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Abstract. We present a general rule induction algorithm based on se-
quential covering, suitable for variable consistency rough set approaches.
This algorithm, called VC-DomLEM, can be used for both ordered and
non-ordered data. In the case of ordered data, the rough set model em-
ploys dominance relation, and in the case of non-ordered data, it employs
indiscernibility relation. VC-DomLEM generates a minimal set of deci-
sion rules. To this end, the following rule consistency measures are ap-
plied: �-consistency, �′-consistency, and �-consistency. We analyze prop-
erties of induced decision rules, and discuss conditions of correct rule
induction. Moreover, we show how to improve rule induction efficiency
due to application of monotonic consistency measures.

1 Introduction

Rough set approach to reasoning about data consists of the following steps. In
the first step, the data is checked for possible inconsistencies, by calculation of
lower and upper approximations of considered sets of objects. In case of the orig-
inal Rough Set Approach proposed by Pawlak [41–43, 45], the approximated sets
are decision classes. Since this approach assumes that data are not ordered, and
thus employs indiscernibility relation, we call it Indiscernibility-based Rough Set
Approach (IRSA). In the Dominance-based Rough Set Approach (DRSA) pro-
posed by Greco et al. [22, 23, 26, 55], where data are ordered and it is assumed
that there exists a monotonic relationship between evaluations of objects and
their assignment to ordered decision classes, one approximates upward and down-
ward unions of decision classes. The classification problem handled by DRSA is
called ordinal classification with monotonicity constraints. In both approaches,
the approximations are built using granules of knowledge, which are either in-
discernibility classes (IRSA) or dominance cones (DRSA). In IRSA and DRSA,
the lower approximation of a set is defined using a strict inclusion relation of
the granules of knowledge in the approximated set. The lower approximation is
thus composed only of the granules that are subsets of the approximated set.
This definition of the lower approximation appears to be too restrictive in prac-
tical applications. In consequence, lower approximations of sets are often empty,



preventing generalization of data in terms of relative certainty. This observation
has motivated research on probabilistic generalizations of rough sets. Differ-
ent versions of probabilistic rough set approaches were proposed, starting from
Variable Precision Rough Set (VPRS) model [59, 63, 64], Variable Consistency
Dominance-based Rough Set Approaches (VC-DRSA) [7, 23], Bayesian Rough
Set (BRS) model and Rough Bayesian (RB) model [58, 59], Decision Theoretic
Rough Set model [29, 61, 62] and Parameterized Rough Sets (PRS) [30]. The
probabilistic rough set approaches allow to extend lower approximation of a set
by objects with sufficient evidence for membership to the set. In this paper,
we rely on the monotonic Variable Consistency Indiscernibility-based Rough Set
Approaches (VC-IRSA) and Variable Consistency Dominance-based Rough Set
Approaches proposed in [8, 9]. The former approaches extend IRSA, while the
latter are extensions of DRSA. We use different object consistency measures to
quantify the evidence for membership to a set. They measure the overlap be-
tween a granule of knowledge based on an object and the approximated set or
its complement.

In the second step, decision rules are generated in order to generalize descrip-
tion of objects contained in approximations. Objects from lower approximations
of sets are the basis for induction of certain rules, objects from upper approxima-
tions of sets are used to obtain possible rules, and objects from boundaries of sets
are used to generate approximate rules. In this paper, we present an algorithm
for induction of a minimal set of minimal decision rules, based on sequential cov-
ering. This algorithm, called VC-DomLEM, generalizes the description of objects
contained in probabilistic lower approximations defined according to VC-IRSA
or VC-DRSA. When applied to the set of probabilistic lower approximations, it
induces a set of probabilistic rules. Each such rule is supported by objects from a
lower approximation and is allowed to cover objects from the respective positive
region. To control the quality of the rules, we use three different rule consistency
measures – �-consistency, �′-consistency, and �-consistency. These measures have
the same properties as corresponding object consistency measures used to cal-
culate probabilistic lower approximations.

The overall goal of using VC-DomLEM is to find smallest possible set of rules
with high predictive accuracy. In general, induction of decision rules is a com-
plex problem and many algorithms have been introduced to solve it. Examples
of rule induction algorithms that were presented for IRSA are the algorithms: by
Grzymała-Busse [32], by Skowron [56], by Słowiński and Stefanowski [52], and
by Stefanowski [57]. Algorithms defined for DRSA have been proposed: by Greco
et al. [25], by Błaszczyński and Słowiński [6] and by Dembczyński et al. [15]. All
these algorithms can be divided into three categories that reflect different induc-
tion strategies: generation of a minimal set of decision rules, generation of an
exhaustive set of decision rules, and generation of a satisfactory set of decision
rules. Algorithms from the first category focus on describing objects from lower
approximations by minimal number of minimal rules that are necessary to cover
all consistent objects from the decision table. Algorithms from the second cate-
gory generate all minimal decision rules. The third category includes algorithms



that generate all minimal rules that satisfy some a priori defined requirements
(e.g., maximal rule length or minimal support). According to this classification,
VC-DomLEM belongs to the first category.

Decision rules are considered to be a data model. Thus, in the case of clas-
sification problems addressed by IRSA, and in the case of more general ordinal
classification problems with monotonicity constraints addressed by DRSA, they
do not only describe the data, but they also can be used for prediction.

Classification of (new) objects by the induced decision rules is the third step
of the rough set approach. In this step, recommendations of decision rules for
classified objects are aggregated using classification strategies [5, 26, 27].

This paper is organized as follows. In Section 2, we remind basic definitions
of the original Indiscernibility-based Rough Set Approach and the Dominance-
based Rough Set Approach. We define monotonicity properties required for
object consistency measures that are used in Monotonic Variable Consistency
Rough Set Approaches. We present definitions of probabilistic lower approxi-
mations, followed by definitions of positive, negative and boundary regions of
approximated sets of objects. In Section 3, we define syntax and semantics of
decision rules. Section 4 introduces the properties of induced decision rules. In
Section 5, we present VC-DomLEM, which is an algorithm that induces decision
rules by sequential covering [35], also called separate and conquer [20]. In Section
6, we describe the setup of a computational experiment, performed to analyze
the behavior of VC-DomLEM algorithm for different rule consistency measures.
Section 7 contains the results of this experiment. In the last Section 8, we give
final remarks and conclude the paper.

2 Rough set approximations and respective regions of
evaluation space

In the rough set approach, classification of object y from universe U to a given
setX ⊆ U is based on available data. Data is presented as a decision table, where
rows correspond to objects from U and columns correspond to attributes from a
finite set A. Among attributes from set A there are attributes with preference-
ordered value sets, called criteria, and regular attributes whose value sets are not
preference-ordered. Moreover, the set of attributes A is divided into disjoint sets
of condition attributes C and decision attributes D. The value set of attribute

q ∈ C ∪ D is denoted by Vq. VP =
∣P ∣∏
q=1

Vq is called P -evaluation space, where

P ⊆ C. For simplicity, we assume set D to be a singleton D = {d}.
The decision attribute d makes a partition of set U into a finite number of

disjoint sets of objects, called decision classes. LetX ⊆ U be one of these decision
classes. Decision about classification of object y ∈ U to setX depends on its class
label known from the decision table, and/or on its relation with other objects
from the table. In IRSA, the considered relation is the indiscernibility relation
in the evaluation space [41–43, 45]. Consideration of this relation is meaningful
when set of attributes A is composed of regular attributes only. Indiscernibility



relation makes a partition of universe U into disjoint blocks of objects that have
the same description and are considered indiscernible. Such blocks are called
granules. Moreover, IP (y) denotes a set of objects indiscernible with object y
using set of attributes P ⊆ C. It is called a granule of P -indiscernible objects.

When condition attributes from C and decision attribute d have preference-
ordered value sets, in order to make meaningful classification decisions, one has
to consider the dominance relation instead of the indiscernibility relation in
the evaluation space. It has been proposed in [22, 23, 26, 55] and the resulting
approach was called Dominance-based Rough Set Approach (DRSA). Dominance
relation makes a partition of universe U into granules being dominance cones.
Moreover, for each object y ∈ U two dominance cones are defined with respect
to (w.r.t.) P ⊆ C. The P -positive dominance cone D+

P (y) is composed of all
objects that for each qi ∈ P are not worse than y. The P -negative dominance
cone D−P (y) is composed of all objects that for each qi ∈ P are not better than
y.

We consider a classification problem with n disjoint classes numbered by
decision attribute d. While in IRSA, decision classes Xi, i = 1, . . . , n, are not
necessarily ordered, in DRSA, they are ordered, such that if i < j, then classXi is
considered to be worse than Xj . Moreover, DRSA takes into account monotonic
relationship between evaluations of objects on particular criteria and assignment
of these objects into decision classes. For example, the better the value of crite-
rion qi ∈ C for object y, the better the decision class it may belong. From this
follows the dominance principle which says that if evaluations of object y on all
considered criteria are not worse than evaluations of object z, then y should be
assigned to a class not worse than z. Violation of this principle causes inconsis-
tency in the data table which is captured within DRSA by approximations of
sets based on dominance. In order to handle preference orders, and monotonic
relationships between evaluations on criteria and assignment to decision classes,
approximations made in DRSA concern the following unions of decision classes:
upward unions X≥i =

∪
t≥iXt, where i = 2, 3, . . . , n, and downward unions

X≤i =
∪
t≤iXt, where i = 1, 2, . . . , n− 1.

In order to avoid repetition of the same definitions and properties for IRSA
and DRSA, from now on we will use a unique symbol X to denote a set of all
objects belonging to class Xi, in the context of IRSA, or to union of classes X≥i ,
X≤i , in the context of DRSA. Moreover, we will use symbol EP (y) to denote any
granule of the type IP (y), D+

P (y) or D−P (y), y ∈ U . If both X and EP (y) will
be used in the same equation, then for X representing class Xi, EP (y) denotes
granule IP (y) and for X representing union of ordered classes X≥i (resp. X≤i ),
EP (y) stands for dominance cone D+

P (y) (resp. D
−
P (y)).

As written above, different probabilistic rough set approaches aim to extend
lower approximation of set X by inclusion of objects with sufficient evidence for
membership toX. This evidence can be quantified by different object consistency
measures. In [9], we distinguished gain-type and cost-type object consistency
measures and specified conditions that must be satisfied by these measures. For
a gain-type measure, the higher the value, the more consistent is the given object.



For a cost-type measure, the lower the value, the more consistent is the given
object.

Let us give generic definition of probabilistic P -lower approximation of set
X. For P ⊆ C,X ⊆ U, y ∈ U , given a gain-type (resp. cost-type) object consis-
tency measure �PX(y) and a gain-threshold (resp. cost-threshold) �X , we get the
following definition of the P -lower approximation of set X:

P �X (X) = {y ∈ X : �PX(y) ∝ �X}, (1)

where ∝ denotes ≥ in case of a gain-type object consistency measure and a gain-
threshold, or ≤ for a cost-type object consistency measure and a cost-threshold.
In the above definition, �X ∈ [0, AX ] is a technical parameter influencing the
degree of consistency of objects belonging to lower approximation of X. Values
of �X and AX depend on the interpretation of the object consistency measure.

The definition of P -upper approximation and the definition of P -boundary
of set X, both making use of the complementarity property of rough approxi-
mations, are given in [9].

In [9], we introduced and motivated four monotonicity properties required
from object consistency measures used in definition (1). We call a P -lower ap-
proximation monotonic when the object consistency measure used to define it
fulfills relevant monotonicity properties. For IRSA and DRSA, we are interested
in the following two properties:

(m1) Monotonicity w.r.t. set of attributes P ⊆ C. Formally, for all P ⊆ P ′ ⊆ C,
X ⊆ U , y ∈ U , a gain-type measure �PX(y) is monotonically non-decreasing
w.r.t. P , if and only if (iff)

�PX(y) ≤ �P
′

X (y), (2)

and a cost-type measure �PX(y) is monotonically non-increasing w.r.t. P , iff

�PX(y) ≥ �P
′

X (y). (3)

(m2) Monotonicity w.r.t. set of objects X ⊆ U , when set X is augmented by new
objects. Formally, for all P ⊆ C, X ⊆ U , X ′ = X ∪X�, X�∩U = ∅, y ∈ U ,
a gain-type measure �PX(y) is monotonically non-decreasing w.r.t. X, iff

�PX(y) ≤ �PX′(y), (4)

and a cost-type measure �PX(y) is monotonically non-increasing w.r.t. X, iff

�PX(y) ≥ �PX′(y). (5)

Moreover, for DRSA additional required properties are:

(m3) Monotonicity w.r.t. union of classes X≥i ⊆ U and X≤k ⊆ U . Formally, for all
P ⊆ C, X≥i ⊆ X≥j ⊆ U , j ≤ i, X≤k ⊆ X≤l ⊆ U , l ≥ k, y ∈ U , gain-type



measures �P
X
≥
i

(y) and �P
X
≤
k

(y) are monotonically non-decreasing w.r.t. X≥i
and X≤k , respectively, iff

�P
X
≥
i

(y) ≤ �P
X
≥
j

(y), �P
X
≤
k

(y) ≤ �P
X
≤
l

(y). (6)

Analogously, a cost-type measures �P
X
≥
i

(y) and �P
X
≤
k

(y) are monotonically

non-increasing w.r.t. X≥i and X≤k , respectively, iff

�P
X
≥
i

(y) ≥ �P
X
≥
j

(y), �P
X
≤
k

(y) ≥ �P
X
≤
l

(y). (7)

(m4) Monotonicity w.r.t. P -dominance relation DP , P ⊆ C. Formally, for all
P ⊆ C, X≥i , X

≤
i ⊆ U , y ∈ U , and ∗ standing for either ≥ or ≤ in every

instance, a gain-type measure �PX∗i (y) is monotonically non-decreasing w.r.t.
P -dominance relation, iff

∀y1, y2 ∈ U : y1DP y2 ⇒ �PX∗i (y1) ≥ �
P
X∗i

(y2), (8)

and a cost-type measure �PX∗i (y) is monotonically non-increasing w.r.t. P -
dominance relation, iff

∀y1, y2 ∈ U : y1DP y2 ⇒ �PX∗i (y1) ≤ �
P
X∗i

(y2). (9)

Let us now remind some useful definitions of positive, negative and boundary
regions ofX in the evaluation space, introduced in [7]. First, let us note that each
set X has its complement ¬X = U −X. P -positive region of X in P -evaluation
space is defined as:

POS�XP (X) =
∪

y∈P �X (X)

EP (y), (10)

where �X comes from (1).
Basing on the definition of the positive region of set X, we also define P -

negative and P -boundary regions of the approximated set as follows:

NEG�XP (X) = POS�XP (¬X)− POS�XP (X), (11)

BND�X
P (X) = U − POS�XP (X)−NEG�XP (X). (12)

Finally, let us recall definitions and monotonicity properties of object consis-
tency measures, which will be used in definition (1).

The first object consistency measure that we consider is a cost-type measure
�PX(y). For P ⊆ C,X,¬X ⊆ U , where ¬X = U −X, y ∈ U , it is defined as

�PX(y) =
∣EP (y) ∩ ¬X∣
∣¬X∣

. (13)

As proved in [9], this measure has properties (m1), (m2) and (m4). To overcome
the lack of property (m3) for �PX(y) in the context of DRSA, we proposed a



modified measure �∗PX (y), which has all four desirable monotonicity properties.
For P ⊆ C, X≥i , X

≤
i ⊆ U , y ∈ U , measures �∗P

X
≥
i

(y) and �∗P
X
≤
i

(y) are defined as

�∗P
X
≥
i

(y) = max
j≤i

�P
X
≥
j

(y), (14)

�∗P
X
≤
i

(y) = max
j≥i

�P
X
≤
j

(y). (15)

The third object consistency measure is a cost-type measure �
′P
X (y). For P ⊆

C,X,¬X ⊆ U , where ¬X = U −X, y ∈ U , it is defined as

�
′P
X (y) =

∣EP (y) ∩ ¬X∣
∣X∣

. (16)

As proved in [9], this measure has all four desirable monotonicity properties.
The fourth object consistency measure, defined only in the context of DRSA,

is a gain-type measure �
′P
X (y) introduced in [7]. For P ⊆ C, X≥i , X

≤
i ⊆ U , y ∈ U ,

measures �
′P
X
≥
i

(y) and �
′P
X
≤
i

(y) are defined as

�
′P
X
≥
i

(y) = max
z∈D−P (y)∩X≥i

�P
X
≥
i

(z), (17)

�
′P
X
≤
i

(y) = max
z∈D+

P (y)∩X≤i
�P
X
≤
i

(z), (18)

where �PX(z) = ∣EP (z)∩X∣
∣EP (z)∣ , denotes rough membership of object z ∈ U to union

of classes X ⊆ U , w.r.t. set P ⊆ C. As it was proved in [9], rough membership
measure �PX(y) has properties (m2) and (m3), but it lacks properties (m1) and
(m4). Moreover, in [7] we showed that measure �

′P
X (y), extending rough mem-

bership measure, gains property (m4) but still lacks property (m1). It can be
also easily shown that this measure preserves properties (m2) and (m3).

3 The syntax and semantics of decision rules

In the variable consistency rough set approaches, we consider decision rules of
the type:

if � then 	 ,

where � and 	 denote condition and decision part of the rule, called also premise
and conclusion, respectively. The condition part of the rule is a conjunction of
elementary conditions concerning individual attributes/criteria, and the decision
part of the rule suggests an assignment to a decision class or to a union of decision
classes. A precise syntax of decision rules will be given later. Decision rules are
induced so as to cover objects from probabilistic lower approximations of sets
being classes or unions of decision classes. However, in some cases it is impossible
for a rule to cover only objects from a probabilistic lower approximation. To
handle these cases, the positive region of the considered set is computed.



The set P �X (X) of objects belonging to the P -lower approximation of X
is the basis for induction of a set of decision rules R�̂XX . Each induced rule
r�̂XX ∈ R

�̂X
X is supported by at least one object from P �X (X), it covers object(s)

from POS�XP (X), and it suggests an assignment to X. The elementary condi-
tions (selectors) that form the decision rules from R�̂XX are built using evaluations
of objects belonging to P �X (X) only. Moreover, rule r�̂XX is characterized by a
value �̂(r�̂XX ) of considered rule consistency measure �̂, not worse than threshold
value �̂X . Rule consistency measures are adequate to object consistency measures
used in the definition of probabilistic P -lower approximation. Different rule con-
sistency measures are discussed in Section 4. The value of threshold �̂X depends
on the value of threshold �X , which is also shown in Section 4.

Below, we define a syntax of decision rule r�̂XX ∈ R�̂XX for the most general
classification problem, i.e., ordinal classification with monotonicity constraints:

if qi1(y) ર ri1 ∧ . . . ∧ qip(y) ર rip ∧ qip+1(y) = rip+1 ∧ . . . ∧ qiz (y) = riz

then y ∈ X≥i , (19)
if qi1(y) ⪯ ri1 ∧ . . . ∧ qip(y) ⪯ rip ∧ qip+1

(y) = rip+1
∧ . . . ∧ qiz (y) = riz

then y ∈ X≤i , (20)

where qi, i ∈ {i1, i2, . . . , ip} denotes criterion and qi, i ∈ {ip+1, ip+2, . . . , iz} de-
notes regular attribute. Moreover, ri denotes chosen value from the value set of
attribute qi. We use symbols ર and ⪯ to indicate weak preference w.r.t. single
criterion and inverse weak preference, respectively. If qi ∈ C is a gain (cost) crite-
rion, then elementary condition qi(y) ર ri denotes that the value of object y ∈ U
on condition criterion qi is not smaller (not greater) than value ri. Elementary
conditions for regular attributes are of the type qi(y) = ri.

Decision rule r�̂XX covers objects that fulfill its condition part and suggest
their assignment to set X. Condition part of rule r�̂XX can be denoted by �

r
�̂X
X

,

while its decision part can be denoted by 	
r
�̂X
X

. Moreover, we denote by ∥�
r
�̂X
X

∥
or ∥	

r
�̂X
X

∥ the set of objects fulfilling condition or decision part of the rule,
respectively.



Decision rule r�̂XX ∈ R
�̂X
X is characterized by the following basic measures:

support of r�̂XX : supp(r�̂XX ) =
∣∣∣∥�

r
�̂X
X

∥ ∩ ∥	
r
�̂X
X

∥
∣∣∣, (21)

strength of r�̂XX : �(r�̂XX ) =
supp(r�̂XX )

∣U ∣
, (22)

certainty of r�̂XX : cer(r�̂XX ) =
supp(r�̂XX )∣∣∥�

r
�̂X
X

∥
∣∣ , (23)

coverage of r�̂XX : cov(r�̂XX ) =
supp(r�̂XX )∣∣∥	

r
�̂X
X

∥
∣∣ , (24)

where ∣ ⋅ ∣ denotes cardinality of a set.

Objects that support rule r�̂XX are those that satisfy both condition and
decision part of the rule. The strength of a rule is defined as a ratio of its
support and the number of all objects in the data set. The certainty of a rule is
defined as a ratio of the number of objects that support the rule to the number
of objects that satisfy condition part of the rule. Coverage of a rule is defined as
a ratio of the number of objects that support the rule to the number of objects
that satisfy decision part of the rule.

4 Characteristics and properties of decision rules

Decision rules should be short and accurate. Shorter decision rules are easier
to understand. Shorter rules also allow to avoid overfitting the training data.
Overfitting occurs when the learned model fits training data perfectly but is not
performing well on new data. Rules induced in variable consistency rough set ap-
proaches avoid overfitting because they are not required to classify training data
perfectly. Such a relaxation is typical for other machine learning rule induction
algorithms [11–13, 60]. It allows to induce more general rules with less elemen-
tary conditions. The difference to other rule induction algorithms proposed in
machine learning is that in case of the algorithms defined within variable con-
sistency rough set approaches, it is known a priori which objects in the data set
can be classified incorrectly, i.e., which objects from the P -positive region of X
do not belong to the P -lower approximation of X. Relaxation of the require-
ment to cover only consistent objects involves a trade-off between accuracy and
simplicity [36].

Induced rules must satisfy similar constraints on consistency as objects from
the lower approximation which serve as a base for rule induction. Thus, in addi-
tion to the measures specified in the previous section, a VC-DRSA decision rule
r�̂XX can be characterized by a value of chosen rule consistency measure �̂. We



consider the following three rule consistency measures:

�-consistency of r�̂XX : �(r�̂XX ) =

∣∣∥�
r
�̂X
X

∥ ∩ ¬P �X (X)
∣∣

∣¬P �X (X)∣
, (25)

�′-consistency of r�̂XX : �′(r�̂XX ) =

∣∣∥�
r
�̂X
X

∥ ∩ ¬P �X (X)
∣∣

∣P �X (X)∣
, (26)

�-consistency of r�̂XX : �(r�̂XX ) =

∣∣∥�
r
�̂X
X

∥ ∩ P �X (X)
∣∣∣∣∥�

r
�̂X
X

∥
∣∣ , (27)

where �̂X = ∣¬X∣
∣¬P �X (X)∣�X in definition (25), �̂X = ∣X∣

∣P �X (X)∣�X in definition (26),

and �̂X = �X in definition (27). �-consistency measure is related to cost-type
object consistency measure � defined as (13). �′-consistency measure is related
to cost-type object consistency measure �′ defined as (16). �-consistency mea-
sure is related to gain-type rough membership measure � used in definitions (17)
and (18). It can be shown that each of the defined above rule consistency mea-
sures derives monotonicity properties from the corresponding object consistency
measure.

As it will be shown in Section 5, �-consistency measure can be used to induce
decision rules from positive regions computed using object consistency measure
�∗. As it will be also shown in Section 5, it is possible, with some additional steps,
to induce rules satisfying constraints on �-consistency from positive regions com-
puted using object consistency measure �′. It should be noticed that there is a
difference in the definitions of �-consistency, �′-consistency and �-consistency,
comparing to the corresponding definitions of object consistency measures �, �′
and �. In the definitions of rule consistency measures, P �X (X) is used instead of
X. In this way, covered objects from X that do not belong to POS�XP (X) worsen
the value of considered rule consistency measure. This is especially important
when such objects belong to NEG�XP (X).

It is possible to induce decision rules from monotonic or non-monotonic lower
approximations, i.e., probabilistic lower approximations computed using object
consistency measures that have properties (m1), (m2), (m3), and (m4) or prob-
abilistic lower approximations computed using measures that lack some of these
properties, respectively. Monotonicity of rule consistency measure �̂ that is used
in induction of set R�̂XX affects the process of induction. Induction of rules from
non-monotonic lower approximations requires additional steps to ensure desir-
able consistency of induced rules. As it will be shown in Section 5, it is com-
putationally less expensive to induce rules from monotonic probabilistic lower
approximations. Moreover, the rules induced from monotonic lower approxima-
tions may be more general since they explore larger elementary condition space,
i.e., the set of possible elementary conditions that can be used in a rule is larger
than in the non-monotonic case.

Now, let us introduce several concepts characteristic for machine learning
and decision support approaches that apply a set of (decision) rules as a data



model. We will also show how some of these concepts are adapted in rough set
approaches, when one takes into account rough approximations of considered
sets of objects.

Decision rule assigning to set X is discriminant if it covers only objects
belonging to X. In IRSA and DRSA, a certain decision rule is discriminant if
it covers only objects from P (X), while possible decision rule is discriminant
if it covers only objects from P (X). Moreover, in variable consistency rough
set approaches considered in this paper, rule is discriminant if it covers only
objects belonging to positive region POS�XP (X). Rule is minimal if removing
any of its elementary conditions causes that it is no more discriminant. We
consider also minimality of a rule in the context of all rules from given set R. In
this context, rule r is minimal if there is no other rule r′ with not less general
conditions and not less specific decision. Using the notation introduced in Section
3, r�̂XX is minimal if there does not exist other rule r�̂YY ∈ R, Y ⊆ U , such that
∥�

r
�̂Y
Y

∥ ⊇ ∥�
r
�̂X
X

∥ and ∥	
r
�̂Y
Y

∥ ⊆ ∥	
r
�̂X
X

∥. Set of rules assigning to X is complete

iff each object y ∈ X is covered by at least one rule from this set. In the rough set
approaches, however, we consider completeness of the set of rules from the view
point of lower and/or upper approximation of X. In particular, in VC-IRSA and
VC-DRSA, set of rules R�̂XX is complete iff each object y ∈ P �X (X) is covered by
at least one rule r�̂XX ∈ R

�̂X
X . Finally, rule r belonging to the set of rules assigning

to X is non-redundant, if removing r causes that this set ceases to be complete.

According to the rule induction strategy used in AQ [39, 40], as well as in
FOIL [48, 50], induced rules should be minimal and discriminant and the set of
rules should be complete. These requirements are satisfied by most of decision
rule induction algorithms proposed for rough set approaches, e.g., LEM2, Dom-
LEM [25, 32–34, 57]. The requirement of completeness is, however, softened in
case of pruned sets of rules induced by IREP [21], RIPPER [13] or SLIPPER
[14]. In other cases, like Lightweight Rule Induction (LRI) [60], a given number
of rules is induced for each set X which also leads to softening the requirement
of completeness. This is also true for statistical approach to rule learning [51],
where it is assumed that the number of induced rules is parameterized. More-
over, the requirement to use discriminant rules is usually softened in a voting
setting. In this setting, a set of rules is typically seen as an ensemble of rules, i.e.,
one assigns a weight to each rule and uses a voting scheme for prediction. This
is the case, e.g., for SLIPPER, LRI and a statistical approach to rule learning
[51].

Rule induction methods that do not require discrimination of rules and/or
completeness of the set of rules proved to be successful in classification. Thus,
these features do not seem to be necessary to build an accurate classifier. On
the other hand, classifiers that skip these requirements are less useful when it
comes to comprehensibility or transparency of their responses. Inclination to-
wards “glass-box” methods, as opposed to “black-box” approaches, is frequently
postulated by researchers in many fields of artificial intelligence [18, 19, 31]. Not



only a precise response of a classifier but also interpretable justification of pre-
sented suggestion is considered to be important.

5 Induction of decision rules by sequential covering in
VC-DomLEM

So far, we have given the description of decision rules together with their char-
acteristics and properties. The remaining task is to describe the algorithm for
inducing rules. The proposed algorithm, called VC-DomLEM, induces rules for
classification problems addressed in VC-IRSA and ordinal classification prob-
lems considered in VC-DRSA. It can be also easily adapted to induce certain,
possible and approximate rules in IRSA, as well as certain and possible rules
in DRSA. Moreover, it can be used to generate rules from pairwise comparison
table considered in DRSA and VC-DRSA when solving choice or ranking prob-
lems [23, 55]. This algorithm heuristically searches for rules that satisfy given
threshold value of one of rule consistency measures (25), (26) or (27). The ap-
plied heuristic strategy is called sequential covering [35] or separate and conquer
[20, 38, 46]. It constructs a rule that covers a subset of training objects, removes
the covered objects from the training set and iteratively learns another rule that
covers some of the remaining objects, until no uncovered objects remain. This
strategy has been previously applied in AQ family of algorithms, CN2, LEM,
IREP, RIPPER and DomLEM.

VC-DomLEM induces a complete set of minimal and non-redundant decision
rules R. This algorithm operates at two levels. At the first level, presented as Al-
gorithm 1, set of rulesR�̂XX is induced for eachX by the V C-SequentialCoverigmix
method, presented as Algorithm 2. V C-SequentialCoverigmix is inducting rules
using elementary conditions constructed on attributes from set P (line 4). Value
of chosen rule consistency measure �̂ has to be not worse than given thresh-
old value �̂X . Moreover, each rule from set R�̂XX is allowed to cover only those
objects which belong to set AO�XP (X). This set is calculated according to one
of three options coded by parameter s ∈ {1, 2, 3} (line 3). We consider three
reasonable options, indicated by the value of s: 1) AO�XP (X) = POS�XP (X), 2)
AO�XP (X) = POS�XP (X) ∪ BND�X

P (X), and 3) AO�XP (X) = U . Option 1) is
concordant with the spirit of DRSA. Option 3) implies induction of the most
general rules. However, a rule induced for this option may cover objects from
negative region NEG�XP (X). Option 2) is in between – it implies induction of
more general rules than according to 1) and still prevents covering objects from
the negative region. Set of rules R�̂XX is added to set R in line 5. Minimality of set
R is checked after each addition in line 6. In fact, minimality check is necessary
only for VC-DRSA, where unions of ordered classes can overlap. Moreover, this
step can be simplified if in line 2 upward or downward unions are considered
from the most specific (i.e., containing the smallest number of objects) to the
most general (i.e., containing the largest number of objects). In such a case, only
rules from set R�̂XX can be non-minimal.



Algorithm 1: V C-DomLEM
Input : set X of classes Xi ∈ U , upward unions of classes X≥i ∈ U or

downward unions of classes X≤i ∈ U ,
set of attributes P ⊆ C,
rule consistency measure �̂,
set of rule consistency measure thresholds {�̂X : X ∈ X},
object covering option s.

Output: set of rules R.
R := ∅;1
foreach element X ∈ X do2

AO�XP (X) := AllowedObjects(X,P, �X , s);3

R�̂XX := V C-SequentialCoveringmix(P �X (X), AO�XP (X), P, �̂, �̂X);4

R := R ∪R�̂XX ;5
RemoveNonMinimalRules(R);6

end7

At the second level, rules for a given setX are induced by V C-SequentialCoverigmix
method, presented as Algorithm 2. These rules consist of elementary conditions
that are constructed using evaluations of objects from P �X (X) on attributes
from set P (line 5). The word mix in the name of the algorithm is used to
indicate that each elementary condition can be constructed from among evalu-
ations of different positive objects (i.e., objects from set P �X (X)). For regular
attributes, elementary conditions involve relation =. In case of criteria, elemen-
tary conditions involve relation ર or ⪯, for an upward or downward union of
classes, respectively. The induction of rules is carried out as long as there are
still some positive objects to be covered, i.e., there are uncovered objects from
P �X (X) that can be used to construct elementary conditions (line 3). Each rule
is constructed in a greedy search by adding new elementary conditions as long
as consistency threshold �̂X is not satisfied by the chosen rule consistency mea-
sure �̂, or rule r�̂XX covers objects not belonging to set AO�XP (X) (line 6). The
elementary condition added to rule r�̂XX in line 8 is a new condition from set EC
(i.e., condition that is not already present in the constructed rule) that is eval-
uated as the best in line 7. In order to evaluate elementary condition ec ∈ EC,
the following two quality measures are used:

1. one of rule consistency measures (25), (26) or (27) of rule r�̂XX ∪ ec,
2.
∣∣∥�

r
�̂X
X ∪ec

∥ ∩ P �X (X)
∣∣,

where r�̂XX ∪ ec denotes a rule resulting from extension of rule r�̂XX by new ele-
mentary condition ec.

The best elementary condition according to 1) is selected. In case of a tie
between compared elementary conditions, the best one according to 2) is cho-
sen. If this is not sufficient to determine the best condition, the order in which
elementary conditions are checked decides. It is worth noting that it is possible



to add a new elementary condition on an attribute which is already present in
the rule. When such a new elementary condition is added, previous elementary
condition on that attribute becomes redundant and is removed in line 11. This
allows to start with a rule as general as possible, and then specialize it to meet
constraint on rule consistency measure checked in line 6. After elementary con-
dition is added to the rule (line 8), the set of candidate elementary conditions
EC is updated (line 9). All elementary conditions that come from objects that
do not support the growing rule are removed from EC. In this way, the search
for new elementary conditions is narrowed to only these conditions that can be
constructed from objects in supp(r�̂XX ). This also causes that addition of a new
elementary condition on the attribute already present in the rule can only result
in a more specific rule (i.e., a rule that covers a subset of objects covered so far).

After the constructed rule satisfies necessary constraints from line 6, elemen-
tary conditions that became redundant are removed from that rule (line 11).
This can be done in different ways (e.g., elementary conditions can be consid-
ered from the oldest to the newest ones). However, it needs to be assured that
after this step the rule still satisfies constraints from line 6. Next, the rule is
added to the set of rules induced so far (line 12). Objects supporting that rule
are removed from set B, which is the base for building candidate elementary
conditions (line 13).

Constructed set of rules R�̂XX is checked for redundancy in line 15. The rules
considered as redundant are removed. They are removed in an iterative procedure
which consists of three steps. First, each rule that can be removed is put on a
list. If the list is non-empty, then one of the rules can be removed without
loosing completeness of R�̂XX . Otherwise, the checking is stopped. Second, one
rule r�̂XX is selected from the list according to the following measures, considered
lexicographically:

1. the smallest value of
∣∣∥�

r
�̂X
X

∥ ∩ P �X (X)
∣∣,

2. the worst value of �̂(r�̂XX ),
3. the smallest index of r�̂XX on the constructed list of rules.

Third, the selected rule is removed from set R�̂XX .

5.1 Induction of rules satisfying �-consistency and �′-consistency
condition

Monotonicity properties of rule consistency measures: �-consistency (25) and �′-
consistency (26), allow to increase efficiency of rule induction in V C-SequentialCoverigmix
algorithm. These properties are derived from corresponding object consistency
measures � (13) and �′ (16).

There are two scenarios defined for V C-SequentialCoverigmix algorithm:

�) application of �-consistency measure in order to induce rules covering objects
from P �X (X) calculated using � or �∗ object consistency measure,



Algorithm 2: V C-SequentialCoveringmix

Input : set of positive objects P �X (X) ⊆ U ,
set of objects that can be covered AO�XP (X) ⊆ U ,

AO�XP (X) ⊇ P �X (X)
set of attributes P ⊆ C,
rule consistency measure �̂,
rule consistency measure threshold �̂X .

Output: set of rules R�̂XX assigning objects to X.
B := P �X (X);1

R�̂XX := ∅;2
while B ∕= ∅ do3

r�̂XX := ∅;4
EC := ElementaryConditions(B, P );5

while (�̂(r�̂XX ) does not satisfy �̂X) or (∥�
r
�̂X
X

∥ ⊈ AO�XP (X)) do
6

ec := BestElementaryCondition(EC, r�̂XX , �̂, P �X (X));7

r�̂XX := r�̂XX ∪ ec;8

EC := ElementaryConditions(B ∩ supp(r�̂XX ), P );9

end10

RemoveRedundantElementaryConditions(r�̂XX , �̂, �̂X , AO�XP (X));11

R�̂XX := R�̂XX ∪ r
�̂X
X ;12

B := B ∖ supp(r�̂XX );13

end14

RemoveRedundantRules(R�̂XX , �̂, P �X (X));15

�) application of �′-consistency measure in order to induce rules covering objects
from P �X (X) calculated using �′ object consistency measure.

Moreover,


) elementary condition ec is selected according to the following two measures,
considered lexicographically:
1) rule consistency measure �̂ of rule r�̂XX ∪ec being �-consistency in scenario

�) or �′-consistency in scenario �),
2)
∣∣∥�

r
�̂X
X ∪ec

∥ ∩ P �X (X)
∣∣.

Theorem 1. For V C-SequentialCoveringmix, in scenario �) or �), and sub-
ject to 
), sequential addition of the best elementary condition always leads to
decision rule r�̂XX that has value of chosen rule consistency measure �̂ not worse
than threshold �̂X , where �̂X = ∣¬X∣

∣¬P �X (X)∣�X (or �̂X = ∣¬X∣
∣¬P �

∗
X (X)∣

�∗X , respectively)

in scenario �) or �̂X = ∣X∣

∣P �
′
X (X)∣

�′X in scenario �).



Proof. Let us assume that induced rule r�̂XX does not satisfy yet the constraint
on rule consistency measure from line 6 of Algorithm 2. Elementary conditions
from set EC are constructed, in line 9, using evaluations of objects that belong
to the set of positive objects B and that are covered by r�̂XX . Thus, in the worst
case, this method constructs r�̂XX that is composed of elementary conditions that
use all evaluations from one object y belonging to B. This results in r�̂XX that
corresponds to the P -dominance cone based on y. Since y belongs to P �X (X),
y has value of � not worse than �X . This implies that rule r�̂XX has value of �̂
not worse than threshold �̂X . ⊓⊔

As it was proved in [9], both � and �′ have property (m1). This property is also
satisfied by related rule consistency measures �-consistency and �′-consistency.
When combined with the greedy nature of the presented algorithm, it allows to
consider for addition to rule r�̂XX being constructed only new elementary con-
ditions constructed on attributes that are not already present in the rule. New
elementary condition constructed on an attribute already present in the rule
decreases the quality of that rule, measured by its consistency and the number
of covered objects from the probabilistic P -lower approximation of X, as shown
by the following theorem.

Theorem 2. For V C-SequentialCoveringmix, in scenario �) or �), and sub-
ject to 
), addition of a new (more specific) elementary condition on some at-
tribute that is already present in the induced rule r�̂XX does not change the value
of rule consistency measure while it decreases support of that rule.

Proof. Let us assume that induced rule r�̂XX does not satisfy yet the constraint
on rule consistency measure from line 6 of Algorithm 2. Moreover, let us assume
that it already involves elementary conditions constructed on attributes from
set R, R ⊂ P ⊆ C, R ∕= ∅. At each step, best elementary condition ec was
selected to extend the rule so that the resulting rule covered the lowest number
of objects not belonging to P �X (X) (i.e., value of �-consistency or �′-consistency
measure of the resulting rule was minimized) and, in case of a tie between con-
sidered elementary conditions, the highest number of objects from P �X (X). For
attribute qi ∈ R, next (more specific) elementary condition on that attribute has
to decrease support of the induced rule. In order to prove that the new elemen-
tary condition on attribute qi ∈ R can not change the value of rule consistency
measure, let us denote by ec1 the first elementary condition on the considered
attribute, and by ec2 the new (more specific) elementary condition on that at-
tribute. Let us observe that due to the greedy nature of the algorithm, at the
time when ec1 was chosen, ec2 had to be evaluated as not better than ec1 ac-
cording to the value of rule consistency measure. This means that the difference
DF between the set of objects covered by rule r�̂XX ∪ ec1 and the set of objects
covered by rule r�̂XX ∪ec2 could not contain any object not belonging to P �X (X).
According to Algorithm 2, removal of elementary conditions from a rule is not



permitted until it satisfies constraints from line 6. Thus, at any time after the rule
is extended with elementary condition ec1, we have ∥�

r
�̂X
X

∥−∥�
r
�̂X
X ∪ec2

∥ ⊆ DF .

Because DF ∩¬P �X (X) = ∅, value of rule consistency measure is not altered by
addition of ec2. ⊓⊔

Theorem 2 shows that during rule induction by Algorithm 2, elementary con-
ditions constructed on attributes that are already present in the rule are redun-
dant from the viewpoint of �-consistency and �′-consistency measures. Moreover,
such elementary conditions decrease the support of the rule. Thus, we can reduce
the number of elementary conditions considered to be added to the constructed
rule to only those on attributes that are not already present in the rule. The
computational benefit coming from this reduction is hard to estimate. Anyway,
this improvement does not involve any additional cost (i.e., it does not involve
any additional steps to reduce the number of considered elementary conditions).

Measures � and �′ both have property (m4). This allows us to further increase
the efficiency of the rule induction algorithm. We can sort elementary conditions
on each criterion qi ∈ P , where P ⊆ C, according to the preference order on
its values. Property (m4) assures that the order of elementary conditions af-
ter sorting reflects the order of values of object consistency measures � and �

′
.

The remaining processing after the sorting is simple because we search for ele-
mentary conditions with the best value of chosen rule consistency measure. The
additional computational cost of a one-time sort of each attribute is a fixed cost
that is almost inconsequential when compared to the overall computational cost
of induction of the rules. This improvement considerably reduces computational
cost of rule induction. As it was shown in [60], a similar improvement resulted
in computational complexity of induction approximately linear in the number of
rules or objects.

�-consistency measure can be used to induce decision rules for objects be-

longing to P
�∗
X
≥
i (X≥i ) (or P

�∗
X
≤
i (X≤i )). From definition (14), �∗P

X
≥
i

(y) ≥ �P
X
≥
i

(y),

∀y ∈ U,X≥i ⊆ U,P ⊆ C. If some object y ∈ U belongs to P
�∗
X
≥
i (X≥i ), then it

also belongs to P
�
X
≥
i (X≥i ), with �

X
≥
i

= �∗
X
≥
i

. In other words, for given object
consistency measure threshold value �

X
≥
i
, probabilistic P -lower approximation

of union X≥i calculated w.r.t. measure � is a superset of probabilistic P -lower
approximation of union X≥i calculated w.r.t. measure �∗. Since it is possible to
cover by rules all objects belonging to the former, it is also possible to cover by
rules all objects belonging to the latter.

5.2 Induction of rules satisfying �-consistency condition

VC-DomLEM algorithm needs some modifications to enable induction of rules
satisfying a constraint on �-consistency measure. These modifications are caused
by lack of monotonicity property (m4) of �-consistency measure. Notice that
�-consistency measure is also missing property (m1), however, this is already



handled in VC-DomLEM algorithm by the possibility of adding a new elementary
condition on the attribute which is already present in the induced rule. If an
elementary condition covering too many objects not belonging to P -positive
region of X is selected in some iteration, it can always be narrowed down later
to cover fewer of them. Nevertheless, if this possibility is used in the algorithm
frequently, it can increase the computational cost considerably.

Now, let us consider induction of rules, which satisfy constraint on �-consistency
measure, from probabilistic P -lower approximations calculated using object con-
sistency measure �

′
, defined as (17) or (18). The problem that can be faced by

VC-DomLEM during induction of rules is presented in the following Example 1
and Fig. 1.

Example 1. When applying in equation (1) object consistency measure �′ de-
fined as (17), and choosing gain-threshold �

X
≥
2

= 0.75, we obtain P 0.75(X≥2 ) =

{y1, y2, y3}, where P = {q1, q2}. One can observe that objects belonging to
union X≥2 are characterized by the following values of rough membership mea-
sure: �(y1) = 0.75, �(y2) = 0.66, �(y3) = 0.5. Objects y2 and y3 belong to
P 0.75(X≥2 ) because they dominate object y1. Moreover, according to definition
(10), POS0.75

P (X≥2 ) = {y1, y2, y3, y6}.
Now, we intend to construct decision rules assigning to union of classes X≥2 .

For this purpose, we apply rule �-consistency measure, defined as (27). We take
�̂
X
≥
2

= �
X
≥
2

= 0.75 and construct elementary conditions using evaluations of

objects belonging to P 0.75(X≥2 ), in order to cover objects from POS0.75
P (X≥2 )

only (i.e., we assume the most restrictive object covering option, corresponding
to s = 1). For attribute q1, considered elementary conditions have the follow-
ing values of �-consistency measure: 0.6 for q1(y) ≥ 2, 0.6(6) for q1(y) ≥ 4
and 0.5 for q1(y) ≥ 5. It is visible that �-consistency measure does not have
property (m4) since it is a gain-type measure and its value for q1(y) ≥ 5
is lower than for q1(y) ≥ 4. The first elementary condition selected by VC-
DomLEM for rule r0.75

X
≥
2

is q1(y) ≥ 4. This elementary condition has value of

�-consistency measure equal to 0.6(6). The constraint on rule consistency from
line 6 of V C-SequentialCoverigmix is not satisfied. Unfortunately, any elemen-
tary condition that can be further added to the induced rule does not help to
satisfy that constraint. The best elementary condition that can be added in the
second iteration is q2(y) ≥ 4, resulting in a rule if q1(y) ≥ 4 ∧ q2(y) ≥ 4 then
y ∈ X≥2 , with �-consistency of 0.6(6). Thus, in the current form, it is impos-
sible to construct by VC-DomLEM algorithm a rule that satisfies threshold on
�-consistency measure. Such rule would be if q1(y) ≥ 2∧q2(y) ≥ 2 then y ∈ X≥2 ,
with �-consistency 0.75.

Note that the possibility to add elementary condition on an attribute already
present in the rule does not solve the problem resulting from the lack of property
(m4). It allows only to specialize elementary conditions already present in the
rule. To overcome the lack of property (m4) of �-consistency measure, we propose
a reduction of the set of objects considered when creating elementary conditions.
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Fig. 1. Illustration of VC-DomLEM problems with induction of rules satisfying �-
consistency condition, caused by lack of property (m4).

We define P -edge regions of unions of classesX≥i andX≤i . For P ⊆ C,X
≥
i , X

≤
i ⊆

U , y, z ∈ U , �
X
≥
i
∈ [0, A

X
≥
i
], �

X
≤
i
∈ [0, A

X
≤
i
], P -edge regions are defined as fol-

lows:

EDGE
�
X
≥
i

P (X≥i ) = {y ∈ P
�
X
≥
i (X≥i ) : z ∈ D

−
P (y) ∩ P

�
X
≥
i (X≥i )⇒ z ∈ D+

P (y)},
(28)

EDGE
�
X
≤
i

P (X≤i ) = {y ∈ P
�
X
≤
i (X≤i ) : z ∈ D

+
P (y) ∩ P

�
X
≤
i (X≤i )⇒ z ∈ D−P (y)}.

(29)

It should be noticed that the P -edge region of union X≥i is a subset of proba-
bilistic P -lower approximation of that union. This subset contains only objects
that do not (at least) weakly dominate any other object belonging to P

�
X
≥
i (X≥i ).

Analogically, the P -edge region of union X≤i contains only objects that are not

(at least) weakly dominated by any other object belonging to P
�
X
≤
i (X≤i ). We

say that object y weakly dominates object z iff y is not worse than z on each
criterion qi ∈ P , for at least one criterion qi ∈ P is strictly better, and for each
regular attribute qi ∈ P is indifferent to z. We say that object y is weakly domi-
nated by object z iff y is not better than z on each criterion qi ∈ P , for at least
one criterion qi ∈ P is strictly worse, and for each regular attribute qi ∈ P is
indifferent to z.

Let us consider the following scenario for V C-SequentialCoverigmix algo-
rithm:

�′) application of �-consistency measure in order to induce rules covering objects
from P �X (X) calculated using �′ object consistency measure.



In order to adjust V C-SequentialCoverigmix algorithm for �-consistency
measure, we need the following modifications:


′) elementary condition ec is selected according to the following two measures,
considered lexicographically:
(a) �-consistency measure of rule r�̂XX ∪ ec,
(b)

∣∣∥�
r
�̂X
X ∪ec

∥ ∩ P �X (X)
∣∣,

�) P -edge region of set X is used instead of the probabilistic P -lower approxi-
mation of X.

Theorem 3. For V C-SequentialCoverigmix method, in scenario �′), and sub-
ject to 
′) and �), sequential addition of the best elementary condition always
leads to decision rule r�̂XX that has value of �-consistency measure not lower than
threshold �̂X = �X .

Proof. Because of the definition of object consistency measure �′, the objects
that are included in the P -edge region of X are only those that have value of
rough membership not lower than the specified threshold �X . Proposed reduc-
tion of the set of objects, together with the possibility to add next elementary
condition on an attribute that is already present in the induced rule, guarantee
that each rule induced for set X can finally reach the value of �-consistency
measure not worse than threshold �̂X = �X . It is true because one can always
construct a rule that has all elementary conditions generated from exactly one
of the objects belonging to the P -edge region of X. ⊓⊔

Presented modification of VC-DomLEM algorithm implies additional com-
putational cost because P -edge regions must be calculated. On the other hand,
smaller set of objects is considered to generate elementary conditions used to
construct a rule, which compensates the computational cost of selecting these
objects. Moreover, as we have shown in Example 1, without this modification it
might be impossible to induce rules having value of �-consistency measure not
lower than specified threshold �̂X .

6 Experimental Setup

The main aim of the experiment presented in this paper is to evaluate the use-
fulness of VC-DomLEM algorithm in terms of its predictive accuracy. To this
end, we compared our algorithm to other methods on twelve ordinal data sets
listed in Table 1. Data sets: employee rejection/acceptance (ERA), employee
selection (ESL), lectures evaluation (LEV) and social workers decisions (SWD)
were taken from [2]. Other data sets come from the UCI repository3 and other
public repositories (as in case of data sets: bank of Greece (bank-g) and financial
analysis made easy (fame)).

3 see http://www.ics.uci.edu/˜mlearn/MLRepository.html



Table 1. Characteristics of data sets

Id Data set Objects Attributes Classes
1 breast-c 286 8 2
2 breast-w 699 9 2
3 car 1296 6 4
4 cpu 209 6 4
5 bank-g 1411 16 2
6 fame 1328 10 5
7 denbosch 119 8 2
8 ERA 1000 4 9
9 ESL 488 4 9
10 LEV 1000 4 5
11 SWD 1000 10 4
12 windsor 546 10 4

In general, it is not always the case that ordinal classifiers that preserve
monotonicity constraints perform better than non-ordinal classifiers [4] in pre-
dictive accuracy. This is mainly attributed to the fact that monotonicity con-
straints that need to be satisfied bias the classifier. The unbiased classifier may
generalize the data more effectively. Taking this into account, we compared VC-
DomLEM to other ordinal classifiers that preserve monotonicity constraints as
well as to non-ordinal classifiers.

Let us now describe briefly the classifiers that we considered in the ex-
periment. We used the implementation of VC-DomLEM from jRS and jMAF
frameworks4. We considered VC-DomLEM in two variants: monotonic (i.e., with
monotonic �-consistency or �′-consistency measure) and non-monotonic (i.e.,
with non-monotonic �-consistency measure). Moreover, we used two ordinal clas-
sifiers that preserve monotonicity constraints, namely: Ordinal Learning Model
(OLM) [1, 3] and Ordinal Stochastic Dominance Learner (OSDL) [10]. We also
used some well known non-ordinal classifiers: Naive Bayes, Support Vector Ma-
chine (SVM) with linear kernel [47], decision rule classifier RIPPER [13], and
decision tree classifier C4.5 [49].

7 Results of Experiment and Discussion

In the experiment, the predictive accuracy was estimated by stratified 10-fold
cross-validation, which was repeated several times. We measured mean absolute
error (MAE), which is a standard measure used for ordinal classification prob-
lems. Additionally, we measured the average percentage of correctly classified
objects. These results are shown in Tables 2 and 3, respectively. In both cases,
tables with results contain the value of measure and its standard deviation for
each data set and each classifier. Moreover, for each data set we calculated a
4 see http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html



rank of the result of a classifier when compared to the other classifiers. The rank
is presented in brackets (the smaller the rank, the better). We show these ranks
because they are used in statistical test described further. Last row of each table
shows the average rank obtained by a given classifier. Moreover, for each data
set, the best value of the predictive accuracy measure, and those values which
are within standard deviation of the best one, are marked as bold.

Table 2. Mean absolute error (MAE) results

Id monotonic non-monotonic Naive SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

1 0.2331 (1) 0.2436 (3) 0.2564 (4) 0.3217 (7) 0.2960 (5) 0.2424 (2) 0.324 (8) 0.3065 (6)
+
−0.003297

+
−0.007185

+
−0.005943

+
−0.01244

+
−0.01154

+
−0.003297

+
−0.01835

+
−0.001648

2 0.03720 (2) 0.04578 (6) 0.03958 (3) 0.03243 (1) 0.04483 (5) 0.05532 (7) 0.1764 (8) 0.04149 (4)
+
−0.002023

+
−0.003504

+
−0.0006744

+
−0.0006744

+
−0.004721

+
−0.00751

+
−0.00552

+
−0.001168

3 0.03421 (1) 0.03524 (2) 0.1757 (7) 0.08668 (4) 0.2029 (8) 0.1168 (6) 0.09156 (5) 0.04141 (3)
+
−0.0007275

+
−0.0009624

+
−0.002025

+
−0.002025

+
−0.01302

+
−0.003108

+
−0.005358

+
−0.0009624

4 0.08293 (1) 0.0925 (2) 0.1707 (5) 0.4386 (8) 0.1611 (4) 0.1196 (3) 0.3461 (7) 0.3158 (6)
+
−0.01479

+
−0.01579

+
−0.009832

+
−0.01579

+
−0.01372

+
−0.01790

+
−0.02744

+
−0.01034

5 0.04559 (1) 0.04867 (2) 0.1146 (6) 0.1280 (7) 0.0489 (3) 0.0515 (4) 0.05528 (5) 0.1545 (8)
+
−0.001456

+
−0.000884

+
−0.01371

+
−0.001205

+
−0.00352

+
−0.005251

+
−0.001736

+
−0

6 0.3406 (1.5) 0.3469 (3) 0.4829 (6) 0.3406 (1.5) 0.3991 (5) 0.3863 (4) 1.577 (7) 1.592 (8)
+
−0.001878

+
−0.004

+
−0.002906

+
−0.001775

+
−0.003195

+
−0.005253

+
−0.03791

+
−0.007555

7 0.1232 (1) 0.1289 (2.5) 0.1289 (2.5) 0.2129 (7) 0.1737 (6) 0.1653 (5) 0.2633 (8) 0.1541 (4)
+
−0.01048

+
−0.01428

+
−0.01428

+
−0.003961

+
−0.02598

+
−0.01048

+
−0.02206

+
−0.003961

8 1.307 (2) 1.376 (7) 1.325 (5) 1.318 (3) 1.681 (8) 1.326 (6) 1.321 (4) 1.280 (1)
+
−0.002055

+
−0.002867

+
−0.003771

+
−0.007257

+
−0.01558

+
−0.006018

+
−0.01027

+
−0.00704

9 0.3702 (3) 0.4146 (5) 0.3456 (2) 0.4262 (6) 0.4296 (7) 0.3736 (4) 0.474 (8) 0.3422 (1)
+
−0.01352

+
−0.005112

+
−0.003864

+
−0.01004

+
−0.01608

+
−0.01089

+
−0.01114

+
−0.005019

10 0.4813 (6) 0.5213 (7) 0.475 (5) 0.4457 (4) 0.4277 (3) 0.426 (2) 0.615 (8) 0.4033 (1)
+
−0.004028

+
−0.002055

+
−0.004320

+
−0.003399

+
−0.00838

+
−0.01476

+
−0.0099

+
−0.003091

11 0.454 (4) 0.498 (7) 0.475 (6) 0.4503 (2) 0.452 (3) 0.4603 (5) 0.5707 (8) 0.433 (1)
+
−0.004320

+
−0.004546

+
−0.004320

+
−0.002867

+
−0.006481

+
−0.004497

+
−0.007717

+
−0.002160

12 0.5024 (1) 0.5201 (3) 0.5488 (4) 0.5891 (6) 0.6825 (8) 0.652 (7) 0.5757 (5) 0.5153 (2)
+
−0.006226

+
−0.003956

+
−0.005662

+
−0.02101

+
−0.03332

+
−0.03721

+
−0.006044

+
−0.006044

2.04 4.12 4.62 4.71 5.42 4.58 6.75 3.75

We used a statistical approach to compare differences in predictive accu-
racy between classifiers in variants which we mentioned above. First, we applied
Friedman test to globally compare performance of eight different classifiers on
multiple data sets [16, 37]. The null-hypothesis in this test was that all compared
classifiers perform equally well. It was tested using the ranks of each of the clas-
sifiers on each of the data sets. We do not present complete post-hoc analysis
[16] of differences between classifiers, however, we show the average rank of each
classifier in the last row of the tables with results.

We analyzed the ranks of MAE, which are presented in Table 2. The p-value
in Friedman test performed for this comparison is 0.00017. Then, we analyzed
ranks of percentage of correctly classified objects, which are presented in Table 3.
The p-value in Friedman test is in this case 0.00018. The results of Friedman test



Table 3. Percentage of correctly classified objects results

Id monotonic non-monotonic Naive SVM RIPPER C4.5 OLM OSDL
VC-DomLEM VC-DomLEM Bayes

1 76.69 (1) 75.64 (3) 74.36 (4) 67.83 (7) 70.4 (5) 75.76 (2) 67.6 (8) 69.35 (6)
+
−0.3297

+
−0.7185

+
−0.5943

+
−1.244

+
−1.154

+
−0.3297

+
−1.835

+
−0.1648

2 96.28 (2) 95.42 (6) 96.04 (3) 96.76 (1) 95.52 (5) 94.47 (7) 82.36 (8) 95.85 (4)
+
−0.2023

+
−0.3504

+
−0.06744

+
−0.06744

+
−0.4721

+
−0.751

+
−0.552

+
−0.1168

3 97.15 (1) 97.1 (2) 84.72 (7) 92.18 (4) 84.41 (8) 89.84 (6) 91.72 (5) 96.53 (3)
+
−0.063

+
−0.1311

+
−0.1667

+
−0.2025

+
−1.309

+
−0.1819

+
−0.4425

+
−0.063

4 91.7 (1) 90.75 (2) 83.41 (5) 56.62 (8) 84.69 (4) 88.52 (3) 68.58 (7) 72.41 (6)
+
−1.479

+
−1.579

+
−0.9832

+
−1.579

+
−1.409

+
−1.409

+
−2.772

+
−1.479

5 95.44 (1) 95.13 (2) 88.54 (6) 87.2 (7) 95.11 (3) 94.85 (4) 94.47 (5) 84.55 (8)
+
−0.1456

+
−0.0884

+
−1.371

+
−0.1205

+
−0.352

+
−0.5251

+
−0.1736

+
−0

6 67.55 (1) 67.1 (2.5) 56.22 (6) 67.1 (2.5) 63.55 (5) 64.33 (4) 27.43 (7) 22.04 (8)
+
−0.4642

+
−0.4032

+
−0.2328

+
−0.2217

+
−0.5635

+
−0.5844

+
−0.7179

+
−0.128

7 87.68 (1) 87.11 (2.5) 87.11 (2.5) 78.71 (7) 82.63 (6) 83.47 (5) 73.67 (8) 84.6 (4)
+
−1.048

+
−1.428

+
−1.428

+
−0.3961

+
−2.598

+
−1.048

+
−2.206

+
−0.3961

8 26.9 (2) 21.43 (7) 25.03 (3) 24.27 (5) 20 (8) 27.83 (1) 23.97 (6) 24.7 (4)
+
−0.3742

+
−0.1700

+
−0.2494

+
−0.2494

+
−0.4243

+
−0.4028

+
−0.4643

+
−0.8165

9 66.73 (3) 62.43 (6) 67.49 (2) 62.7 (5) 61.61 (7) 66.33 (4) 55.46 (8) 68.3 (1)
+
−1.256

+
−1.139

+
−0.3483

+
−0.6693

+
−1.555

+
−0.6966

+
−0.7545

+
−0.3483

10 55.63 (6) 52.43 (7) 56.17 (5) 58.87 (4) 60.83 (2) 60.73 (3) 45.43 (8) 63.03 (1)
+
−0.3771

+
−0.2055

+
−0.3399

+
−0.3091

+
−0.6128

+
−1.271

+
−0.8179

+
−0.2625

11 56.43 (6) 51.67 (7) 56.57 (5) 58.23 (2) 57.63 (3) 57.1 (4) 47.83 (8) 58.6 (1)
+
−0.4643

+
−0.4497

+
−0.4784

+
−0.2055

+
−0.66

+
−0.4320

+
−0.411

+
−0.4243

12 54.58 (2) 52.93 (4) 53.6 (3) 51.83 (5) 44.08 (8) 47.99 (7) 49.15 (6) 55.37 (1)
+
−0.7913

+
−1.427

+
−0.2284

+
−1.813

+
−0.8236

+
−2.888

+
−0.7527

+
−0.3763

2.25 4.25 4.29 4.79 5.33 4.17 7 3.92

and observed differences in average ranks allow us to state with high confidence
that there is a significant difference between compared classifiers.

We continued our experimental comparison with examination of importance
of difference in predictive accuracy for each pair of classifiers. We appliedWilcoxon
test [37] with null-hypothesis that the medians of results on all data sets of the
two compared classifiers are equal. Let us remark, that in the paired tests ranks
are assigned to the value of difference in the predictive accuracy between the two
compared classifiers. First, we applied this test to MAE from Table 2. We can
observe significant difference (p-values lower than 0.05) between monotonic VC-
DomLEM and any other classifier except OSDL. The same is true for the follow-
ing pairs: non-monotonic VC-DomLEM and OLM, Naive Bayes and OLM, C4.5
and RIPPER, C4.5 and OLM, OSDL and OLM. Then, we applied Wilcoxon test
to percentage of correctly classified objects from Table 3. These results indicate
significant differences between monotonic VC-DomLEM and any other classifier
except C4.5 and OSDL. The same is true for following pairs: non-monotonic
VC-DomLEM and OLM, Naive Bayes and OLM, RIPPER and OLM, C4.5 and
RIPPER, C4.5 and OLM, OSDL and OLM.

It follows from the results of the experiment that monotonic VC-DomLEM
is better than the other compared classifiers. It has the best value of the av-
erage rank of both predictive accuracy measures. However, when we compared
monotonic VC-DomLEM to other classifiers in pairs, we were not able to show



significant difference in predictive accuracy with respect to OSDL and also C4.5
(but only in case of percentage of correctly classified objects). On the other
hand, non-monotonic VC-DomLEM is comparable to other classifiers except
OLM. OLM is clearly the worst classifier in our experiment.

Table 4. Comparison of mean strength and length of rules induced by monotonic and
non-monotonic versions of VC-DomLEM

monotonic VC-DomLEM non-monotonic VC-DomLEM
Id strength length strength length
1 0.243 1.857 0.179 2.636
2 0.306 2.600 0.298 2.917
3 0.129 3.836 0.129 3.836

4 0.300 1.968 0.301 2.033
5 0.129 2.216 0.124 2.742
6 0.143 2.430 0.133 3.122
7 0.230 2.182 0.260 2.769
8 0.070 2.341 0.262 2.000

9 0.356 1.864 0.346 2.319
10 0.181 2.377 0.207 2.395
11 0.164 2.602 0.179 2.857
12 0.144 3.644 0.149 3.534

It is generally acknowledged that decision rules are relatively easy to interpret
by users. Stronger and shorter rules are particularly relevant since they represent
strongly established relationships between causes and effects. From this point of
view, it is thus interesting to compare our two versions of VC-DomLEM – the
monotonic and the non-monotonic ones. Table 4 summarizes this comparison.
In Fig. 2 and Fig. 3, we present accumulative characteristics of the strength of
induced rules. These figures show how many rules (in percentage of the respective
set of rules) have at least given strength (in percentage). Moreover, in Fig. 4
and Fig. 5, we present accumulative characteristics of the length of induced
rules. These figures show how many rules (in percentage of the respective set
of rules) have at most given length. It can be observed that for majority of
data sets the accumulative strength of induced rules is comparable. There are
few exceptions from this rule: for brest-c data set, monotonic VC-DomLEM
induced stronger rules than non-monotonic VC-DomLEM. On the other hand,
for denbosch and ERA data sets, non-monotonic VC-DomLEM induced stronger
rules than monotonic one. The figures of accumulative length of induced rules
show that for majority of data sets monotonic VC-DomLEM induced shorter
rules. Only for ERA data set, shorter rules were obtained by non-monotonic
VC-DomLEM.

Finally, we compared mean execution times of both versions of VC-DomLEM
over all runs on the twelve data sets. Induction of rules with monotonic VC-
DomLEM was on average 3.3 times faster than induction of rules with non-
monotonic VC-DomLEM. Thus, the results showed that monotonic VC-DomLEM
is more efficient than non-monotonic VC-DomLEM.



Fig. 2. Accumulative strength characteristics of decision rules induced by monotonic
and non-monotonic VC-DomLEM.



Fig. 3. Accumulative strength characteristics of decision rules induced by monotonic
and non-monotonic VC-DomLEM.



Fig. 4. Accumulative length characteristics of decision rules induced by monotonic and
non-monotonic VC-DomLEM.



Fig. 5. Accumulative length characteristics of decision rules induced by monotonic and
non-monotonic VC-DomLEM.



8 Conclusions

In this paper, we have presented a rule induction algorithm based on sequential
covering, called VC-DomLEM. This algorithm can be used for both ordered and
non-ordered data. It generates a minimal set of non-redundant decision rules.
We have proposed three rule consistency measures which can be applied during
rule induction: �-consistency, �′-consistency and �-consistency. In Theorems 1
and 3, we have proved that the presented algorithm is correct, i.e., it can al-
ways induce rules that are consistent to a required degree. Moreover, we have
analyzed properties of induced rules, and we have shown how to improve rule
induction efficiency due to application of monotonic rule consistency measures:
�-consistency or �′-consistency (Theorem 2).

Computational experiment presented in Section 7, concerning twelve ordinal
classification data sets, showed good performance of VC-DomLEM. In particular,
monotonic VC-DomLEM (i.e., VC-DomLEM using monotonic �-consistency or
�′-consistency measure) produced the best results with respect to mean absolute
error and percentage of correctly classified objects. We have verified that, in
general, decision rules produced by monotonic VC-DomLEM are shorter than
rules induced by non-monotonic VC-DomLEM (i.e., VC-DomLEM using non-
monotonic �-consistency measure). We have also observed that induction of rules
with monotonic VC-DomLEM is significantly faster than with non-monotonic
VC-DomLEM. This observation is concordant with our remarks expressed in
Section 5.
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