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Abstract We present a hybrid metaheuristic approach for the machine reassignment prob-
lem, which was proposed for ROADEF/EURO Challenge 2012. The problem is a combi-
natorial optimization problem, which can be viewed as a highly constrained version of the
multidimensional bin packing problem. Our algorithm, which took the third place in the
challenge, consists of two components: a fast greedy hill climber and a large neighborhood
search, which uses mixed integer programming to solve subproblems. We show that the hill
climber, although simple, is an indispensable component that allows us to achieve high qual-
ity results especially for large instances of the problem. In the experimental part we analyze
two subproblem selection methods used by the large neighborhood search algorithm and
compare our approach with the two best entries in the competition, observing that none of
the three algorithms dominates others on all available instances.

Keywords Hybrid metaheuristics · Large neighborhood search · Local search · Mixed
integer programming · Machine reassignment

1 Introduction

Cloud computing is an emerging paradigm aimed at providing network access to computing
resources including storage, processing, memory and network bandwidth (Armbrust et al.
2010; Buyya et al. 2009). Such resources are typically gathered in large-scale data centers
and form a shared pool, which can serve multiple applications. Since data centers host a
variety of applications with different requirements and time-varying workloads, resources
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W. Jaśkowski
e-mail: wjaskowski@cs.put.poznan.pl

P. Gawron
University of Luxembourg, Luxembourg, Luxembourg

123



Ann Oper Res

should be dynamically reassigned according to demands. However, there are many constraints
and criteria which make the problem of resource allocation non-trivial. For instance, due to
increasing energy costs and pressure towards reducing environmental impact, one particular
measure that should be optimized by a resource allocation policy is the power consumption
(Beloglazov et al. 2011). Lowering the energy usage is possible by, e.g., consolidating appli-
cations on a minimal number of machines. That being said, devising an efficient data center
resource allocation strategy constitutes a serious challenge.

Many optimization problems related to managing data center resources have been defined
and considered in the literature recently (Song et al. 2009; Stillwell et al. 2010; Beloglazov
et al. 2012). Following this trend, the subject of ROADEF/EURO 2012 Challenge1 was
proposed by Google—one of the leading cloud computing-based service providers—and
concerned the machine reassignment problem. The goal of the problem is to optimize the
assignment of service processes to machines with respect to a given cost function. The
original assignment is part of a problem instance, but processes can be reassigned by moving
them from one machine to another. Possible moves are limited by a set of hard constraints,
which must be satisfied to make the assignment feasible. For example, constraints refer to
the amount of consumed resources on a machine or distribution of processes belonging to
the same service over multiple distinct machines.

In this paper, we propose a heuristic approach for the machine reassignment problem,
which produces satisfactory results in a limited time even for large instances of the prob-
lem. The main idea behind our approach is to combine a single-state metaheuristic with
Mixed Integer Programming (MIP), which is able to quickly solve small subproblems. This
approach can be classified as an example of Large Neighborhood Search (LNS), in which
a solution’s neighborhood (specified by a subset of processes that can be reassigned to a
subset of machines) is searched (sub)optimally by mathematical programming techniques
(Pisinger and Ropke 2010; Ahuja et al. 2002). Since the choice of neighborhood is often
crucial to the performance of LNS, we analyze the average performance of two methods
of selecting processes to be reassigned: random selection of a subset of processes, and a
dedicated heuristic designed to select processes that are likely to improve the assignment
cost. Moreover, we attempt to hybridize such MIP-based LNS with a fast greedy hill climber,
which aims to improve the assignment by reassigning single processes independently. The
experimental results demonstrate that such greedy hill climber improves the results of the
whole algorithm.

A version of the algorithm presented in this paper allowed us to win the Junior category
and take the third place in the general classification of ROADEF/EURO 2012 Challenge. In
this paper, we further test our approach, by conducting a computational analysis to compare
our algorithm on all available problem instances with the methods that took the two first
places in the competition. Since we average the results over 25 algorithm runs, we claim that
our results are more reliable than the results obtained in the competition finals.

2 Machine reassignment problem

The goal of the machine reassignment problem2 is to find a mapping M : P → M which
assigns each given process p ∈ P to one of the available machines m ∈ M. The mapping
M(p1) = m1 denotes that process p1 runs on machine m1 and uses its resources. The set of

1 http://challenge.roadef.org/2012/en/index.php.
2 http://challenge.roadef.org/2012/files/problem_definition_v1_1.
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Fig. 1 The original assignment in an exemplary instance of the machine reassignment problem. (Color figure
online)

resources R is common to all machines, but each machine provides specific capacity C(m, r)

of the given resource r ∈ R. Additional constraints (cnf. Sect. 2.1) are induced by splitting
the set of processes P into disjoint subsets, each of which represents a service s ∈ S.

An exemplary instance of the problem and the original assignment are illustrated in Fig. 1.
This particular instance consists of three processes, P = {p1, p2, p3}, four machines, M =
{m1, m2, m3, m4} and two kinds of resources, R = {r1, r2}. Grey bars associated with the
processes represent their resource requirements. All processes are initially assigned to some
machines, but some machines may remain without processes (here: m2 and m3). Figure 1
highlights the fact that part of the resources on every machine (marked with green color) is
available for processes without any cost while using the rest (marked with red color) increases
the cost of the assignment. Processes are partitioned into disjoint services, which may, but
need not, depend on each other. In Fig. 1 a dashed arrow means that service s2 depends on
service s1. Machines are grouped into disjoint locations and neighborhoods.

In the following, we describe all the constraints and cost parameters of the problem.
Wherever possible, we refer to the instance (and the original solution) presented in Fig. 1
and a possible solution illustrated in Fig. 2.

2.1 Constraints

2.1.1 Capacity constraints

For each resource r ∈ R, C(m, r) is the capacity of this resource on machine m ∈ M and
R(p, r) is the amount of this resource required by process p ∈ P . The sum of requirements
of all processes assigned to machine m is denoted as resource usage U (m, r). The capacity
constraints indicate that usage U (m, r) cannot exceed capacity C(m, r) for any r ∈ R and
m ∈ M. In the considered instance, process p1 cannot be moved from machine m1 to machine
m4 because R(p1, r1) + R(p2, r1) is higher than capacity C(m4, r1).
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Fig. 2 A possible reassignment of the assignment shown in Fig. 1. (Color figure online)

2.1.2 Conflict constraints

Each process belongs to exactly one service s ∈ S. Processes of a given service must be
assigned to distinct machines. For this reason, in our example, processes p1 and p2, which
belong to service s1, cannot be assigned to the same machine.

2.1.3 Spread constraints

Each machine belongs to exactly one location l ∈ L. Processes of a given service s must be
assigned to machines in a number of distinct locations. The minimum number of locations
over which the service s must be spread is defined by spread Min(s) for any s ∈ S. Assuming
that spread Min(s1) = 2, processes p1 and p2 have to be assigned to machines from different
locations.

2.1.4 Dependency constraints

Each machine belongs to exactly one neighborhood n ∈ N , which is important in the context
of service dependencies. If service s2 depends on service s1, then in each neighborhood to
which processes of service s2 are assigned, at least one process of service s1 must be also
assigned. For example, if service2 depends on service1, then p1 can be moved to m2, but
cannot be moved neither to m3 nor to m4.

2.1.5 Transient usage constraints

A subset of resources T R ⊆ R is regarded as transient. It means that when a process is
reassigned from one machine to another one, such resources are required on both the original
and the target machine. In the considered example resource r1 is transient (marked with
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hatched boxes). For this reason, when process p2 is reassigned from machine m4 to m3 (see
Fig. 2) this resource remains being used on m4 (marked with hatched lines) and is also used
on m3. Due to transient usage constraints no other process can be assigned to m4 if it requires
any amount of resource r1.

2.2 Costs

The problem aims at minimizing the total cost of an assignment which is a weighted sum of
load costs, balance costs and move costs described below.

2.2.1 Load cost

For each resource r ∈ R and machine m ∈ M there is a safety capacity limit SC(m, r). If
resource usage U (m, r) (cf. Sect. 2.1.1) is below the limit then no cost is incurred. However,
if the usage exceeds the limit, the load cost is equal to U (m, r) − SC(m, r). Figures 1 and 2
illustrate the safety capacity limit by dividing each resource into two parts—below the limit
(green color) and over the limit (red color). Clearly, the reassignment demonstrated in Fig. 2
reduces the load cost.

2.2.2 Balance cost

The amount of unused resource r on machine m is denoted as A(m, r) = C(m, r)−U (m, r).
In some circumstances the values of A(m, r1) and A(m, r2) should be balanced according
to a given ratio called target . To model each such situation, the problem definition includes
a set of balance triples 〈r1, r2, target〉 ∈ B. If unused resources are imbalanced, a balance
cost of max(0, target · A(m, r1) − A(m, r2)) is incurred.

In the referred example, there is a single balance triple b with ratio between resources r2

and r1 equal to 1. Initially (see Fig. 1), the balance cost on machine m4 is high, because there
is a considerable amount A(m4, r2) of unused resource r2 left, while resource r1 is fully used.
Reassigning process p3 to machine m3 (see Fig. 2) results in improving the balance between
available resources (since A(m3, r2) � A(m3, r1)) and reducing the balance cost.

2.2.3 Move costs

Reassigning process p from its original machine m1 to machine m2 involves both process
move cost P MC(p), defined for each process p ∈ P , and machine move cost M MC(m1, m2)

defined for each pair of machines m1, m2 ∈ M. Additionally, a service move cost SMC(s)
is defined as the maximum of reassigned processes over all services s ∈ S. The reassignment
in Fig. 2 has the service move cost equal to 1 since for each service exactly one process is
reassigned.

2.2.4 Total cost

The total cost to be minimized is expressed as:

totalCost =
∑

r∈R
weightloadCost(r) · loadCost(r)

+
∑

b∈B
weightbalanceCost(b) · balanceCost(b)
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+ weightprocessMoveCost · processMoveCost

+ weightserviceMoveCost · serviceMoveCost

+ weightmachineMoveCost · machineMoveCost.

2.3 Lower bounds

The solution cost can be bounded from below by independently bounding its individual
components.3

For any resource r ∈ R

loadCost (r) =
∑

m∈M
max(0, U (m, r) − SC(m, r))

≥ max(0,
∑

m∈M
U (m, r) −

∑

m∈M
SC(m, r)).

For any balance triple b = 〈r1, r2, target〉 ∈ B

balanceCost (b) =
∑

m∈M
max(0, target · A(m, r1) − A(m, r2))

≥ max(0, target ·
∑

m∈M
A(m, r1) −

∑

m∈M
A(m, r2)),

where

A(m, r) = C(m, r) − U (m, r).

Finally, for the move costs we have

serviceMoveCost ≥ 0,

processMoveCost ≥ 0,

machineMoveCost ≥ 0.

For the majority of available instances, these inequations allow us to determine tight
bounds, which will be shown in Sect. 4.

2.4 Related problems

Since the machine reassignment problem was defined only recently for a special purpose
of ROADEF/EURO 2012 challenge, there is very little literature concerning it. The notable
exceptions are the works of Mehta et al. (2012)—ranked second in the competition (team S38),
and Gavranović et al. (2012)—ranked first (team S41). The former study compares constraint
programming and mixed integer programming approaches on the basis of the challenge
qualification results, while the latter presents a variable neighborhood search algorithm.

It is worth mentioning, however, that the considered problem is related to some combina-
torial optimization problems studied in the past. These include multi-dimensional general-
izations of classical packing problems such as multi-processor scheduling, bin packing and
the knapsack problem. In contrast to canonical one-dimensional versions, in such problems

3 This method was first reported by Mirsad Buljabašić, Emir Demirović and Haris Gavranović at European
Conference on Operational Research, Vilnus 2012.
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the items to be packed as well as the bins are d-dimensional objects. Due to this charac-
teristics they are harder to solve than their single-dimensional versions. A theoretical study
of approximation algorithms for these problems can be found in the work of Chekuri and
Khanna (1999).

Another group of related problems originates directly from the field of cloud computing
and data center resource management. Examples of such problems include server consolida-
tion problem (Srikantaiah et al. 2008; Speitkamp and Bichler 2010) and power aware load
balancing and activity migration (Singh et al. 2008).

In this context, the machine reassignment problem can be seen as a strongly constrained
version of the multi-dimensional resource allocation problem, where the number of dimen-
sions is equal to the number of resources. Importantly, in contrast to typical resource schedul-
ing problems (Garofalakis and Ioannidis 1996; Shen et al. 2012), there is no time dimension
here—all reassignments are assumed to be done only once, at the same time moment.

3 Hybrid metaheuristic algorithm

The proposed approach is a single-state heuristic, which starts from a provided original
assignment (a feasible solution). It consists of two subsequent phases. In the first phase it
employs a simple hill climbing algorithm (Sect. 3.1) to quickly improve the solution. Further
improvements are performed in the second phase by a MIP-based large neighborhood search
(Sect. 3.2).

3.1 Greedy hill climber

The goal of a greedy hill climber is to improve a given assignment as fast as possible.
For the set of instances provided in the ROADEF/EURO competition (see Sect. 4.1) it has
been observed that the original solution can be substantially improved by elementary local
changes. The hill climber searches the neighborhood induced by a shift move shi f t (p, m)

which reassigns process p from its current machine m0 to another machine m1 �= m0. The
algorithm is deterministic and greedy—it accepts the first move which leads to a feasible
solution of lower cost than the current solution. If no better solution in the neighborhood is
found, the algorithm stops.

Although a straightforward implementation of such an algorithm is too slow to be prac-
tical, the structure of the problem makes it possible to apply several techniques to boost its
performance. These techniques are described in the following subsections.

3.1.1 Delta evaluation

The performance bottleneck of the hill climber algorithm lies in the shift move implementa-
tion, which computes the cost of a neighbor candidate solution. An efficient way of computing
it is attained with delta evaluation. Instead of calculating the solution cost from scratch, only
the cost difference between neighbors is calculated. Delta evaluation allows us to achieve
time complexity of a single shi f t (p, m) operation of O(|B|+ |R|+ dep(p)+ revdep(p)),
where dep(p) is the number of services dependent on the service containing process p and
revdep(p) is the number of services on which the service containing process p is dependent.
For the instances provided in the competition, |B| is at most 1 and |R| is at most 12. While
in the considered instances there can be as many as 50,000 service dependencies, the vast
majority of services have less than 10 dependencies.
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Table 1 Operations, time complexity and data structures used in shi f t (p, m) implementation

Operation/data structure Time to update/structure type

updateProcessesInMachine O(1)

Processes assigned to each machine Array of hash sets

updateMachineMoveCost O(1)

(Total) machine move cost Integer

updateProcessMoveCost O(1)

(Total) process move cost Integer

updateServiceMoveCost O(1)

The number of processes moved in service for each service Array of integers

The number of services with certain number of moved processes Array of integers

Maximal number of moved processes Integer

updateLoadCost O(|R|)
Resource usage for each resource and each machine 2D array

Transient resource usage for each resource and each machine 2D array

updateBalanceCost O(|B|)
(Total) balance cost Integer

Balance cost for each balance triples for each machine 2D array

updateCapacityConstraints O(|R|)
Is capacity constraint satisfied for each machine Array of booleans

The number of capacity constraints satisfied Integer

updateTransientUsageConstraints O(|T R|)
Is transient usage constraint satisfied for each machine Array of booleans

The number of transient usage constraints satisfied Integer

updateServiceConflictsConstraints O(1)

The number of machines in service for each service and machine Array of hash maps

The number of processes for which service conflicts are satisfied Integer

updateSpreadConstraints O(1)

The number of distinct locations in service for each service Array of integers

The number of services for which spread constraints are satisfied Integer

updateNeighborhoodConstraints O(dep(p) + revdep(p))

The number of neighborhoods in service for each service and neighborhood Array of hash maps

The number of neighborhood constraints not satisfied for each dependency Array of integers

In order to make delta evaluation possible, the solution must, apart from the assignment,
maintain additional data structures, which are updated on each shift move. Table 1 shows
these data structures along with time required to update them after a shift move.

3.1.2 Process potential

Another technique used to speed up the hill climber algorithm is exploring the neighborhood
in the order that increases the chances of quickly finding a better solution. For this purpose,
the list of processes is sorted decreasingly by their potential. Process potential measures how
much the total cost of the solution would be reduced if the process did not exist. The higher
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the process potential, the more likely it is to reduce the cost of the solution; that is why the
algorithm considers the processes with the highest potential first. The processes with zero
potential are not considered at all since the solution cost cannot be reduced when moving
such processes. After the processes are initially sorted, their order in the list remains fixed
during consecutive iterations.

The cost of computing the process potential is O(|B| + |R|). Process potential consists
of three independent components: load cost potential, balance cost potential and move cost
potential. The preliminary experiments have shown that the balance cost component of the
process potential has a negligible effect on the algorithm performance and can be safely
ignored (at least for the problem instances considered in this paper).

3.1.3 Iteration over processes and machines

For each process p j in the sorted sequence, the algorithm examines all possible moves
shi f t (p j , mi ), trying to reassign the process from its current machine m0 = M(p j ) to any
other machine mi �= m0 except those on the tabu list (see Sect. 3.1.4). A move is accepted
if it leads to a feasible solution that is better than the currently best one, and it is rejected
otherwise. If the move is accepted, machine mi is saved as the best machine mbest , but the
neighborhood search is not stopped; instead, the algorithm continues with an attempt to move
process p j to the next machine mi+1 by making shi f t (p j , mi+1). Conversely, if the move
is rejected, mbest is not updated. However, there is no need to undo the move until reaching
the end of machines list. As a result, process p j is iteratively moved to subsequent machines
using the shi f t operator even if the currently considered solution is (temporarily) infeasible
or worse than the currently best one.

Finally, when all machines have been considered, process p j is moved back to m0 if
no better machine has been found, or to machine mbest , otherwise. This way, although we
call the hill climber greedy, each considered process is moved to the (locally) best possible
machine. Notice that the order of machines does not matter unless two or more machines are
equally efficient for a given process.

After trying to assign process p j to each machine, the algorithm continues its search by
attempting to move process p j+1 (or p0 if p j was the last machine in the list). The hill
climber stops when no move can be accepted for any process.

3.1.4 Machines Tabu list

The hill climber algorithm maintains a tabu list that contains the machines that are ignored
when looking for the best machine for any given process. Initially, the tabu list is empty.
During iteration over processes, for each machine m the algorithm remembers whether any
process has been moved to or from this machine. If m remains unchanged, then it is added
to the tabu list, and thus it is not considered as a destination of any process moves. Machine
m stays on the list until any process is removed from it.

The motivation behind this idea is a heuristic assumption that if no process is worth
moving to a machine, then only removing a process from it may change the situation. This
assumption does not hold in general, since it ignores the situation in which moving a process
from machine m0 to machine m1 ‘unblocks’ some constraints and makes it possible to move
another process to machine m2, where m2 /∈ {m0, m1}. However, we have found that this
assumption does not make the hill climber substantially worse for the available instances,
having the advantage of improving the algorithm speed performance by a factor of 2–4.
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3.2 Large neighborhood search

The hill climbing phase of the algorithm described in the previous section explores a straight-
forward move-based neighborhood induced by the shi f t (p, m) operation. The size of the
neighborhood is polynomial with respect to the problem size, and the algorithm is capable
of improving the original solution by means of lots of small changes. In contrast, the second
phase of the proposed algorithm focuses on moving many processes at once and consists of
a limited number of such changes. Since the size of the neighborhood grows exponentially
with the number of processes and machines considered, the algorithm can be classified as a
large neighborhood search (LNS) (Shaw 1998).

In LNS, exploring a neighborhood can be viewed as solving a subproblem of the original
problem with a specialized procedure (Pisinger and Ropke 2010; Palpant et al. 2004). This
procedure may be either a heuristic or an exact method such as mathematical programming
(Bent and Hentenryck 2004). The latter variant is sometimes called a matheuristic (Boschetti
et al. 2009).

Our algorithm iteratively selects a subproblem and tries to solve it to optimality. If it is
computationally infeasible to find an optimal solution, a suboptimal one can be returned.
The subproblem is extracted from the original problem by selecting a subset of machines
Mx ⊂ M. Given the currently best solution, a mixed integer programming (MIP) solver
is allowed to move any number of processes among machines in Mx . The processes on
machines outside Mx remain untouched. The solver respects all constraints given in the
original problem, thus it always produces a feasible solution.

The acceptance criterion is greedy—the solution found by the solver is accepted only if
it is better than the currently best one.

3.2.1 Selecting subproblems

The performance of LNS is largely influenced by the choice of a subproblem to be solved
by the MIP solver. In our approach for the machine reassignment problem, a subproblem
is defined by selecting a subset of machines Mx ⊂ M and consists in (sub)optimally
reassigning the processes assigned to these machines.

We consider two selection variants. The first variant assumes that machines for Mx are
selected randomly from all machines in M. In the second one, we try to select a subset
of machines which is the most promising in terms of potential decrease in the solution
cost.

We consider subsets of M not larger than maxNumMachines. Among all such subsets we
would like to select the one that, optimistically, allows us to obtain the biggest improvement
of the solution. As considering all subsets is computationally infeasible, we fall back to a
heuristic approach. To this aim, from the set M we consider only two machines at a time,
defining their potential as

potential(m1, m2) = optimistic({m1, m2})/(1 + used(m1) + used(m2)),

where optimistic(Mx ) is the optimistic improvement, i.e., the difference between the current
solution cost and the lower bound of subproblem induced by Mx . The lower bound for the
subproblem is calculated in the same way as for the whole problem (cf. Sect. 2.3). The
variable used(m) is the number of times a machine m has been selected before in some set
M′

x . By dividing the expression by 1 + used(m1) + used(m2) we promote machines which
have not been considered by the algorithm so far.
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Table 2 IBM CPLEX parameters. If not specified, default values were used

Parameter Description Value

ScaleInd How to scale the problem matrix (aggressive scaling) 1

NodeLim Max. number of nodes solved before termination 400

EpAGap Absolute gap tolerance 100

Threads Maximum number of threads used for optimization 1

In order to construct the subset Mx , first we take two machines (m1, m2) which have
the largest potential(m1, m2). Then, we iteratively add more machines. In each step, from
all machines not yet added to Mx , we add such machine m ∈ M that maximizes the
formula:

max
mx ∈Mx

potential(mx , m).

We stop adding machines when the size of Mx equals maxNumMachines or when the
number of processes assigned to machines in Mx exceeds maxNumProcesses.

3.2.2 Solving the subproblem

After selecting the set of machines Mx the related subproblem is modeled as a mixed integer
programming problem. The model is described in detail in “Appendix 1”. In this section we
only introduce its main properties.

Modeling the capacity constraints, transient usage constraints and conflict constraints is
straightforward and requires linear equations only. It is harder to model spread and depen-
dency constraints for which introducing additional variables is necessary.

The objective function is a sum of a number of nonlinear elements (maximum function).
Thus, every balance and load cost that applies to machines from Mx requires introducing an
additional variable to model the maximum function in a linear way. Process and machine move
costs can be explicitly defined as a linear function of input variables. Finally, modeling service
move costs requires both the introduction of additional variables and a nonlinear function.

We solve the resulting mixed integer programming problem with IBM CPLEX solver
version 12.5. Table 2 presents the parameters of the solver. Notice that in order to provide
reproducibility, the stopping criterion is not related to the computation time and it is dependent
only on NodeLim. Thus the algorithm is deterministic.4

3.2.3 Dynamic adaptation of subproblem size

The general guidelines for designing LNS-based algorithms (Blum et al. 2011) state that
the subproblem size should be large enough to diversify the search, but, at the same time,
small enough to solve it quickly and allow the algorithm to perform many iterations. For
this purpose we allow the algorithm to dynamically change the subproblem size. Initially,
maxNumMachines is set to 2 and maxNumProcesses to 100. If the solver reports that the sub-
problem has been solved optimally, the algorithm concludes that the size of the subproblem

4 However, in our experiments, we still use maximum time as the stopping criterion for the whole program,
since this is how it worked for ROADEF/EURO Challenge.
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might be too small, and increases maxNumMachines by 0.025 and maxNumProcesses by 0.5.
However, if the solver reports that it failed to solve the current subproblem optimally, the
algorithm decreases the maxNumMachines by 1 and the maxNumProcesses by 20 (the con-
stants were chosen experimentally). In this way, the algorithm can dynamically self-adjust
to the problem instance characteristics.

3.2.4 Improving the solution by local search

If the MIP solver improves the solution by solving a given subproblem, it might be possible
to quickly improve the solution of the problem further using the greedy hill climber described
in Sect. 3.1. To increase efficiency, the hill climber initially considers only machines which
have been changed by the solver. For this purpose, we execute it with the tabu list including
all machines unchanged by the solver.

4 Experiments and results

4.1 The dataset

The organizers of the ROADEF/EURO Challenge 2012 provided two set instances, A and
B, 10 instances each. Set A contains small instances and has been used for the qualification
phase, while set B, containing larger instances, has been released to help teams with preparing
algorithms for the final round.5

Table 3 summarizes the characteristics of the instances from both sets.

4.2 Performance measure

Since the solution cost is difficult to interpret and hard to compare across problem instances,
for the presentation of results, we employ a measure of improvement of a solution over the
original one, defined as:

improvement(solution) = cost(originalSolution) − cost(solution)

cost(originalSolution)
.

Improvement can be expressed as a percentage: 0 % means no improvement over the
original solution and 100 % means that the cost of the original solution has been reduced to 0.

4.3 Experimental environment

In the following experiments we allow an algorithm to run for 300 s, since this was the time
limit in ROADEF/EURO 2012 challenge. Our algorithm was implemented in Java and exe-
cuted using Java 1.7.0_04 on a 64bit Linux machine with Intel Core i7 950 3.07 GHz processor
and 6GB of RAM. Although the processor has four cores, the algorithm utilizes only one of
them. As a mixed integer programming solver we used IBM ILOG CPLEX Optimizer 12.5.

5 In the final round the programs were evaluated using yet another set, set X, which has not been publicly
released.
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Table 3 The main statistics of instances used in ROADEF/EURO Challenge 2012

Statistic/instance a1_1 a1_2 a1_3 a1_4 a1_5 a2_1 a2_2 a2_3 a2_4 a2_5

(a) Set A

Processes 100 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Machines 4 100 100 50 12 100 100 100 50 50

Resources 2 4 3 3 4 3 12 12 12 12

Services 79 980 216 142 981 1,000 170 129 180 153

Neighborhoods 1 2 5 50 2 1 5 5 5 5

Dependencies 0 40 342 297 32 0 0 577 397 506

Locations 4 4 25 50 4 1 25 25 25 25

Balance triples 1 0 0 1 1 0 0 0 1 0

b_01 b_02 b_03 b_04 b_05 b_06 b_07 b_08 b_09 b_10

(b) Set B

Processes 5,000 5,000 20,000 20,000 40,000 40,000 40,000 50,000 50,000 50,000

Machines 100 100 100 500 100 200 4,000 100 1,000 5,000

Resources 12 12 6 6 6 6 6 3 3 3

Services 2,512 2,462 15,025 1,732 35,082 14,680 15,050 45,030 4,609 4,896

Neighborhoods 5 5 5 5 5 5 5 5 5 5

Dependencies 4,412 3,617 16,560 40,485 14,515 42,081 43,873 15,145 43,437 47,260

Locations 10 10 10 50 10 50 50 10 100 100

Balance triples 0 1 0 1 0 1 1 0 1 1

4.4 Comparison of algorithm variants

In the first experiment we compare nine variants of our algorithm. The goal is not only to
determine which variant is the best, but also to justify the presence of all components of the
algorithm.

The variants are: hc, lns, lnshc, lnsr, lnsrhc, hc- lns, hc- lnsr, hc- lnshc, hc-
lnsrhc. hc is the greedy hill climber algorithm described in Sect. 3.1 while lns is the
large neighborhood search algorithm introduced in Sect. 3.2; lnsr is a variant of lns, in
which subproblems are selected randomly instead of being selected using the optimistic
improvement heuristic (cf. Sect. 3.2.1). The string hc after lns or lnsr means that after
solving a subproblem, the algorithm tries to further improve the solution using the greedy
hill climber as described in Sect. 3.2.4. Variants whose name start with hc- consists of
two phases: first they quickly improve the solution with the greedy hill climber and then
switch to some variants of large neighborhood search: either lns, lnsr, lnshc, or lnsrhc.
Figure 3 illustrates these nine variants of algorithms with the emphasis on particular search
phases.

The results for instances of set A and B of the nine algorithm’s variants are presented in
Table 4. The table shows average improvements and their standard deviations expressed as
percentage points. The average is obtained by running each algorithm 25 times with different
random seeds. The algorithms were ordered by decreasing average improvement. The first
row of each table presents upper bound of the improvement (thus lower bound of the cost)
computed using the method described in Sect. 2.3. We compare the algorithms in terms of
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Fig. 3 Flowchart illustration of the compared algorithms variants

two instance sets A and B separately, since the instances in set A are much smaller than
those in set B (cf. Sect. 4.1), and thus, they may reveal different characteristics of considered
algorithms.

First, let us consider the greedy hill climber (i.e., hc). Although, overall, this is the worst
variant of all considered, being such a simple algorithm, it gets surprisingly good results in
absolute terms. Most importantly, however, hc is fast, because it terminates as soon as it
cannot make any local improvements. The low running times of hc, which are presented in
Table 5, makes it a practical choice if the time to obtain a solution matters more than the
solution’s quality. Observe that for all instances from set A, the algorithm finishes in less
than half a second. For set B, it uses up to 60 s, but at the same time it achieves an aver-
age improvement of 62.32 %, which is close to the lower bound’s improvement of 64.31 %
(see Table 4).

The greedy hill climber algorithm is also a good choice for the first phase of any algorithm.
This is observed for set B—all the algorithms starting with hc- are superior to their non-hc
counterparts. This statement does not hold for set A, since variants lns and lnshc perform
better than some hc- variants. Notice, however, that the differences between the first six
algorithms for set A are minor: lns, which is second in the ranking, achieves the average
improvement of 41.09 %, while the sixth hc- lns obtains 40.92 %.

Next, we would like to answer the question whether the optimistic improvement heuristic
is a better subproblem selection method than the random one. We can see that for both
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Table 4 Comparison of algorithm variants

Algorithm Average a1_1 a1_2 a1_3 a1_4 a1_5 a2_1 a2_2 a2_3 a2_4 a2_5

(a) Set A

Lower bound 49.13 10.54 26.76 0.11 61.68 6.98 100.00 99.28 77.05 47.88 61.00

hc- lnshc 41.14 10.54 26.76 0.11 60.88 6.98 100.00 55.99 43.17 47.86 59.08

lns 41.09 10.54 26.76 0.11 59.96 6.98 100.00 55.47 43.13 47.86 60.11

hc- lnsr 41.04 10.54 26.76 0.11 60.72 6.98 100.00 55.03 43.00 47.86 59.43

lnshc 40.97 10.54 26.76 0.11 60.65 6.98 100.00 56.11 42.02 47.86 58.65

hc- lnsrhc 40.93 10.54 26.76 0.11 60.10 6.98 100.00 55.61 42.50 47.86 58.87

hc- lns 40.92 10.54 26.76 0.11 60.26 6.98 100.00 54.48 42.81 47.86 59.34

lnsr 40.59 10.54 26.76 0.11 60.73 6.98 100.00 53.14 41.00 47.86 58.77

lnsrhc 40.58 10.54 26.76 0.11 60.73 6.98 100.00 50.83 42.73 47.86 59.20

hc 31.52 10.54 20.02 0.05 48.81 6.77 93.52 45.22 33.46 36.23 20.58

b_01 b_02 b_03 b_04 b_05 b_06 b_07 b_08 b_09 b_10

(b) Set B

Lower bound 64.31 56.95 80.41 97.53 49.21 92.57 25.29 60.91 91.37 31.63 57.25

hc- lnshc 64.20 55.89 80.40 97.53 49.21 92.57 25.29 60.89 91.37 31.63 57.23

hc- lns 64.10 55.75 80.40 97.53 49.21 92.35 25.29 60.88 90.81 31.63 57.20

hc- lnsr 63.86 54.29 80.40 96.86 49.21 92.56 25.29 60.87 90.32 31.63 57.21

hc- lnsrhc 63.82 53.74 80.39 97.06 49.21 92.49 25.29 60.88 90.25 31.63 57.22

lns 62.92 54.09 80.39 96.91 49.20 92.13 25.28 57.42 88.43 30.07 55.26

lnsr 62.86 52.85 80.39 95.81 49.20 91.38 25.28 60.14 85.06 31.63 56.90

hc 62.32 47.37 76.98 94.77 49.21 91.82 25.29 60.58 89.01 31.63 56.55

lnshc 61.44 54.97 80.40 97.51 49.20 92.57 25.29 54.84 91.29 31.63 36.65

lnsrhc 60.37 55.20 80.40 97.45 49.20 92.57 25.29 49.55 90.91 31.63 31.51

Improvements are given in %. The best results for each set are printed in bold (in same cases, the improvements
differ just slightly, which is not visible when using two digit precision). Lower bounds were computed using
the method described in Sect. 2.3

instance sets, on average: (1) hc- lnshc is better than hc- lnsrhc, (2) lns is better than
lnsr, iii) lnshc is better than lnsrhc. Although the results for set A indicate that hc- lnsr
outperforms hc- lns, the difference between these methods is minimal. Thus, although lns
does not strictly dominate over lnsr, we conclude that it is a more robust method of choosing
subproblems.

The obtained results do not answer the question whether it is worth improving the solution
further using the greedy hill climber after a successful solver improvement. Although hc-
lnshc is on average better than hc- lns, hc- lnsr outperforms hc- lnsrhc. Moreover,
lnshc and lnsrhc are worse than lns and lnsr, respectively.

Finally, let us point out that the best algorithm for both data sets is hc- lnshc. This is
also the algorithm which has the largest number of best results: it is best in 6 out of 10 cases
in set A and 7 out of 10 cases in set B. Note also that although the programs were executed 25
times with random seeds the results for a given program were mostly the same or at least very
similar to each other. The small variance allows to reason about statistical significance of the
obtained results. On the other hand, the results concern only an arbitrary set of instances, so
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Fig. 4 Comparison of algorithm variants in time. lnsr- * variants has been excluded for better readability.
See “Appendix 2” for plots involving all algorithms

it is not possible to make any general statements about relative superiority of one algorithm
over the other.

Although the analysis of algorithms in terms of improvements achieved in a given time
limit allows for an easy comparison, it neglects algorithms dynamics. To analyze the algo-
rithms time characteristics, we plotted the improvement in the function of time. We concen-
trate here on eight instances, for which the plots are the most diverse. Figure 4 shows the
results for instances a1_4, a2_2, a2_3, a2_5, b_01, b_07, b_08, and b_10. Plots for other
instances can be found in “Appendix 2”. Each point in a plot is an average over 25 runs
of a certain algorithm; for clarity of the presentation, the standard deviations have not been
shown. Notice, however, that the standard deviations reported in Table 4 are non significant.
We introduce different scales for each instance to amplify the visual differences between
algorithms.

The observation we can make analyzing the plots concerns the comparison between hc-
variants (plotted with solid lines) and other ones (plotted with dashed lines). Notice that,
generally, when the algorithm starts with the greedy hill climber, it gets higher improve-
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ments more quickly. This is especially evident for large instances from set B. For these
instances, but also for a2_2 to some extent, the results obtained solely by the greedy hill
climber remain for some time better than the ones produced by any large neighborhood
search variant. Surprisingly, for the largest b_10 instance, some large neighborhood search
variants (lnshc and lns) were unable to overtake the simple hill climber even in 300 s.
lns and lnshc improve the solution so slowly for the two largest instances b_10 and b_07
that they fall behind with respect to the greedy hill climber method for the whole set B
(cf. Table 4).

4.5 Comparison with best ROADEF/EURO challenge algorithms

Our algorithm won the first place in the ROADEF/EURO Challenge 2012 competition in the
junior category and the third place in the general classification. The winner in the general
classification was team S41.6 while the second place went to team S38.7 Since both teams
competed in the open source category and made their solutions publicly available, we were
able to directly compare their algorithms with our approach on the same machine.8

Unlike the competition where each submitted program was executed only once, we exe-
cuted each of the compared algorithms for all instances 25 times with different random seeds.
Thus, our results may be considered as more reliable than the results of the competition.
Moreover, we are able to reason about robustness of the algorithms.

In this section we compare hc- lnshc, our best variant, with the programs submit-
ted by teams S38 and S41. The hc- lnshc algorithm is a simplified version of the algo-
rithm submitted by us to the competition. The differences between the submitted version
and hc- lnshc are twofold. First, the submitted algorithm used the greedy hill climber
and large neighborhood search wrapped in a hyper-heuristic. However, in post-competition
experiments we have found that this additional layer does not improve the results, while
adding unnecessary complexity to the method. Second, in the submitted version the ter-
mination condition of the solver was computation time (500 ms), which makes the algo-
rithm behave differently on computers of different speeds. As we noted in Sect. 3.2.2, the
algorithm described in this paper uses a deterministic termination condition to bypass this
problem.

The algorithms of teams S38 (Mehta et al. 2012) and S41 (Gavranović et al. 2012) were
implemented in C and C++, respectively. We compiled the source code with gcc and g++
compilers, respectively, using standard optimizations (most notably, -O3 flag). As the com-
petition rules allowed using two CPU cores, the program prepared by the team S41 uses two
threads for computations. Both the S38 solution and our solution use only a single thread.

Table 6 contains results of the comparison in the same format as Table 4. Although for
both instance sets S41 is on average the best, neither algorithm is the best on all instances.
When considering all 20 instances, S41 is the best on 10 instances, whereas hc- lnshc on
7 instances and S38 on 5 instances. Notice that for most instances the differences between
algorithms are minor. Exceptions include instances a2_2 and a2_3, where S41 achieves much
better results than other algorithms, and a1_4, where hc- lnshc (but also S38) is significantly
better than S41.

6 Mirsad Buljabašić, Emir Demirović and Haris Gavranović from University of Sarajevo, Bosnia, https://
github.com/harisgavranovic/roadef-challenge2012-S41.
7 Deepak Mehta, Barry O’sullivan and Helmut Simonis from University College Cork, Ireland, http://
sourceforge.net/projects/machinereassign/.
8 The source code of our algorithm (and its variants) is publicly available at https://bitbucket.org/wjaskowski/
roadef-challange-2012-public/.
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Fig. 5 Comparison of S41, S38 and hc- lnshc in time

The advantage of hc- lnshc algorithm lies in its robustness, which is noticeable in its
low variance. For 17 out of 20 instances, the standard deviation error of hc- lnshc is less
than 0.01 % and the source of indeterminism of hc- lnshc lies only in the time-dependent
stopping criterion for the whole program (the program was terminated after 300 s). In contrast,
the dispersion of results obtained by S41 is larger, especially for set A (but also b_01).
The algorithm with the highest variance is S38, whose standard deviation for a2_2 exceeds
1.20 %.

Figure 5 presents the dynamics of all algorithms for 8 instances. Despite S41 being clearly
the best algorithm for a2_2 and a2_3, it can be observed that for other instances, it progresses
significantly slower than both S38 and hc-lnshc.

5 Discussion

In the proposed approach for the machine reassignment problem, we do not employ a single
algorithm, but instead we combine several different algorithms including local search heuris-
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tics and exact mathematical programming techniques. Interestingly, this approach follows a
wider trend in solving real-world combinatorial optimization problems which is referred to as
hybrid metaheuristics (Blum and Roli 2008). Such hybrid approaches are believed to benefit
from synergetic exploitation of complementary strength of their components. Indeed, many
works concerning non-trivial optimization problems report that hybrids are more efficient
and flexible than traditional metaheuristics applied separately (Prandtstetter and Raidl 2008;
Burke et al. 2010; Hu et al. 2008; Cambazard et al. 2012). In this work we confirm these
observations.

According to the classification of hybrid metaheuristics proposed by Puchinger and Raidl
(2005), the MIP-based LNS approach can be regarded as an integrative master–slave com-
bination, where one algorithm acts at a higher level and manages the calls to a subordinate
algorithm. Since the combination includes mathematical programming which is embedded
in a metaheuristic framework, it can be also viewed as a matheuristic (Maniezzo and Voß
2009). However, in contrast to most of these previous approaches, we precede the LNS
with a greedy hill climber algorithm based on a simple move-based neighborhood. For this
reason our approach also resembles collaborative sequential combination of metaheuristic
algorithms.

6 Conclusions

The purpose of this study was to present and analyze a hybrid metaheuristic approach for
the machine reassignment problem—a hard optimization problem of practical relevance.
We showed that a combination of straightforward local search heuristic and fine-tuned
large neighborhood search can benefit from complementary characteristics of both con-
stituent algorithms. In particular, the fast hill climber component turned out to be crucial
for bigger instances of the problem for which exploring large neighborhoods was exces-
sively time-consuming. On the other hand, due to a large number of constraints and depen-
dencies defined in the problem, reassigning single processes only was often not enough
to escape from local optima. In such situations, exploring much larger neighborhoods and
making many process reassignments at once was indispensable for obtaining high quality
results.

Although the proposed algorithm achieved third place overall in the ROADEF/EURO
2012 Challenge, the comparison with the best two entries reveals that the top three results
were not substantially different. Clearly, no single best algorithm beat the other ones on
all the available problem instances. The performance of considered algorithms is largely
influenced by characteristics of particular instances, and to some extent, also by the seed
of a random number generator. In this context, it is worth pointing out that our algorithm
is the least sensitive to the randomness—the standard deviation of its average results is the
smallest.

An interesting direction for future work is to investigate what kind of instances are favored
by specific algorithms. We can hypothesize that combining ideas of the three algorithms in
the instance-specific approach may outperform these algorithms applied separately. Taking
one step further would include conducting a fitness landscape analysis (Watson et al. 2005),
which could shed new light on the search space characteristics that make certain instances
particularly hard to solve. This could potentially explain the differences in algorithm perfor-
mances and help design more robust approaches.
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7 Appendix 1: Mixed integer programming model

7.1 Input of the model

The input of the model consists of five elements:

– the machine reassignment problem instance including the originalSolution.
– ini tialSolution—current solution to be improved by the solver (not necessarily the

original one),
– Px —the set of processes that could be relocated by the solver. Additionally, Sx is the

minimal set of services containing all processes from Px ,
– Mx —the set of machines to which the processes from Px are allowed to be moved. To

ensure feasibility of the model, Mx must include all machines to which processes from
Px are assigned.

7.2 Output

The output from the solver is a set of new assignments for every process p ∈ Px . Each
process can be assigned to one machine m ∈ Mx . Thus, the output consists of |Px | ∗ |Mx |
decision variables x pm , where p is the index of a process and m is the index of a machine.
x pm is 1 if and only if the process p is assigned to machine m; it is 0 otherwise:

∀p∈Px ,m∈Mx x pm ∈ {0, 1}. (1)

7.3 Constraints

Some constraints described in this section refer to variables x pm that are not considered in
the model (p /∈ Px ). In such cases, x pm is a constant, which values is indicated by the
ini tialSolution.

7.3.1 Basic integer programming constraints

Every process must be assigned to exactly one machine:

∀p∈Px

∑

m∈Mx

x pm = 1. (2)

7.3.2 Capacity constraints

The goal of the solver is to find assignments only for a small subset of processes, thus for
capacity constraints we consider only machines m ∈ Mx .

∀m∈Mx ,r∈RU (m, r) ≤ C(m, r), (3)
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where
U (m, r) =

∑

p ∈ P such

that M(p) = m

R(p, r). (4)

As only some machines and processes are considered by the solver, we can decompose usage
U (m, r) into variable and constant parts:

U (m, r) = Uconst (m, r) + Uvar (m, r), (5)

where

Uconst (m, r) =
∑

p /∈ Px such

that M(p) = m

R(p, r), (6)

Uvar (m, r) =
∑

p∈Px

(R(p, r) · x pm). (7)

Thus, the set of capacity constraints

∀m∈Mx ,r∈RUconst (m, r) + Uvar (m, r) ≤ C(m, r), (8)

is transformed to:

∀m∈Mx ,r∈R
∑

p∈Px

(R(p, r) · x pm) ≤ C(m, r) − Uconst (m, r), (9)

where Uconst (m, r) is constant for any m ∈ Mx , r ∈ R.

7.3.3 Transient constraints

For transient constraint let us define transient usage T U as follows:

T U (m, r) =
∑

p ∈ P such

that M(p) = m ∨ M0(p) = m

R(p, r).

As for modeling the capacity constraints, we split T U into the constant part (processes
not considered in the model) and the variable part:

T U (m, r) = T Uconst (m, r) + T Uvar (m, r),

where

T Uconst (m, r) =
∑

p /∈ Px such

that M(p) = m ∨ M0(p) = m

R(p, r),

T Uvar (m, r) =
∑

p∈Px

(R(p, r) · max(x pm, x p0m)).

Finally, we get:

∀m∈Mx ,r∈R
∑

p∈Px

(R(p, r) · max(x pm, x p0m)) ≤ C(m, r) − T Uconst (m, r).
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7.3.4 Conflict constraints

Conflict constraints are modeled as:

∀s∈Sx ∀m∈Mx

∑

p∈s

x pm ≤ 1 (10)

7.3.5 Spread constraints

Spread constraints cannot be modeled directly. To introduce them into the model, additional
variables are required. For every location l ∈ L and every service s ∈ S, we introduce
a variable yls , which is 1 if the location l in the service s has at least one process, and 0
otherwise:

∀s∈Sx ,l∈L yls ∈ {0, 1}, (11)

∀s∈Sx

∑

l∈L

yls ≥ spread Min(s). (12)

For yls we need two additional constraints. First, if there is no process p in service s that is
assigned to machines m in location l, then yls must be equal to 0:

∀s∈Sx ,l∈L

∑

p∈s,m∈l

x pm − yls ≥ 0. (13)

Second, when at least one process p ∈ s is assigned to machine m ∈ l, yls must equal 1:

∀s∈Sx ,l∈L

∑

p∈s,m∈l

|P| · yls − x pm ≥ 0, (14)

where |P| is the number of processes.

7.3.6 Dependency constraints

Dependency constraints are modeled as:

∀s1∈S∀s2∈(dep(s1))∀n∈N |P| ·
∑

m∈n

∑

q∈s2

xqm −
∑

m∈n

∑

p∈s1

x pm ≥ 0 (15)

7.4 Objective function

The objective function is a sum of five elements:

f (variables) = LC + BC + P MC + SMC + M MC. (16)

Each element of the sum will be considered separately in the following paragraphs. Notice
that the modeled objective function does not take into account the costs related to processes
or machines which are not part of the subproblem. Obviously, this objective function is
consistent with the objective function for the whole problem.
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7.4.1 Load cost

Load cost for a single resource is defined as a sum:

loadCost (r) = loadCostW eight (r) ·
∑

m∈Mx

max(0, U (m, r) − SC(m, r)). (17)

In our model, U (m, r) is replaced by Eqs. (5), (6) and (7). Since the problem is to minimize
the value of the load cost, function max can be modeled by introducing an artificial variable.
In general, function max(a, b) can be replaced by a variable f with two constraints:

f ≥ a, (18)

f ≥ b. (19)

Thus, the max function from Eq. 17 can be replaced by a variable zrm with constants:

∀m∈Mx ∀r∈Rzrm ≥ 0, (20)

∀m∈Mx ∀r∈Rzrm −
∑

p∈Px

R(p, r) · x pm ≥ Uconst − SC(m, r). (21)

Finally, the load cost function is modeled as:

LC =
∑

r∈R
(loadCostW eight (r) ·

∑

m∈Mx

zrm). (22)

Note that zrm variable should be an integer. However, examination of the goal function
shows that the optimizer will assign the lowest possible integer value to zrm even if zrm is a
continuous variable, because all parameters of the max function are integers.

7.4.2 Balance cost

A single balance cost is defined as:

balanceCost (b) =
∑

m∈Mx

max(0, target · A(m, r1) − A(m, r2)), (23)

where
A(m, r) = C(m, r) − U (m, r). (24)

We dispose of the max function as described in Sect. 7.4.1 Every occurrence of this max
function is replaced by a variable tbm with constraints

∀m∈M∀b∈Btbm ≥ 0, (25)

and

∀m∈Mx ∀b∈B tbm + target · ∑
p∈Px

(x pm · R(p, r1)) − ∑
p∈Px

(x pm · R(p, r2))

≥ target · (C(m, r1) − Uconst (m, r1)) − (C(m, r2) − Uconst (m, r2)).

(26)
Finally, the balance cost is modeled as:

BC =
∑

b∈B

⎛

⎝weight BalanceCost (b)
∑

m∈Mx

tbm

⎞

⎠ . (27)
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7.4.3 Process move cost

We model the process move cost as:

P MC = −proces MoveCostW eight ·
∑

p∈Px

P MC(p) · x pm0 , (28)

where x pm0 refers to a variable that indicates that process p was reassigned back to its
original machine m0.

7.4.4 Service move cost

To model the service move cost additional variables are required. Let us define SMCs as
a variable which denotes the number of processes from service s that are assigned to other
machines than in originalSolution:

∀s∈Sx

∑

p∈s

x pm0 + SMCs = |s|, (29)

where x pm0 is defined in Sect. 7.4.3.
The total service move cost (SMC) is modeled with a set of constraints:

∀s∈Sx SMC − serviceMoveCostW eight · SMCs ≥ 0 (30)

Notice that the above constraints refer only to services containing processes that could be
moved. To implement this cost correctly it is necessary to add a constraint with a constant
value of service move cost for services which cannot be reassigned in this model. This can
be modeled by the following set of constraints:

∀s /∈Sx SMC ≥ serviceMoveCostW eight · SMCs . (31)

7.4.5 Machine move cost

Machine move cost can be modeled without any additional transformations:

M MC = machineMoveCostW eight ·
∑

p∈Px

∑

m∈Mx

(M MC(M0(p), m) · x pm). (32)

8 Appendix 2: Detailed results

See Figs. 6, 7 and Table 7.
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Fig. 6 Comparison of all algorithm variants for set A

123



Ann Oper Res

0 100 200 300
time [s]

35

40

45

50

55

60
im

pr
ov

em
en

t
[%

]
b 01

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

65

70

75

80

85
b 02

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

70

75

80

85

90

95

100
b 03

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

40

42

44

46

48

50
b 04

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

20

30

40

50

60

70

80

90

100

im
pr

ov
em

en
t

[%
]

b 05

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

16

18

20

22

24

26

28

30
b 06

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

20

30

40

50

60

b 07

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

20

30

40

50

60

70

80

90

100
b 08

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

10

15

20

25

30

35

im
pr

ov
em

en
t

[%
]

b 09

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

0 100 200 300
time [s]

0

10

20

30

40

50

60
b 10

hc
hc-lns
hc-lnshc
hc-lnsr
hc-lnsrhc
lns
lnshc
lnsr
lnsrhc

Fig. 7 Comparison of all algorithms variants for set B
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Table 7 The table shows lower bounds, ‘best found’ solutions and ROADEF/EURO competition solutions
in terms of improvement and absolute cost for instances from sets A and B

Instance Improvement (%) Cost

Lower
bound

Best
known

Comp.
best

Lower
bound

Best
known

Comp.
best

a1_1 10.544 10.544 10.544 44,306,390 44,306,501 44,306,501

a1_2 26.762 26.762 26.762 777,530,730 777,534,076 777,532,896

a1_3 0.112 0.112 0.112 583,005,700 583,005,717 583,005,717

a1_4 61.678 61.285 60.043 242,387,530 244,875,206 252,728,589

a1_5 6.982 6.982 6.982 727,578,290 727,578,309 727,578,309

a2_1 100.000 100.000 100.000 0 161 198

a2_2 99.276 61.286 56.493 13,590,090 726,580,546 816,523,983

a2_3 77.054 47.438 42.492 521,441,700 1,194,465,080 1,306,868,761

a2_4 47.876 47.869 47.841 1,680,222,380 1,680,457,999 1,681,353,943

a2_5 61.004 60.980 57.304 307,035,180 307,223,995 336,170,182

b_01 56.951 56.947 56.317 3,290,754,940 3,291,069,369 3,339,186,879

b_02 80.408 80.401 80.400 1,015,153,860 1,015,496,187 1,015,553,800

b_03 97.528 97.527 97.525 156,631,070 156,691,279 156,835,787

b_04 49.208 49.207 49.207 4,677,767,120 4,677,808,036 4,677,823,040

b_05 92.574 92.573 92.572 922,858,550 922,974,910 923,092,380

b_06 25.287 25.287 25.287 9,525,841,820 9,525,861,632 9,525,857,752

b_07 60.909 60.907 60.906 14,833,996,360 14,834,734,988 14,835,149,752

b_08 91.370 91.368 91.367 1,214,153,440 1,214,318,112 1,214,458,817

b_09 31.631 31.630 31.630 15,885,369,400 15,885,491,773 15,885,486,698

b_10 57.253 57.253 57.252 18,048,006,980 18,048,347,257 18, 048, 515, 118

‘Best found’ results have been obtained by various algorithms (including S38, S41 and variants of algo-
rithms analyzed in this paper) with various running times (up to 6 h). The values are shown here for
future reference. The ‘best found’ solutions are available at http://www.cs.put.poznan.pl/wjaskowski/projects/
roadef-challenge-2012
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