2006, pp. 329–336.
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