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Abstract. We compare Temporal Difference Learning (TDL) with Co-
evolutionary Learning (CEL) on Othello. Apart from using three pop-
ular single-criteria performance measures: i) generalization performance
or expected utility, ii) average results against a hand-crafted heuristic
and iii) result in a head to head match, we compare the algorithms using
performance profiles. This multi-criteria performance measure character-
izes player’s performance in the context of opponents of various strength.
The multi-criteria analysis reveals that although the generalization per-
formance of players produced by the two algorithms is similar, TDL is
much better at playing against the strong opponents, while CEL copes
better against the weak ones. We also find out that TDL produces less
diverse strategies than CEL. Our results confirm the usefulness of perfor-
mance profiles as a tool for comparison of learning algorithms for games.
Keywords: reinforcement learning, coevolutionary algorithm, Reversi,
Othello, board evaluation function, weighted piece counter, interactive
domain

1 Introduction

The board game of Othello constitutes a non-trivial interactive domain, which
has become a popular testbed for evaluating and comparing different compu-
tational intelligence algorithms [1,2,3]. The most popular algorithms used for
learning Othello-playing strategies include competitive coevolutionary learning
(CEL) [4] and temporal difference learning (TDL) [5]. TDL is a well-recognized
example of reinforcement learning [6], in which the playing agent aims to find a
value function for predicting chances of winning a game from a particular state.
CEL, on the other hand, searches the space of strategies directly by maintaining
a set of candidate solutions that compete against each other and are randomly
tweaked by means of evolutionary operators such as mutation or crossover. The
essential difference between TDL and CEL is that TDL guides the learning using
the whole course of the game while CEL uses only the final game outcome.

Since both CEL and TDL can be applied to the same problem of learning
game-playing strategies, it is not surprising that they have been the subject of
comparative investigations. In one of the first such comparisons for Othello, Lu-
cas and Runarsson [1] found out that when learning strategies represented with



simple weighted piece counters “TDL learns much faster than CEL, but prop-
erly tuned CEL can learn better playing strategies”. However, Szubert et al. [7]
showed that the difference between TDL and CEL largely depends on the per-
formance measure used: CEL and TDL perform similarly when playing against a
random player, but TDL is superior to CEL when compared against a heuristic
hand-crafted player. These results were confirmed also for a non-linear, complex
n-tuples strategy representation [8], for which CEL is substantially worse than
TDL while a hybrid of CEL and TDL works even better [3]. Interestingly, in the
context of Backgammon game, Darwen showed that CEL can beat TDL [9].

Therefore, the general conclusions of the results of research comparing CEL
and TDL are not clear and they depend, among others, on selected objective
performance measure whether this is a fixed hand-crafted opponent, a random
player or a round robin tournament [3]. This insight led to devising performance
profiles [10], a multi-criteria method for comparison players and algorithms. Per-
formance profiles allow to analyze and present graphically the performance of
different players when facing opponents of various strength. Thus performance
profile conveys much more information about player’s characteristics than the
commonly used single-criteria performance measures which are prone to com-
pensation due to aggregation of results: the awards received in interactions with
a certain group of tests can cancel out the penalties incurred in interactions with
another group of tests.

Our main contribution in this paper is the comparison of CEL and TDL
using the multi-criteria performance measure based on performance profiles. In
this way we are able to precisely pin-point performance differences between the
strategies learned by the two analyzed algorithms and explain the differences
in results obtained on single-criteria performance measures. We notice that it
is easy to misjudge relative algorithms strength basing only on a single-criteria
performance measure.

2 Othello

2.1 Game rules description

Othello is a perfect information, zero-sum, two-player strategy game played on
a 8 × 8 board. There are 64 identical disks which are white on one side and
black on the other. The game begins with each player having two disks placed
diagonally in the center of the board. Players alternate placing disks on the
board, with the black player moving first. A move is legal if the newly placed
piece is adjacent to an opponent’s piece and causes one or more of the opponent’s
pieces to become enclosed from both sides of a horizontal, vertical or diagonal
line. The enclosed disks are then flipped. The game ends when neither player has
a legal move. A player who has more pieces on the board wins. If both players
have the same number of pieces, the game ends in a draw.



2.2 Weighted Piece Counter (WPC) strategy representation

We represent strategies using WPC, a simple, linear board state evaluation func-
tion, which indicates how desirable a given board state is. WPC assigns weight
wi to board location i and uses scalar product to calculate the value f of a board
state b: f (b) =

∑8×8
i=1 wibi, where bi is 0, +1 or −1 for empty location, black

piece or white piece, respectively. The players interpret f(b) in a complemen-
tary manner: the black player prefers moves leading towards states with a higher
value, whereas lower values are favored by the white player.

All algorithms considered in this paper employ WPC as a state evaluator in
1-ply setup: given the current board state, the player generates all legal moves
and applies f to the resulting states. The state gauged as the most valuable
determines the move to be made. Ties are resolved at random.

3 Coevolutionary Learning

Coevolutionary algorithms [11] are variants of evolutionary computation in which
an individual’s fitness depends on other individuals. Similarly to the evolutionary
one, coevolutionary algorithm use mechanisms such as selection and variation
that mimic the natural evolution. The driving force of coevolutionary algorithms
is the continuous Darwinian arms race taking place between one or two com-
peting populations [12]. The difference between coevolutionary and evolutionary
methods lies in the evaluation phase, when the fitness of individuals is assessed.
Evolutionary algorithms that solve optimization problems have access to the
objective function of a problem, thus individuals’ fitness is directly computed.
In coevolutionary algorithms, individuals’ fitness is typically only estimated by
aggregating results of multiple interactions between individuals from the main-
tained populations.

In this paper we use a one-population variant of competitive coevolution
and apply it to learn Othello board evaluation function. The algorithm uses
mutation as the only variation operator while fitness of an individual is defined
as a sum of two values: i) the average result of games played against other
individuals from the population (a round robin tournament) and ii) the average
result of games played against a sample of random WPC players. This particular
coevolutionary algorithm has been recently found superior to a typical one-
population coevolution [10].

4 Temporal Difference Learning

Temporal Difference Learning (TDL) is a reinforcement learning (RL) method
which has become a popular approach for elaborating game-playing strategies
[13,1,2]. The use of RL techniques for such applications stems from modeling
a game as a sequential decision problem, where the task of the learner is to
maximize the expected reward in the long run (game outcome).



In this paper we use TD(λ) algorithm [5], which solves prediction learning
problem that consists in estimating the future behavior of an unknown system
from the past experience. Learning occurs whenever system’s state changes over
time and is based on the error between the temporally successive predictions. Its
goal is to make the preceding prediction match more closely the current predic-
tion (taking into account distinct system states observed in the corresponding
time steps). Technically, at a certain time step t, prediction Pt can be considered
as a function of two arguments: current system state and the vector of weights
w. The TD(λ) algorithm is expressed by the following weight update rule:

∆wt = α(Pt+1 − Pt)

t∑
k=1

λt−k∇wPk,

where α is the learning rate, and λ is the decay parameter, which influences
the magnitude of changes applied to all the preceding predictions within a single
learning episode. When applied to the problem of learning game-playing strategy
represented as WPC, Pt estimates the chances of winning from the game state
bt, by mapping the outcome of the WPC function f to a closed interval [−1, 1]
using hyperbolic tangent, so that Pt = tanh(f(bt)).

The process of learning consists of applying the above formulas to the WPC
vector after each move of a self-play game. During game play, moves are selected
on the basis of the most recent evaluation function. Othello is a deterministic
game, thus the course of the game between two deterministic players is always
the same. This feature reduces the number of possible states a learner can ex-
plore, which makes learning ineffective. To remedy this situation, at each turn,
a random move is forced with a certain probability ε. As a result, players are
confronted against a wider spectrum of possible behaviors.

5 Experimental Setup and Parameters Tuning

In order to fairly compare the algorithms, we set them up so that their total
computational effort is the same and it is equal to 2, 000, 000 training games. To
evaluate a given algorithm we measure the performance of its best-of-run player.
In CEL this is the individual from the last generation with the highest fitness,
while in TDL this is simply the only learning player. Since both considered
algorithms are stochastic, we compare their average results over 100 runs.

Instead of selecting arbitrary values of parameters for CEL and TDL, we
perform a series of preliminary experiments to optimize them. As the optimiza-
tion goal we use the performance measure of generalization performance [14]
(also known as expected utility [10]). Generalization performance of a player is
defined as its expected score over all possible opponents. To approximate this
measure we compute the average game result of the player against 50, 000 ran-
dom players. A random player is a random weighted piece counter player that
weights are drawn uniformly at random from a fixed interval of [−1, 1]. In each
game players are rewarded 1 point for a win and 0.5 point for a draw.



5.1 Temporal Difference Learning

The TD(λ) algorithm described in Section 4 has two parameters: learning rate α
and decay λ ∈ [0, 1]. Additionally, since the algorithm learns on the basis of self-
play games, there is another important parameter — random move probability
ε. The results of different combinations of α and ε for λ = 0 are presented in
Table 1.

Table 1: The results obtained by TDL players for different α and ε. Generaliza-
tion performance values are presented in percent points.
α = .01 .02 .03 .04 .05 .06 .07 .08 .09 .1

ε = .0 81.4 82.3 84.2 84.0 84.3 82.1 79.9 75.4 71.5 72.0
ε = .05 84.0 81.1 82.7 86.2 87.9 87.7 87.4 87.4 87.0 86.8
ε = .1 84.4 81.5 82.4 84.4 87.3 87.7 87.2 86.4 85.4 85.4
ε = .15 84.9 82.7 82.2 83.3 86.1 87.8 86.7 85.5 84.6 84.5

On the basis of these results we chose α = 0.05 and ε = 0.05 as the best
parameters. In the second stage, we checked different values of decay λ. However,
changing λ did not provide statistically better results than those obtained with
λ = 0. This observation confirms previous results [2].

5.2 Coevolution

CEL has several quantitative and qualitative parameters. The former include
population size, random sample size, mutation probability and mutation range,
while the latter mutation and selection operators. The weights of the individuals
in the initial population were drawn at random from the [−0.1, 0.1] interval.

For each of the parameters we considered several possible values. We chose
to test six population sizes and six random sample sizes: 4, 10, 20, 50, 100, 200.
We selected four selection strategies:

– tournament selection, with tournament size 5,
– stochastic universal sampling [15], a variant of a roulette-wheel selection that

guarantees that the frequency of selection for each individual is consistent
with its expected frequency of selection,

– (µ+ λ) evolutionary strategy, where µ = 1
2popsize and λ = 1

2popsize, and
– (µ, λ) evolutionary strategy, where µ = 1

2popsize and λ = popsize.

Additionally, we considered Gaussian mutation and uniform mutation. These
mutation operators perturb each weight of the WPC with probability p by adding
to it a random value drawn uniformly from the interval [−r, r] in case of uniform
mutation, or from N (0, σ) for Gaussian mutation. For parameters p, r, and σ
we considered values of .05, .1, .2, .3, .4, .5, .6, .7, .8, .9 and 1.0.



Results

We carried out the tuning of CEL parameters in two stages. In the first stage,
we fixed the mutation operator to Gaussian mutation with p = 0.1 and σ = 0.25
and focused on finding the best selection strategy and best values of population
size and random sample size. For this purpose, we evaluated all 6× 6× 4 = 144
combinations of population size, random sample size and selection operators.

The results of optimization are shown in Fig. 1. On this basis, we decided to
use (µ, λ)-ES, population size of 20 and random sample size of 200.
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Fig. 1: The impact of population size, random sample size and selection operator
on the generalization performance of CEL. The values are presented in percent
points.

In the second stage, we evaluated Gaussian mutation and uniform mutation
for every combination of mutation probability, mutation operator and their pa-
rameters, 7 × 7 × 2 = 98 experiments in total. Surprisingly, we have found no
evidence of any statistical differences between either the mutation types or their
parameters with the sole exception of the combination of Gaussian mutation
with σ = .05 and p ∈ {.05, .1} that was statistically (t-test, α = 0.05) inferior to
other combinations. As a result, for the rest of the experiments we use Gaussian
mutation with p = 1.0 and σ = 1.0.

6 Comparison of Coevolution and Temporal Difference
Learning

6.1 Single-Criteria Comparison

We start the comparison between CEL and TDL by applying three commonly
used [16,1,17] single-criteria performance measures:



– generalization performance — the average performance against randomly
generated WPC players (see Section 5).

– heuristic performance — the average performance against a “standard” hand-
crafted WPC heuristic player [18,3]. Since this player is deterministic, follow-
ing earlier work [1], we force players to make random moves with probability
ε = 0.1, and thus we slightly alter the game definition.

– head to head — indicates how well a set of players copes in games against
players from another set.

Table 2: Comparison of CEL and TDL using three performance measures: i) gen-
eralization performance, ii) heuristic performance, and iii) the result of head to
head match. The results are shown in percent points, where 100% means getting
all possible points (winning all games). Values of generalization performance and
heuristic performance are accompanied by 95% confidence intervals. Note that
the results of head to head match sum up to 100%.

Performance measure [%]

Algorithm generalization heuristic head to head

Coevolutionary Learning (CEL) 86.97±0.21 32.31±0.62 21.2
Temporal Difference Learning (TDL) 87.26±0.32 46.14±0.96 78.8

Table 2 presents the results for CEL and TDL using the above-described
single-criteria performance measures. To compute generalization performance
and heuristic performance we played 50, 000 games for each best-of-run player.
The results were averaged over 100 best-of-run players for each algorithm.

The comparison using the three single-criteria performance measures is equiv-
ocal. The performance measure of generalization performance shows no statisti-
cal difference between CEL and TDL (t-test, α = 0.01). However, TDL is clearly
superior to CEL when playing against a heuristic player and in a head to head
match. Can we then claim with a confidence that TDL is “better” than CEL?

6.2 Multi-Criteria Comparison with Performance Profiles

Performance Profiles Single-criteria methods of performance evaluation do
not draw a clear picture of the relative performance of analyzed methods. To
better understand the characteristics of compared methods we use performance
profiles [10]. They compare performance of players using sets of opponents of
various strength, treating the result of match against opponents of each such set
as a separate performance criteria.

To prepare a performance profile, we first generate a number of opponents
and group them into bins according to their strength. To this aim, we randomly



generated about 1,000,000 players (opponents) by sampling WPC weights uni-
formly and independently from the [−1, 1] interval. Next, the generalization per-
formance of each opponent was estimated by taking average from the results of
games 2,000 against random WPC strategies. The range of possible performance
values, i.e., [0%, 100%], is then divided into 100 bins of equal 1%-performance
width, and each opponent is assigned to one of these bins based on its general-
ization performance.

However, finding extremely strong or weak strategies in this way is very dif-
ficult, if not impossible. To overcome this, the strongest (performance > 81%)
and the weakest (performance < 13%) opponents were obtained using multiple
independent runs of evolutionary learning with random sampling [10]. In this
way, we were able to fill 93 bins (4%− 96%), each one of containing 1, 000 oppo-
nents. Note that building the opponents database is computationally expensive.
However, once created, it can be reused1.

The set of opponents partitioned into bins forms the basis for building per-
formance profiles. The player to be assessed plays games against all the oppo-
nents from each bin, and the average game outcome is plotted against the bins.
Performance profile is a multi-criteria performance evaluation method since the
performance of a given player is measured separately on every bin, each being a
different criterion.

Results We apply this multi-criteria method to inspect the best-of-run individ-
uals of the two algorithms considered in this paper. The resulting performance
profiles are presented in Fig. 2. Since we have 100 runs per algorithm, we aver-
age the profiles over 100 best-of-run players. A point of coordinates (x, y) in a
plot means that the best-of-run individuals have on average performance y when
playing against opponents of performance x. For example, the performance of
CEL is nearly 95% for opponents with performance of 20%. The whiskers in the
plots mark 95% confidence intervals.

The decreasing trend in each data series confirms the intuition that it is
harder to win against the stronger opponents than against the weaker ones.

The most important observation from the plots is that TDL players are
significantly better when facing the strong opponents. Moreover, the stronger
the opponents the wider the performance gap between CEL and TDL players.
On the other hand, CEL players are better than TDL players against the weakest
opponents. For example, CEL players win nearly 98% games against the weakest
opponents in our database of performance of 4%, while TDL players win only
94% games against them.

6.3 Discussion

In Section 6.1 we showed that there is no statistical difference in generaliza-
tion performance between CEL and TDL, but TDL is better than CEL in a
1 The data and Java code for creating performance profiles for Othello are available
at http://www.cs.put.poznan.pl/wjaskowski/projects/performance-profiles.



0 20 40 60 80 100
Opponent performance [%]

20

40

60

80

100

Pl
ay

er
pe

rf
or

m
an

ce
[%

]

Temporal Difference Learning (TDL)
Coevolutionary Learning (CEL)

Fig. 2: Performance profiles of coevolutionary learning (CEL) and temporal dif-
ference learning (TDL). Each point (x, y) means player performance y against
opponents of performance x. Confidence intervals for each point are less than
1%. Right side of the plot indicates that TDL copes much better than CEL
against the stronger opponents.

game against a hand-crafted heuristic player and in a head to head tournament.
Performance profiles could explain this discrepancy.

First, we can see that in Fig. 2 CEL and TDL curves cross at about 50%, both
obtaining performance about 87% at this point. This value precisely matches
the generalization performance results obtained by CEL and TDL (cf. Table 2),
because the 50%-bin contains average players of performance equal to a random
WPC player.

Second, we should realize that the heuristic performance and the result in
head to head match determine how a player copes against strong opponents,
rather than average ones. Performance profile analysis confirms that TDL fares
much better than CEL against strong opponents (cf. Fig 2).

Third, what the three single-criteria performance measure miss is that CEL
is better than TDL for weaker opponents.

The three single-criteria measures are like three points sampled from a signal;
we can hypothesize about its shape, but they are not enough to fully understand
it. Performance profiles allow us to not only understand the single-criteria results
but also to see the trade-offs between TDL and CEL.



7 Strategies Comparison

The average performance against particular type of opponents allows us to draw
conclusions about the superiority of some approaches over others, but it says
nothing about the weights of elaborated WPC strategies. For this reason, we
investigate the distribution of final strategies learned by TDL and CEL.
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Fig. 3: Learned strategies represented as points in the PCA-reduced space. Dif-
ferent colors indicate clusters identified by the mean-shift algorithm.

To analyze the WPC strategies, we treat them as points in a 64-dimensional
space. First, we linearly scale all their weights to [0, 1] interval. Finally, we clus-
tered them using the mean-shift algorithm [19]. Figure 3 illustrates the results
of clustering the strategies produced by TDL and CEL in a two dimensional
space, which was obtained by applying PCA (Principle Component Analysis).
For TDL, we can clearly see four clusters, while CEL strategies are randomly
spread in the space. It appears that the players produced by CEL are much more
diversified than those produced by CEL.

Selected WPCs are presented graphically in weight-proportional gray-scale
in Figures 4 and 5 for TDL and CEL, respectively. In the figures darker squares
denote larger weights, which correspond to more desirable board locations.

Interestingly, TDL strategies exhibit some symmetries. In particular, the
corners are the most desirable, while their immediate neighbors have very low
weights. The only difference between these four strategies is the weight in one
of the board corners — it is significantly lower than in the other three corners.
In contrast, CEL strategies are less symmetrical and, apart from the typically
black corners, they do not exhibit any regularities nor symmetries.



8 Conclusions

This study presents an evidence that while temporal difference learning (TDL)
and coevolutionary learning (CEL) obtain similar results against average oppo-
nents, TDL copes much better against stronger ones. This was observed using
single-criteria performance measures, but the full picture was only revealed using
multi-criteria performance profiles. The characteristics of the strategies learned
by TDL and CEL differ significantly and this is reflected in strategy weights.

Despite their usefulness, performance profiles have some limitations. Their
computation requires numerous opponents of specific performances to be pre-
pared, what is computationally expensive. Therefore, profiling game-playing
strategies seems to be only possible for simple and linear representations (like
WPC) and for games which can be quickly played (1-ply only). Nevertheless,
such settings are perfectly acceptable when the emphasis of the research is put
not on the absolute performance of the players, but on the learning algorithms.

Fig. 4: WPC strategies produced by TDL corresponding to centers of the clusters
identified by the mean-shift algorithm (cf. Fig. 3) illustrated as Othello boards
with locations shaded accordingly to corresponding weights.

Fig. 5: Selected WPC strategies found by CEL and illustrated as Othello boards
with locations shaded accordingly to corresponding weights. The first two strate-
gies from the left are the most distant ones in the 64-dimensional space, the third
one is the centroid of the set of all CEL strategies while the right-most one is
the best strategy with respect to the generalization performance.
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